
GETTING STARTED
WITH AUTOMOD
BY JERRY BANKS

AUTOSIMULATIONS, INC.
655 Medical Drive
Bountiful, Utah 84010
(801) 298-1398

AUGUST 2000

 2000 by AutoSimulations, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, or otherwise, with-
out written permission from AutoSimulations, Inc. No patent liability is assumed
with respect to the use of information contained herein. While every precaution
has been taken in the preparation of this manual, AutoSimulations, Inc. assumes
no responsibility for errors or omissions. Neither is any liability assumed for
damages resulting from the use of the information contained herein.

Printed in the United States of America.

AutoSimulations, AutoMod, AutoStat, and Power to Take Control are trademarks
or registered trademarks of AutoSimulations, Inc. Other product names may be
trademarks or registered trademarks of their respective owners.

Getting Started With AutoMod Contents
Contents

Chapter 1 Principles of Simulation
Definition of simulation ...1.3
Example 1.1: Ad hoc simulation..1.4

Setting up an ad hoc simulation table..1.4
Analyzing the simulation results ...1.5

Modeling concepts..1.6
Models and events ...1.6
System state variables..1.7
Entities and attributes...1.7
Resources ...1.8
Queues ...1.8
Activities and delays..1.8
Discrete-event simulation models..1.8
Simulation modeling methods...1.9
Process-interaction method..1.9
Event scheduling method...1.9
Activity scanning method ..1.9
Three-phase method...1.10
Advantages and disadvantages of simulation..1.10
Advantages...1.10
Disadvantages ..1.12
Applications of AutoMod ..1.13
Steps in a simulation study..1.14
Random number and random variate generation ..1.17
Input data ...1.18
Assuming randomness away..1.18
Fitting a distribution to data...1.18
Using the empirical distribution of the data...1.19
What to do when no data is available ..1.20
Verification and validation ...1.21
Verification ..1.21
Validation...1.22
Experimentation and output analysis ..1.24
Statistical confidence ...1.25

Example 1.2: Confidence intervals ...1.25
Terminating versus non-terminating systems ..1.27

Terminating systems ...1.27
Non-terminating systems...1.28
rev 1.0 i

Contents Getting Started With AutoMod
Queueing theory .. 1.30
Summary .. 1.31
Exercises ... 1.32
Exercise 1.1 ... 1.32
Exercise 1.2 ... 1.32
Exercise 1.3 ... 1.32
Exercise 1.4 ... 1.32
Exercise 1.5 ... 1.32
Exercise 1.6 ... 1.33
Exercise 1.7 ... 1.33

Chapter 2 Using the Software
Opening the AutoMod software... 2.3
The edit environment... 2.4
Importing a model ... 2.5
Counting the number of entities in your model... 2.5

Displaying entity allocation .. 2.6
Running a model.. 2.7
The simulation environment.. 2.7
Example model 2.1: Load inspection and processing in an AGV system 2.8
Pausing and continuing a simulation... 2.9
Changing the display step... 2.9
Toggling the animation on and off... 2.9
Changing the view ... 2.10
Centering and zooming ... 2.10
Rotating the picture ... 2.11

Using keyboard shortcuts.. 2.13
Saving the configuration of windows and views... 2.13
Displaying statistics ... 2.14
Displaying process system summary statistics.. 2.15
Displaying queue summary statistics .. 2.16
Displaying resource summary statistics .. 2.17
Displaying vehicle statistics .. 2.18
Displaying counter summary statistics.. 2.19
Closing the AutoMod software ... 2.20

Closing the simulation environment ... 2.20
Closing the edit environment.. 2.20

Copying a model .. 2.20
Editing a model.. 2.21
Changing the length of a simulation.. 2.22
Changing the load creation rate... 2.23
Exporting a model ... 2.24
Running the revised model.. 2.24
Editing a source file... 2.25

Commenting model logic.. 2.25
Opening a path mover system ... 2.26
Changing the number of vehicles.. 2.26
Summary .. 2.27
ii rev 1.0

Getting Started With AutoMod Contents

.4.9
..4.10
Exercises ...2.28
Exercise 2.1..2.28
Exercise 2.2..2.28
Exercise 2.3..2.28
Exercise 2.4..2.28
Exercise 2.5..2.28

Chapter 3 AutoMod Concepts
The AutoMod file system ..3.4
Exporting versus saving a model..3.5
Archived (exported) models ..3.5
Saved models ...3.5
Executable models ...3.5
Using the example models ...3.6
Systems..3.7
The process system ..3.7
Movement systems ..3.8
System naming conventions ..3.8
Loads ...3.9
Territories and space ...3.10
Source files..3.11
AutoMod syntax ..3.11
AutoMod Syntax Help ...3.11
Entity naming conventions ..3.12
Using BEdit..3.13
Submitting exercise solutions..3.14
Archiving a model in the Zip format ...3.14
Printing the model logic...3.15
Summary...3.15
Exercises ...3.16
Exercise 3.1..3.16

Chapter 4 Introduction to AutoMod Syntax
Example 4.1: A two-process model ..4.4
Logic for example model 4.1 ...4.4
Arriving procedures ..4.5
The wait action ...4.5
Distributions ...4.5
Exponential distribution...4.6
Normal distribution..4.7
Triangular distribution ...4.8
Uniform distribution ..4.9

Calculating a uniform distribution’s mean and offset..................................
Constant distribution..
Units of time measurement ...4.10
Obtaining the current simulation time ..4.10
Performing mathematical calculations in logic...4.11
rev 1.0 iii

Contents Getting Started With AutoMod

. 4.12

. 4.13
. 4.13
. 4.14
.14

... 4.14

.. 4.14

.. 4.15

... 4.15
4.16
4.17
.. 4.18
4.19
4.20
.. 4.20

.. 4.22

.. 4.22

.. 4.22

.. 4.23

.. 4.23

.. 4.24

.... 5.5

.... 5.6

.. 5.7
.... 5.8
.. 5.10

. 5.12
.. 5.12
.. 5.13
.. 5.13

5.16
5.16

5.17
.. 5.19
. 5.20
.. 5.21
.. 5.23
The print action ... 4.12
Printing constant strings .. 4.12
Printing a load’s ID number and load type...
Printing the result of a mathematical calculation ...

Rounding printed values ..
Printing to a file..

Printing to a file in the model’s archive directory 4
The send action .. 4.14
Sending loads to a process..
Sending loads to die ..
Creating example model 4.1 ... 4.15
Creating a new model..
Creating the process system ...
Writing the model logic...

Defining unknown entities..
Creating new loads ..

Limiting the number of loads created ...
Defining the length of a simulation...
Displaying process system statistics..
Summary .. 4.21
Exercises ... 4.22
Exercise 4.1 ...
Exercise 4.2 ...
Exercise 4.3 ...
Exercise 4.4 ...
Exercise 4.5 ...
Exercise 4.6 ...

Chapter 5 Process System Basics
Example 5.1: Producing widgets at Acme, Inc. .. 5.4
Running the example model..
Resources.. 5.6
Claiming and releasing resources..

Determining which actions to use when claiming resources......................
Defining a resource ...

Placing resource graphics ...
Queues .. 5.12
Moving loads into queues...

Separating waiting and processing queues ...
Defining a queue ...

Placing queue graphics ...
Modeling resource unavailability... 5.16
Modeling down times using logic ...

Using “dummy” loads to execute down time processes
Writing repeating logic to model down times ..

Modeling resource down times using resource cycles
Replacing the P_down arriving procedure...
Creating a resource cycle..
Attaching a resource cycle to a resource ..
iv rev 1.0

Getting Started With AutoMod Contents
Verifying down times for resources ...5.24
Creating business graphs to view statistics..5.25
Displaying a business graph ..5.27
Interpreting reports...5.28
Version and clock information ..5.28
Process statistics ..5.29

Calculating the average time in system...5.30
Queue statistics ..5.31
Resource statistics..5.32

Determining how many loads a resource has completed5.32
Scheduling down times for when a resource is idle5.33
Example 5.2: Modeling a planer..5.33
Defining a resource cycle that delays until idle ...5.34

Attaching the resource cycle to the planer ..5.36
Setting an alarm to pause the simulation at a specific time5.37

Modeling similar processes using arrayed entities5.38
Example 5.3: Grinding operation...5.39

Modeling example 5.3 using individual entities ...5.39
Using procindex to align arrayed entities ..5.40
Writing conditional syntax using if...then...else ..5.41
Creating example model 5.3 ..5.42

Placing graphics for arrayed entities ...5.43
Defining the load creation specification..5.44
Defining the run control ..5.44
Running the example model..5.45

Determining when to use arrays versus multiple-capacity resources5.46
Selecting entities alternately using the nextof distribution5.47
Using the nextof distribution with arrayed entities..5.47
Summary...5.48
Exercises ...5.49
Exercise 5.1..5.49
Exercise 5.2..5.49
Exercise 5.3..5.50
Exercise 5.4..5.51
Exercise 5.5..5.52
Exercise 5.6..5.52
Exercise 5.7..5.53
Exercise 5.8..5.53
Exercise 5.9..5.54
Exercise 5.10..5.55

Chapter 6 Introduction to Conveyors
Conveyor systems...6.4
Measuring distances in the Work Area window...6.4
Using the drawing grid ..6.4
Using the Measurement window ...6.6
Conveyor drawing tools...6.8
Example 6.1: Drawing a conveyor system...6.9
Creating example model 6.1..6.10
Creating the conveyor system..6.10
rev 1.0 v

Contents Getting Started With AutoMod

7.24
7.25
. 7.25
Drawing conveyor sections ... 6.10
Drawing to scale ... 6.11
Filleting two paths .. 6.13
Connecting sections using Snap to End.. 6.14
Copying conveyor sections... 6.15
Changing section direction ... 6.16
Editing section length ... 6.17
Creating ramped sections.. 6.18

Placing stations.. 6.19
Moving loads through the conveyor system.. 6.21

Alternately selecting stations .. 6.22
Defining the example model logic.. 6.23

Placing queue and resource graphics... 6.24
Placing load graphics... 6.25
Running the model .. 6.26
Displaying section statistics .. 6.27
Summary .. 6.28
Exercises ... 6.29
Exercise 6.1 ... 6.29
Exercise 6.2 ... 6.30
Exercise 6.3 ... 6.31
Exercise 6.4 ... 6.32

Chapter 7 Advanced Process System Features
Storing information in variables and load attributes..................................... 7.4
Defining variables ... 7.4
Defining load attributes ... 7.5
Determining when to use variables versus load attributes 7.5
Defining variable and load attribute types .. 7.6
Setting variable and load attribute values.. 7.7

Incrementing or decrementing the value of a variable or load attribute....... 7.8
Example 7.1: Processing widgets by part type.. 7.9
Defining variables and load attributes in example model 7.1 7.10
Defining the model initialization function... 7.12
Actions that are illegal in functions... 7.12
Returning a value from a function... 7.13
Creating new loads in the model logic .. 7.13
Writing repeating logic ... 7.14
Writing logic that repeats indefinitely... 7.14
Writing logic that repeats a limited number of times.. 7.15

Avoiding infinite loops ... 7.17
Cloning loads in the model logic .. 7.19
Assigning a new load type to cloned loads ... 7.20
Determining which method to use when generating new loads 7.20
Tracking custom statistics using variables and load attributes 7.21
Aligning entities using load attributes ... 7.22
Understanding concurrent processing in a simulation 7.23
Reading data from files... 7.24
Defining a file’s location...
Determining the reading position in a file...
Reading to the end of a file ..
vi rev 1.0

Getting Started With AutoMod Contents

7.30
.7.30

.7.31
7.32

..7.34

..7.34

..7.34

..7.35

..7.36

...8.4
...8.5

....8.6
...8.7
..8.7
...8.7
...8.8
....8.8
...8.8
....8.9
....8.9

.8.12

.8.13
8.14
.8.17

..8.19
Converting data values...7.25
Terminating a simulation..7.26
Displaying variable values during a simulation ..7.26
Selecting randomly using the oneof distribution ..7.27
Randomly selecting from a series of values ..7.27
Randomly selecting from a series of entities ...7.28
Example 7.2: Choosing a queue based on the fewest loads..........................7.29
Determining which queue contains the fewest loads7.29
Aligning arrayed entities using the “index” attribute ..

Using entity attributes ..
Example 7.3: Generating loads from a data file ...7.31
Reading multiple-column data files..
Specifying a delimiter when reading from a file ...
Summary...7.33
Exercises ...7.34
Exercise 7.1..
Exercise 7.2..
Exercise 7.3..
Exercise 7.4..
Exercise 7.5..

Chapter 8 Basic Statistical Analysis Using AutoStat
Why use AutoStat? ..8.3
Calculating confidence intervals...8.4
Example 8.1: Why confidence intervals are important.....................................
How AutoStat calculates confidence intervals ...
Performing statistical analysis with AutoStat ...8.6
Opening a model in AutoStat..8.6
Using the AutoStat Setup wizard...

Is the model random or deterministic?...
Do you want to stop runs that may be in an infinite loop?..........................
Does the model require time to warm up? ...
What is the estimated warmup time? ...
Do you want to create the warmup analysis?..
What is the snap length for collecting statistics?

Editing model properties..
The AutoStat file system..
Defining a single scenario analysis ...8.10
Making runs ...8.11
Defining responses ...8.12
Defining an AutoMod response..
Displaying the results...8.13
Viewing confidence intervals ...

Narrowing the confidence interval..
Viewing summary statistics ..
Defining a combination response..8.18
Weighting terms in a combination response..
Summary...8.21
rev 1.0 vii

Contents Getting Started With AutoMod

. 9.26
. 9.27
. 9.27
. 9.28
. 9.28

9.31
9.33

. 9.36
. 9.37
9.38

. 9.39
9.41

.. 9.43

.. 9.44

.. 9.45

.. 9.46
Exercises ... 8.22
Exercise 8.1 ... 8.22
Exercise 8.2 ... 8.22
Exercise 8.3 ... 8.23
Exercise 8.4 ... 8.23
Exercise 8.5 ... 8.23

Chapter 9 Modeling Complex Conveyor Systems
Example 9.1: Transporting multiple load types on a conveyor 9.4
Assigning load creation frequency using load attributes............................... 9.6
Aligning conveyor and process system entities using load attributes........... 9.7
Example 9.2: Sorting load types in a conveyor system 9.9
Modeling the arrival and unloading of trucks.. 9.11
Reading load quantities from a data file.. 9.12
Creating loads for each truck... 9.13
Sorting loads by type... 9.14
Modeling different types of conveyors... 9.14
Example 9.3: Accumulating and non-accumulating sections 9.15
Changing conveyor attributes .. 9.16
Example 9.4: Customizing a conveyor system.. 9.17
Editing attributes in section templates (types) .. 9.18
Editing individual section attributes.. 9.19

Defining section width.. 9.20
Defining section accumulation ... 9.21
Defining section velocity .. 9.21
Defining section moving space... 9.22
Defining section stopping space ... 9.24

Modeling transfers .. 9.26
How a transfer’s angle determines its type ..
Determining load orientation on a conveyor..

Load orientation after an ahead transfer ..
Load orientation after a side transfer ...
Load orientation after a reverse transfer ..

Preparing example model 9.4 ... 9.29
Editing transfer attributes.. 9.30

Defining transfer induction space ...
Defining transfer times ...

Modeling motors.. 9.34
Example 9.5: Modeling slugging and indexing conveyors........................... 9.35
Defining motors..

Assigning motors to conveyor sections ...
Modeling motor failures..
Modeling slugging conveyors ..
Modeling indexing conveyors ...
Summary .. 9.42
Exercises ... 9.43
Exercise 9.1 ...
Exercise 9.2 ...
Exercise 9.3 ...
Exercise 9.4 ...
viii rev 1.0

Getting Started With AutoMod Contents
Chapter 10 Intermediate Statistical Analysis
Experimenting with model scenarios ...10.4
Example 10.1: Performing a financial analysis ...10.4
Compiling and setting up example model 10.1 ...10.5
Defining factors in AutoStat ...10.6
Defining processing time as a factor..10.6
Varying one factor in an analysis ...10.8
Defining average WIP as a response ...10.10
Viewing statistics for WIP levels...10.10
Viewing a line graph..10.12
Comparing all scenarios to one scenario ...10.13
Analyzing financial payback ...10.14

Defining a combination response to show total cost.................................10.15
Viewing the summary statistics for the Total Cost response10.18

Varying multiple factors in an analysis ...10.19
Defining conveyor speed as a factor..10.19
Defining a vary multiple factors analysis ..10.19
Defining a combination response to show the revised total cost10.21
Viewing a bar graph for the Revised Total Cost response10.23
Viewing the multiple factor graph ...10.24
Determining which runs your analysis is using...10.27
Summary...10.28
Exercises ...10.29
Exercise 10.1..10.29
Exercise 10.2..10.29
Exercise 10.3..10.30
Exercise 10.4..10.30
Exercise 10.5..10.31
Exercise 10.6..10.32

Chapter 11 Introduction to Path Mover Systems
Path mover systems ...11.4
Path mover drawing tools ...11.5
Example 11.1: Drawing a path mover system...11.6
Creating example model 11.1..11.8
Creating the path mover system...11.8
Drawing paths ..11.8

Drawing straight paths ..11.9
Filleting paths..11.10
Drawing arcs ...11.11

Modeling different types of paths..11.14
Setting the direction of travel on paths..11.16
Setting crab movement on paths ...11.17
Setting the navigation factor of paths..11.18

Placing control points ..11.19
Changing control point attributes ..11.19

Setting control point capacity..11.20
Setting control point release values...11.21

Defining vehicles ...11.22
Specifying vehicle attributes by load type ..11.23
Placing vehicle graphics..11.25
rev 1.0 ix

Contents Getting Started With AutoMod

.7

.8

11
.11
Determining vehicle orientation on a path.. 11.26
Determining vehicle orientation after a transfer to a normal path 11.26
Determining vehicle orientation after a transfer to a crab path 11.28
Summary .. 11.29
Exercises ... 11.30
Exercise 11.1 ... 11.30
Exercise 11.2 ... 11.31

Chapter 12 Modeling Complex Material Handling Systems
Example 12.1: Drawing a path mover system .. 12.4
Moving loads through a path mover system... 12.5
Defining the model logic in example model 12.1 ... 12.5
Controlling vehicles in a path mover system .. 12.7
How loads waken idle (parked) vehicles in a system.. 12.8
Defining locations where vehicles can search for work.................................... 12.9

Copying scheduling lists... 12.11
Defining locations where vehicles can search for parking.............................. 12.11
Defining vehicle starting locations.. 12.12
Interpreting statistics in example model 12.1 ... 12.14
Example 12.2: Modeling battery replacement.. 12.16
Using process attributes and system attributes .. 12.16
Defining the model logic in example model 12.2 ... 12.17
Editing work lists... 12.19
Defining a work and park list for the swap area.. 12.19
Interpreting statistics in example model 12.2 ... 12.20
Displaying control point statistics ... 12.22
Blocking vehicle movement .. 12.23
Example 12.3: Blocking vehicle collisions ... 12.23

Placing blocks in example model 12.3 ... 12.23
Example 12.4: Blocking vehicle deadlocks .. 12.26

Placing blocks in example model 12.4 ... 12.28
Summary .. 12.29
Exercises ... 12.30
Exercise 12.1 ... 12.30
Exercise 12.2 ... 12.30
Exercise 12.3 ... 12.32
Exercise 12.4 ... 12.34

Chapter 13 Indefinite Delays
Delay types ... 13.4
Creating indefinite delays ... 13.5
Causing loads to wait on an order list ... 13.5
Ordering loads off an order list ... 13.5
Backordering loads.. 13.7
Using the attribute “current loads” ... 13
Example 13.1: Modeling an assembly and packaging operation 13
Defining the order list in example model 13.1.. 13.9
Modeling slugging conveyors using order lists ... 13.
Example 13.2: Creating slugs on one entrance lane................................... 13
Modeling example 13.2 using order lists .. 13.12
x rev 1.0

Getting Started With AutoMod Contents
Example 13.3: Creating slugs on two entrance lanes13.13
Modeling example 13.3 using order lists...13.14
Sorting loads by priority ...13.15
Example 13.4: Modeling load priority ...13.16
Defining the order list in example model 13.4 ..13.16
Displaying order list statistics..13.18
Summary...13.18
Exercises ...13.19
Exercise 13.1..13.19
Exercise 13.2..13.19
Exercise 13.3..13.20
Exercise 13.4..13.20
Exercise 13.5..13.21

Chapter 14 Additional Features
Collecting custom statistics and controlling capacity with counters...........14.4
Example 14.1: Tracking the number of red and blue loads in the system.........14.5

Defining counters ..14.5
Displaying text in the Simulation window with labels..................................14.8
Defining labels ...14.8
Printing to labels ..14.10
Collecting custom statistics with tables..14.12
Categories of table statistics ..14.13

Table statistics ...14.13
Frequency statistics ...14.13

Defining tables...14.14
Updating tables ..14.15
Viewing table statistics ..14.16
Reusing logic with subroutines ...14.17
Defining subroutines..14.17
Performing calculations with functions ...14.19
Characteristics of functions ...14.19
Types of functions ...14.20

User-defined functions ..14.21
Standard math library functions ..14.22
Time-specific functions...14.23
Pre-defined functions ..14.23

Defining functions ...14.23
Converting time in system to minutes using a function14.24
Squaring a value using a math library function...14.25

Summary...14.26
Exercises ...14.27
Exercise 14.1..14.27
Exercise 14.2..14.27
Exercise 14.3..14.27
rev 1.0 xi

Contents Getting Started With AutoMod

. 15.8

. 15.9
15.10
15.11
15.12
5.12
5.13

15.15
15.18
5.20

5.21
15.22
5.22

5.24
15.24
5.25
5.27

5.28
15.28
5.29

15.36
15.36
15.36
15.37
15.37
15.37
15.37
15.37
15.38
Chapter 15 Warmup Analysis Using AutoStat
Understanding when a warmup determination is necessary....................... 15.4
Using graphs to determine warmup time.. 15.4
Preventing statistical inaccuracy when using random numbers................. 15.6
Understanding warmup parameters ... 15.7
Guidelines for setting warmup parameters .. 15.7
Setting the snap length .. 15.7
Setting the number of snaps .. 15.7
Setting the number of replications... 15.8
Setting a warmup graph’s averaging window ..
Adjusting warmup parameters .. 15.8
Determining warmup times for systems with classic warmup behavior.... 15.9
Example 15.1: Classic warmup behavior ...
Defining a warmup analysis ..
Changing the seed increment ..
Defining responses ..
Viewing the warmup graph ... 1
Determining when the response “Average in system” warms up 1

Changing the Y axis scale...
Determining when the remaining responses warm up
Setting the model’s default warmup time.. 1
Determining that a system is explosive.. 15.21
Example model 15.2: Explosive warmup behavior... 1
Defining the warmup analysis...
Analyzing the warmup graph for example model 15.2 1
Determining warmup times for cyclical systems .. 15.24
Example model 15.3: Cyclical warmup behavior ... 1
Defining the warmup analysis...
Analyzing the warmup graph for example model 15.3 1

Performing more replications ... 1
Determining warmup times for systems with extreme variation.............. 15.28
Example 15.4: Extreme variation warmup behavior....................................... 1
Defining the warmup analysis...
Analyzing the warmup graph for example model 15.4 1
Summary .. 15.35
Exercises ... 15.36
Exercise15.1 ..
Exercise 15.2 ...
Exercise 15.3 ...
Exercise 15.4 ...
Exercise 15.5 ...
Exercise 15.6 ...
Exercise 15.7 ...
Exercise 15.8 ...
Exercise 15.9 ...

References.. R.1

Index .. I.1
xii rev 1.0

Getting Started with AutoMod Principles of Simulation
Chapter 1

Principles of Simulation

Definition of simulation .. 1.3
Example 1.1: Ad hoc simulation ... 1.4

Setting up an ad hoc simulation table .. 1.4
Analyzing the simulation results.. 1.5

Modeling concepts ... 1.6
Models and events... 1.6
System state variables ... 1.7
Entities and attributes .. 1.7
Resources .. 1.8
Queues... 1.8
Activities and delays ... 1.8
Discrete-event simulation models ... 1.8

Simulation modeling methods .. 1.9
Process-interaction method ... 1.9
Event scheduling method .. 1.9
Activity scanning method ... 1.9
Three-phase method .. 1.10

Advantages and disadvantages of simulation ... 1.10
Advantages .. 1.10
Disadvantages.. 1.12

Applications of AutoMod ... 1.13

Steps in a simulation study ... 1.14

Random number and random variate generation ... 1.17

Input data... 1.18
Assuming randomness away ... 1.18
Fitting a distribution to data .. 1.18
Using the empirical distribution of the data .. 1.19
What to do when no data is available.. 1.20

Verification and validation... 1.21
Verification.. 1.21
Validation .. 1.22
rev 1.0 1.1

Principles of Simulation Getting Started with AutoMod
Experimentation and output analysis ..1.24
Statistical confidence ...1.25

Example 1.2: Confidence intervals...1.25
Terminating versus non-terminating systems ..1.27

Terminating systems...1.27
Non-terminating systems..1.28

Swamping..1.28
Pre-loading ..1.28
Deletion ...1.29

Queueing theory...1.30

Summary ..1.31

Exercises ...1.32
Exercise 1.1..1.32
Exercise 1.2..1.32
Exercise 1.3..1.32
Exercise 1.4..1.32
Exercise 1.5..1.32
Exercise 1.6..1.33
Exercise 1.7..1.33
1.2 rev 1.0

Getting Started with AutoMod Principles of Simulation

n
tand

isting
Chapter 1

Principles of Simulation*

The purpose of this textbook is to provide an introduction to the AutoMod™ simulatio
software package. Prior to learning about the AutoMod program, it is useful to unders
some of the basic concepts of simulation, which this chapter provides. If you have previ-
ously studied simulation, reading this chapter provides a useful review and update.

Chapter 1 is organized in three parts. The first part begins with a definition and an example
of simulation, an introduction to modeling concepts, and four simulation modeling methods.
The second part of the chapter discusses subjective topics, including the advantages and dis-
advantages of simulation, areas of application of AutoMod, and the steps in the simulation
process. The third part of the chapter introduces issues related to random number and ran-
dom variate generation, input data, model verification and validation, output interpretation,
and the analysis of waiting lines.

Definition of simulation
Simulation is the imitation of a real-world process or system over time. Simulation involves
the generation of an artificial history of the system and the observation of that artificial his-
tory to draw inferences concerning the operating characteristics of the real system being rep-
resented.

Simulation is an indispensable problem-solving methodology for the solution of many real-
world problems. Simulation is used to describe and analyze the behavior of a system, ask
“what if” questions about the real system, and aid in the design of real systems. Both ex
and conceptual systems can be modeled with simulation.

* Source: Handbook of Simulation, ed. Jerry Banks, pp. 3–30. Copyright © 1998. Adapted by permission of
John Wiley & Sons, Inc.
rev 1.0 1.3

Principles of Simulation Getting Started with AutoMod

vior,
d sub-

es
Example 1.1: Ad hoc simulation

Consider the operation of a tool crib where mechanics arrive between 1 and 10 minutes apart
in time (integer values only, with each value equally likely; known as a discrete uniform dis-
tribution). A tool crib attendant serves the mechanics in a time between 1 and 6 minutes (also
integer values and equally likely). Restricting the times to integer values is an abstraction of
reality, because time is continuous, but the restriction helps present the example.

The objective is to manually simulate the tool crib operation until 20 mechanics are served.
You will then compute measures of performance, such as the percentage of idle time of the
attendant, the average waiting time per mechanic, and so on. Admittedly, 20 mechanics is
far too few to draw conclusions about the operation of a real system’s long-term beha
but by following this example, the stage is set for further discussion in this chapter an
sequent chapters about using a computer for performing simulation.

Setting up an ad hoc simulation table
The following ad hoc simulation table manually simulates the tool crib operation. All tim
shown are in minutes.

Example 1.1 – Ad hoc simulation table (times in minutes)

The first column lists the 20 mechanics that arrive in the system.

To simulate the tool crib service process, random interarrival times need to be generated.
Assume that the interarrival times are generated using a spinner that has possibilities for the
values 1 through 10 (these values are recorded in column 2).

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Mechanic

Time
between
arrivals

Arrival
time

Length of
service
time

Time
service
begins

Time
service
ends

Time
in
system

Tool crib
attendant
idle
time

Mechanic
waiting
time

1 — 0 2 0 2 2 0 0

2 5 5 2 5 7 2 3 0

3 1 6 6 7 13 7 0 1

4 10 16 5 16 21 5 3 0

5 6 22 6 22 28 6 1 0

6 2 24 4 28 32 8 0 4

7 9 33 3 33 36 3 1 0

8 1 34 4 36 40 6 0 2

9 10 44 1 44 45 1 4 0

10 3 47 3 47 50 3 2 0

11 5 52 1 52 53 1 2 0

12 2 54 2 54 56 2 1 0

13 3 57 3 57 60 3 1 0

14 5 62 6 62 68 6 2 0

15 4 66 2 68 70 4 0 2

16 3 69 6 70 76 7 0 1

17 7 76 4 76 80 4 0 0

18 8 84 5 84 89 5 4 0

19 7 91 3 91 94 3 2 0

20 7 98 1 98 99 1 4 0

Totals 79 30 10
1.4 rev 1.0

Getting Started with AutoMod Principles of Simulation

he
een

2,
o the
s are

ie that
w, the

 min-
 is two
val of

. The
n 6.

cur

viced
nic 3
n 7.

hown.

lcu-

on

ent
le.

pends
dant.

y of
e sim-

be run
ation
Assume that the first mechanic arrives at time 0 (indicated by an arrival time of “0”). T
arrival time for each of the remaining mechanics is calculated by adding the time betw
arrivals to the previous mechanic’s arrival time. For example, because mechanic 1 is
assumed to arrive at time 0, and there is a five-minute interarrival time for mechanic
mechanic 2 arrives at time 5. There is a one-minute interarrival time for mechanic 3, s
arrival occurs at time 6. By continuing this process, the arrival times of all 20 mechanic
determined (these values are recorded in column 3).

After determining the arrival times, the random service times are generated using a d
has possibilities for the values 1 through 6 (these values are recorded in column 4). No
simulation of the service process begins.

At time 0, mechanic 1 arrives and immediately begins service. The service time is two
utes, so the service period ends at time 2. The total time in the system for mechanic 1
minutes. The tool crib attendant is not idle, because the simulation begins with the arri
the mechanic.

At time 5, mechanic 2 arrives and immediately begins service, as indicated in column 5
service time is two minutes so the service period ends at time 7, as indicated in colum
The tool crib attendant is idle from time 2 until time 5, so three minutes of idle time oc
and mechanic 2 spends no time waiting for the attendant.

Mechanic 3 arrives at time 6, but service cannot begin until time 7 (mechanic 2 is ser
until time 7). The service time is six minutes, so service is completed at time 13. Mecha
is in the system from time 6 until time 13, or for seven minutes, as indicated in colum
Mechanic 3 must wait one minute for service to begin.

This process continues for all 20 mechanics. The totals for columns 7, 8, and 9 are s

Analyzing the simulation results
After completing the ad hoc simulation table, some performance measures can be ca
lated:

, where 99 is the length of the simulation (based

the end of the last service time)

This very limited simulation indicates that the system is functioning well. Only 25 perc
of the mechanics had to wait. Some 30 percent of the time the tool crib attendant is id
Whether a slower tool crib attendant should replace the current tool crib attendant de
on the cost of delaying the mechanics versus any savings from having a slower atten

This small simulation can be calculated manually, but there is a limit to the complexit
problems that can be solved in this manner. Also, the number of mechanics that must b
ulated could be much larger than 20 and the number of times that the simulation must
for statistical purposes could be large. Hence, using the computer to solve real simul
problems is almost always appropriate.

Average time in system 79
20
------ 3.95 minutes= =

Percent idle time
30
99
------ 100() 30%= =

Average waiting time per mechanic 10
20
------ 0.5 minutes= =

Fraction of mechanics having to wait 5
20
------ 0.25= =

Average waiting time of those who waited 10
5
------ 2 minutes= =
rev 1.0 1.5

Principles of Simulation Getting Started with AutoMod

ts
tatis-
 and
s.
Example 1.1 raises several questions, including:

1. How is the form of the input data determined?
2. How are random variates generated if they follow statistical distributions other

than the discrete uniform distribution?
3. How does the user know that the simulation imitates reality?
4. What other kinds of problems can be solved by simulation?
5. How long does the simulation need to run?
6. How many different simulation runs should be conducted?
7. What statistical techniques should be used to analyze the output?

Each of these questions raises a host of issues that many textbooks and thousands of techni-
cal papers have addressed. While this introductory chapter cannot treat all of these questions
in detail, it will provide enough information to help you understand the framework of the
AutoMod software. More information is available from Banks, Carson, Nelson, and Nicol
(2000).

Modeling concepts
There are several concepts about simulation and the AutoMod software that you need to
understand, including: models, events, system state variables, entities and attributes,
resources, queues, activities, delays, and discrete-event simulation.

Additional information about these topics is available from Banks, Carson, Nelson, and
Nicol (2000) and Law and Kelton (2000). The discussion in this section follows that of Car-
son (1993).

Models and events

A model is a representation of an actual system. A model should contain enough detail to
answer the questions you are interested in, without containing more details than necessary.

Consider an event as an occurrence that changes the state of the system. In example 1.1,
events include the arrival of a mechanic for service at the tool crib, the beginning of service
for a mechanic, and the completion of service.

There are both internal and external events, also called endogenous events and exogenous
events, respectively. For example, an endogenous event in example 1.1 is the beginning of
service of the mechanic, because that occurrence is within the system being simulated. An
exogenous event is the arrival of a mechanic for service, because that occurrence is from
outside of the system being simulated. However, the arrival of a mechanic for service
impinges on the system and must be taken into consideration.

This textbook focuses on AutoMod, which uses a discrete-event simulation model. A dis-
crete-event model represents the components of a system and their interactions, as opposed
to mathematical models, which consider systems through the use of formulas, such as the
mathematical model from physics that Mathematical mod-
els, as well as descriptive, statistical, and input-output models, represent a system’s inpu
and outputs explicitly, but represent the internals of the model with mathematical or s
tical relationships, in effect “solving” the model. Discrete-event models are time-based
are “run,” not solved, with the results based on the interactions of system component

Force Mass Acceleration.×=
1.6 rev 1.0

Getting Started with AutoMod Principles of Simulation

that it
ho
e ser-
 are

me
hedule
ight

h load
mple,
 prod-

or
tant
 may
Discrete-event models are dynamic, in that the passage of time plays a crucial role. Most
mathematical and statistical models are static in that they represent a system at a fixed point
in time. Consider the annual budget of a firm, which is kept in a spreadsheet. Changes can
be made in the budget, and the spreadsheet can be recalculated, but the passage of time is
usually not a critical issue.

System state variables

System state variables are the collection of all information needed to define what is hap-
pening within the system (based on the desired output) at a given point in time. For example,
state variables may include time in system, percentage of idle time, and so on. The state
information you are interested in may vary from model to model (or from different analyses
of the same model), depending on what you are trying to learn from the simulation. Deter-
mining the system state variables is as much an art as a science. During the modeling pro-
cess, it will become clear which system variables you may have forgotten about (and which
ones you do not need that you thought you would).

The system state variables in a discrete-event model remain constant over intervals of time
and change value only at certain well-defined points called event times.

In contrast, continuous models are models in which system state is represented by depen-
dent variables that change continuously over time, as defined by differential or difference
equations. For example, when modeling liquid-based systems, such as bottling facilities, the
changes in the system are not a series of individual events, but a constant change over time.

Some models are mixed discrete-event and continuous. There are also continuous models
that are treated as discrete-event models after some reinterpretation of system state vari-
ables, and vice versa. Although AutoMod is capable of modeling continuous systems, con-
tinuous systems are not discussed in this textbook. Instead, this textbook focuses on
discrete-event simulations.

Entities and attributes

An entity represents an object that requires explicit definition. An entity can be dynamic in
that it “moves” through the system (such as products or people), or it can be static in
serves other entities (such as equipment or people). In example 1.1, the mechanic w
arrives for service is a dynamic entity, whereas the tool crib attendant who performs th
vice is a static entity. In AutoMod, the dynamic entities that move through the system
called loads.

A load can have attributes that contain information about that load. All loads have the sa
user-defined attributes. For example, you may define load attributes such as a shift sc
and certifications when using loads to model people. When modeling products, you m
define load attributes such as color, part type, time in system, and so on. Although eac
has the same attributes, each load’s attribute might contain a different value. For exa
assume all loads have an attribute called “A_color” that is used to track the color of the
uct. One load’s A_color attribute might contain the value “Red,” while another load’s
A_color attribute might contain the value “Blue.”

Attributes of interest in one simulation may not be of interest in another simulation. F
example, if red parts and blue parts are being manufactured, color might be an impor
attribute. However, if the time in the system for all parts is the issue, the color attribute
not be of importance.
rev 1.0 1.7

Principles of Simulation Getting Started with AutoMod

ue for
e.

ove-
se both
 line for

being
and its

 the
 be a
, data
e time
ential
ck
; or it
 min-

ions.

 a rush
source

lso
lay is

ation
 which
 for sys-
ys
time
Resources

A resource is an entity that provides service to dynamic entities, or loads. The tool crib
attendant from the ad-hoc simulation is an example of a resource. Resources can serve one
or more loads at the same time (that is, operate as a parallel server). A load can request one
or more units of a resource. If denied, the requesting load waits for the resource or takes
some other action (for example, diverts to another resource or leaves the system). If permit-
ted to use the resource, the load remains for a time, then releases the resource.

There are many possible states of a resource. At a minimum, a resource has two states: idle
and busy. You can also define states such as failed, blocked, or starved.

Queues

Queues in AutoMod are places where loads reside physically and graphically. Queues are
used as places where loads wait (hence the name “queue”). Loads can wait in a que
storage, while they are waiting for a resource, or while being processed by a resourc

In AutoMod, loads cannot be “in” or “on” a resource; they must be in a queue (or on a m
ment system, such as a conveyor or vehicle). To represent a machine, you generally u
a queue and a resource. In fact, often you use two queues: one queue to represent the
the resource (the real-world queue) and one where the load resides physically while
processed by a resource (called a processing queue in this textbook). This textbook
exercises usually use separate queues for the waiting line and for processing.

Activities and delays

An activity is a period of time with a duration that is known prior to commencement of
activity. Thus, when the duration begins, its end can be scheduled. The duration can
constant value, a random value from a statistical distribution, the result of an equation
read from a file, or can be calculated based on the event state. For example, a servic
may be a constant 10 minutes for each load; it may be a random value from an expon
distribution with a mean of 10 minutes; it could be 0.9 times a constant value from clo
time 0 to clock time 4 hours and 1.1 times the constant value after clock time 4 hours
could be 10 minutes when the preceding waiting line contains at most four loads, but 8
utes when there are five or more in the preceding waiting line.

A delay is an indefinite duration that is caused by some combination of system condit
When a load waits for a resource, the time that it remains in the waiting line may be
unknown initially because that time may depend on other events, such as the arrival of
order that preempts the resource or a machine failure that requires repair before the re
can continue processing.

An AutoMod simulation contains activities that cause time to advance. A simulation a
contains delays that cause loads to wait. The beginning and ending of an activity or de
an event.

Discrete-event simulation models

Using the modeling concepts discussed so far, you can define a discrete-event simul
model as one in which the state variables change only at the discrete points in time at
events occur. Events occur as a consequence of activities and delays. Loads compete
tem resources, possibly needing to wait for an available resource. Activities and dela
“hold” loads for durations of time. A discrete-event simulation model is conducted over
(“run”) by a mechanism that moves simulated time forward.
1.8 rev 1.0

Getting Started with AutoMod Principles of Simulation

ferred

ple,
layed,
clock
Mod

tain in
he sys-
shing

ort the
s into
vent is

n
 of the
tes

. For
asket

 begin
lly the
 conse-

-
unt of
. Activ-
en a
Simulation modeling methods
There are four major simulation methods used by the simulation community:

• Process-interaction method
• Event-scheduling method
• Activity scanning method
• Three-phase method

The descriptions in this chapter are brief; readers requiring greater explanation are re
to Balci (1988) or Pidd (1998).

Process-interaction method

The simulation structure that has the greatest intuitive appeal is the process-interaction
method. In this method, the computer program emulates the flow of an object (for exam
a load) through the system. The load moves as far as possible in the system until it is de
enters an activity, or exits from the system. When the load’s movement is halted, the
advances to the time of the next movement of any load. This is the method that Auto
uses.

This flow, or movement, describes in sequence all of the states that the object can at
the system. For example, in a model of a self-service laundry, a customer may enter t
tem, wait for a washing machine to become available, wash his or her clothes in the wa
machine, wait for a basket to become available, unload the washing machine, transp
clothes in the basket to a drier, wait for a drier to become available, unload the clothe
a drier, dry the clothes, unload the drier, and then leave the laundry. Each state and e
simulated.

Event scheduling method

The basic concept of the event scheduling method is to advance time to the moment whe
something happens next (that is, when one event ends, time is advanced to the time
next scheduled event). An event usually releases a resource. The event then realloca
available objects or entities by scheduling activities in which they can now participate
example, in the self-service laundry, if a customer’s washing is finished and there is a b
available, the basket could be allocated immediately to the customer, who would then
unloading the washing machine. Time is advanced to the next scheduled event (usua
end of an activity) and activities are examined to see whether any can now start as a
quence.

Activity scanning method

The third simulation modeling structure is activity scanning. Activity scanning is also
known as the two-phase approach. Activity scanning produces a simulation program com
posed of independent modules waiting to be executed. In the first phase, a fixed amo
time is advanced, or scanned. In phase two, the system is updated (if an event occurs)
ity scanning is similar to rule-based programming (if the specified condition is met, th
rule is executed).
rev 1.0 1.9

Principles of Simulation Getting Started with AutoMod

ge
se

led,
st

sti-

r you
 simu-

es-
e sys-
ontrol

”

Three-phase method

The fourth simulation modeling structure is known as the three-phase method. In the first
phase, time is advanced until there is a state change in the system or until something happens
next. The system is examined to determine all of the events that take place at this time (that
is, all the activity completions that occur). The second phase is the release of those resources
scheduled to end their activities at this time. The third phase is to start activities, given a glo-
bal picture of resource availability.

Possible modeling inaccuracies may occur with the activity scanning and three phase mod-
eling methods, because discrete time slices must be specified. If the time interval is too wide,
detail is lost. This type of simulation will become less popular as computing power contin-
ues to increase and computing costs continue to decrease.

Advantages and disadvantages of simulation*

Competition in the computer industry has led to technological breakthroughs that are allow-
ing hardware companies to continually produce better products. It seems that every week
another company announces its latest release, each with more options, memory, graphics
capability, and power.

What is unique about new developments in the computer industry is that they often act as a
springboard for related industries. One industry in particular is the simulation software
industry. As computer hardware becomes more powerful, faster, and easier to use, simula-
tion software does, too.

The number of businesses using simulation is rapidly increasing. Many managers are real-
izing the benefits of using simulation for more than just a one-time remodeling of a facility.
Now, because of advances in software, managers are incorporating simulation in their daily
operations on an increasingly regular basis.

Advantages

For most companies, the benefits of using simulation go beyond just providing a look into
the future. These advantages are mentioned by many authors (Banks, Carson, Nelson, and
Nicol (2000); Law and Kelton (2000); and Schriber (1991)), and include the following:

1. Making correct choices – Simulation lets you test every aspect of a proposed chan
or addition without committing resources to their acquisition. This is critical, becau
once the bricks have been laid or the material-handling systems have been instal
changes and corrections can be extremely expensive. Simulation allows you to te
your designs without acquiring resources.

2. Compressing and expanding time – By compressing or expanding time, simulation
allows you to speed up or slow down phenomena so that you can thoroughly inve
gate them. You can examine an entire shift in a matter of minutes if you desire, o
can spend two hours examining all the events that occurred during one minute of
lated activity.

3. Understanding “Why?” – Managers often want to know why certain phenomena
occur in a real system. With simulation, you determine the answer to the “why” qu
tions by reconstructing the scene and conducting a microscopic examination of th
tem. You cannot accomplish this with a real system because you cannot see or c
it in its entirety.

* Source: Banks, J. and V. Norman (1995), “Justifying Simulation in Today’s Manufacturing Environment,
IIE Solutions, November.
1.10 rev 1.0

Getting Started with AutoMod Principles of Simulation

t
,
nting

e the

m-
 in a
 the

ir

t is
g sim-
rk in

ghts
on
 sup-

ni-
e
ifi-

ect
 CAD

t is
ns and
oduc-

ting
dis-
 build
 What
riod

tions

ss
esign
lation

ed
mula-
learn
 less

ys-
e of
apa-
4. Exploring possibilities – One of the greatest advantages of using simulation is tha
once you have developed a valid simulation model, you can explore new policies
operating procedures, or methods without the expense and disruption of experime
with the real system. Modifications are incorporated in the model, and you observ
effects of those changes on the computer rather than on the real system.

5. Diagnosing problems – The modern factory floor or service organization is very co
plex—so complex that it is impossible to consider all the interactions taking place
given moment. Simulation allows you to better understand the interactions among
variables that make up such complex systems. Diagnosing problems and gaining
insight into the importance of these variables increases your understanding of the
effects on the performance of the overall system.

6. Identifying constraints – Production bottlenecks give manufacturers headaches. I
easy to forget that bottlenecks are an effect rather than a cause. However, by usin
ulation to perform bottleneck analysis, you can discover the cause of delays in wo
process, information, materials, or other processes.

7. Developing understanding – In many cases, designs are based on someone’s thou
about the way the system operates rather than being based on analysis. Simulati
studies help you design a system as it should operate, rather than how someone
poses it will.

8. Visualizing the plan – You can take your designs beyond CAD layouts using the a
mation features offered in many simulation packages. Animation allows you to se
your facility or organization running, often from various angles and levels of magn
cation. In AutoMod, you can view your model in 3-D. Animation allows you to det
design flaws within systems that appear credible when seen on paper or in a 2-D
drawing.

9. Building consensus – Simulation provides an objective basis for decision-making. I
easier to approve or disapprove designs because you can simply select the desig
modifications that provided the most desirable results, whether it be increasing pr
tion or reducing the waiting time for service.

10. Preparing for change – We all know that the future will bring change. Answering
“what-if” questions is useful for both designing new systems and redesigning exis
systems. During the problem-formulation stage of a simulation study, you should
cuss what scenarios are needed by everyone involved with the project so that you
the model and perform the study to be sure that it answers the correct questions.
if an automated guided vehicle (AGV) is removed from service for an extended pe
of time? What if demand for service increases by 10 percent? What if....? The op
are unlimited.

11. Making wise investments – The typical cost of a simulation study is substantially le
than one percent of the total amount being expended for the implementation of a d
or redesign. Because the cost of a change or modification to a system after instal
is so great, simulation is a wise investment.

12. Training the team – Simulation models can provide excellent training when design
for that purpose. Used in this manner, the team provides decision inputs to the si
tion model as it progresses. The team, and individual members of the team, can
from their mistakes, and learn to operate better. This is much less expensive and
disruptive than on-the-job learning.

13. Specifying requirements – Simulation can be used to specify requirements for a s
tem design. For example, you may not know the specifications for a particular typ
machine to achieve a desired goal in a complex system. By simulating different c
bilities for the machine, the requirements can be established.
rev 1.0 1.11

Principles of Simulation Getting Started with AutoMod

 are
hly

y be
r ran-

or

an
se of
d-
, see

s
e the

quire-
 proce-

e
d
ple,
vey-
rhead
 the

 to
 num-
ob-
Disadvantages

The disadvantages of simulation can include:

1. Model building requires special training – Model building is an art that is learned
over time and through experience. Furthermore, if two models of the same system
constructed by two competent individuals, they may have similarities, but it is hig
unlikely that they will be identical.

2. Simulation results may be difficult to interpret – Because most simulation outputs
are essentially random variables (they are usually based on random inputs), it ma
hard to determine whether an observation is a result of system interrelationships o
domness.

3. Simulation modeling and analysis can be time-consuming and expensive – Skimp-
ing on resources for modeling and analysis may result in a simulation model and/
analysis that is not sufficient to the task.

4. Simulation may be used inappropriately – Simulation is used in some cases when
analytical solution is possible, or even preferable. This is particularly true in the ca
small queuing systems and some probabilistic inventory systems, for which close
form models (equations) are available. For examples of some queuing equations
“Queueing theory” on page 1.30.

However, these four disadvantages can be offset as follows:

1. Simulators make model building easier – AutoSimulations has developed package
that contain models that only need input data for their operation. Such models hav
generic tag “simulators,” templates, or run-time models.

2. Statistical analysis tools make analyzing output easier – the AutoStat™ statistical
analysis software, which works with AutoMod, has output-analysis capabilities for
performing very extensive analysis. Using AutoStat reduces the computational re
ments on the part of the user, although the user must still understand the analysis
dure.

3. Simulation is getting faster and faster – Simulation can be performed faster today
than yesterday and will be even faster tomorrow. Some speed improvements com
from the advances in hardware that permit rapid running of scenarios. Other spee
improvements come from simulation packages becoming easier to use. For exam
AutoMod contains templates for modeling material handling systems such as con
ors, path movers (automated guided vehicles fork trucks, people, and so on), ove
cranes, power-and-free systems, kinematics, and tanks and pipes. The less work
simulation engineer must do, the faster the project can be completed.

4. Limitations of closed-form models – Although closed-form models are useful for
small queuing and inventory problems, most real-world problems are too complex
be solved with these approaches. Simulation is necessary when there are a large
ber of events and interactions in a system, which is true of most manufacturing pr
lems.
1.12 rev 1.0

Getting Started with AutoMod Principles of Simulation

s)
Applications of AutoMod
The AutoMod software can be used in almost any area of manufacturing and material han-
dling. AutoMod has been used widely in the following applications, categorized by industry:

Automated material handling systems (AMHS)
• Optimizing existing material handling system equipment
• Designing new material handling layouts
• Modeling parcel and letter handling
• Evaluating mining automation

Automotive
• Simulating body and paint shops
• Analyzing repair lines in paint shops
• Modeling sortation systems in engine plants
• Resequencing vehicles
• Modeling operator shifts

Warehousing/distribution centers
• Simulating sorting strategies in distribution centers
• Determining warehouse layouts and performing operations modeling
• Consolidating multiple distribution centers

Airports
• Modeling airport baggage systems
• Modeling air cargo handling

Semiconductor
• Evaluating complex control logic for lot delivery
• Simulating 200mm and 300mm automated material handling systems
• Modeling cluster tool robots

Other
• Modeling fuselage assembly (aerospace)
• Modeling steel meltshops
• Performing buffer and downtime analysis
• Modeling customer service centers (home entertainment products, fast food store
rev 1.0 1.13

Principles of Simulation Getting Started with AutoMod
Steps in a simulation study
The flowchart below shows a set of steps to guide a model builder in a thorough and sound
simulation study. Similar illustrations and their interpretation can be found in other sources
such as Law and Kelton (2000). This presentation is built on that of Banks, Carson, Nelson,
and Nicol (2000).

Steps in a simulation study*

* Source: Discrete Event System Simulation, 3rd ed., by Banks, Carson, Nelson, and Nicol p. 16.
Copyright © 2000. Reprinted by permission of Prentice-Hall, Upper Saddle River, New Jersey.

Yes

No

Step 1:
Problem

formulation

Step 2: Setting
of objectives
and overall
project plan

Step 3: Model
building

Step 4: Data
collection

Step 5:
Coding

Step 6:
Verified?

Step 7:
Validated?

Step 8:
Experimental

design

Step 11:
Document

program and
report results

Step 9:
Production
runs and
analysis

Step 10:
More runs?

Step 12:
Implementation

Yes

No

Yes

No
1.14 rev 1.0

Getting Started with AutoMod Principles of Simulation

alyst
 ques-
ent of

cated
are
in the

on-
 the
imply
using
stem.

ly, add
dd to
 out-
ill
use.

ire-
en col-

ulation

mple,
have
 the
w-

ee
t can

cog-
ing

nal
k, it is
r than
es of

e

ida-
Step 1: Problem formulation. Every simulation study begins with a statement of the prob-
lem. If the statement is provided by those who have the problem (client), the simulation ana-
lyst must take extreme care to ensure that the problem is clearly understood. If a problem
statement is prepared by the simulation analyst, it is important that the client understand and
agree with its formulation. It is suggested that a set of assumptions be prepared by the sim-
ulation analyst and agreed to by the client. Even with all of these precautions, it is possible
that the problem will need to be reformulated as the simulation study progresses.

Step 2: Setting of objectives and overall project plan. Another way to state this step is
“prepare a proposal.” This step should be accomplished regardless of whether the an
and client work for the same company or different companies. The objectives are the
tions to be answered by the simulation study. The project plan should include a statem
the various scenarios that will be investigated. The plans for the study should be indi
in terms of time that will be required, personnel that will be used, hardware and softw
requirements (if the client wants to run the model and conduct the analyses), stages
investigation, output at each stage, cost of the study, and billing procedures, if any.

Step 3: Model building. The real-world system under investigation is abstracted by a c
ceptual model, which is a series of mathematical and logical relationships concerning
components and the structure of the system. It is recommended that modeling begin s
and that the model grow until a model of appropriate complexity has been developed
AutoMod. First, model the material handling system(s). Then, add the basic process sy
Next, add the resource cycles (maintenance, breakdowns, and shift schedules). Final
special features. It is not necessary to construct an unduly complex model. This will a
the cost of the study and the time for its completion without increasing the quality of the
put. The client should be involved throughout the model construction process. This w
enhance the quality of the resulting model and increase the client’s confidence in its

Step 4: Data collection. Shortly after the proposal is accepted, a schedule of data requ
ments should be submitted to the client. In the best of circumstances, the client has be
lecting the necessary data, in the required format, and can submit this data to the sim
analyst electronically.

However, sometimes the delivered data is quite different than was anticipated. For exa
in the simulation of an airline reservation system, the simulation analyst was told “we
every bit of data that you want over the last five years.” When the study commenced,
data delivered was the average “talk time” of the reservationist for each of the years. Ho
ever, individual values were needed, not summary measures.

Model building and data collection are shown as contemporaneous in the flowchart (s
“Steps in a simulation study” on page 1.14). This indicates that the simulation analys
readily construct the model while the data collection is progressing.

Step 5: Coding. The conceptual model constructed in step 3 is written in a computer-re
nizable form (that is, an operational model). In AutoMod, you write the model logic us
the AutoMod language.

Step 6: Verified? Verification refers to the process of determining whether the operatio
model is performing as designed. Even for the models in the exercises in this textboo
possible to have verification difficulties. These models are orders of magnitude smalle
real models (the examples use about 50 lines of logic versus approximately 2,000 lin
logic for some real-world applications).

It is highly advisable that verification take place as a continuing process throughout th
model-building process, rather than waiting until the model is complete. Verification is
extremely important and is discussed further in this chapter (see “Verification and val
tion” on page 1.21).
rev 1.0 1.15

Principles of Simulation Getting Started with AutoMod

stem.
tem).
further

d to
nd the
 dis-

are
 Again,

ula-
al sce-
tion.

r-
 under-
ation
model
ocu-

this

e the
 by
alyst

cate.
ation

 study
ple-
Step 7: Validated? Validation is the determination that the conceptual model is an accurate
representation of the real system. Can the model be substituted for the real system for the
purposes of experimentation? If there is an existing system (called the base system), then an
ideal way to validate the model is to compare the model’s output to that of the base sy
Unfortunately, there is not always a base system (such as when designing a new sys
There are many methods for performing validation, and some of these are discussed
in this chapter (see “Verification and validation” on page 1.21).

Step 8: Experimental design. For each scenario that is to be simulated, decisions nee
be made concerning the length of the simulation run, the number of runs necessary, a
manner of initialization, as required. AutoStat can help with this determination, and is
cussed in detail in later chapters of this textbook.

Step 9: Production runs and analysis. Production runs, and their subsequent analysis,
used to estimate measures of performance for the scenarios that are being simulated.
AutoStat can be of tremendous help with this determination.

Step 10: More runs? Based on the analysis of runs that have been completed, the sim
tion analyst determines whether additional runs are needed and whether any addition
narios need to be simulated. AutoStat can be of tremendous help with this determina

Step 11: Document program and report results. Documentation is necessary for nume
ous reasons. If the simulation model is going to be used again, it may be necessary to
stand how the simulation model operates. This will engender confidence in the simul
model so that the client can make decisions based on the analysis. Also, modifying a
is much easier with adequate documentation. One experience with an inadequately d
mented model is usually enough to convince a simulation analyst of the necessity of
important step.

The result of all the analysis should be reported clearly and concisely. This will enabl
client to review the final formulation, the alternatives that were addressed, the criteria
which the alternative systems were compared, the results of the experiments, and an
recommendations, if any.

Step 12: Implementation. The simulation analyst acts as a reporter rather than an advo
The report prepared in step 11 stands on its merits and is provided as additional inform
that the client uses to make a decision. If the client has been involved throughout the
and the simulation analyst has followed all of the steps rigorously, it is likely that the im
mentation will be successful.
1.16 rev 1.0

Getting Started with AutoMod Principles of Simulation

el runs
ating

istri-
Random number and random variate generation
In a simulation model, there are many random events, including interarrival times, batch
sizes, processing times, repair times, time until failure, and many others. To generate ran-
dom numbers, example 1.1 used input values that were found using a spinner and a die.
Almost all simulation models are constructed using a computer, so spinners and dice are not
necessary. Instead, the computer generates independent random numbers that are distributed
continuously and uniformly between 0 and 1 (represented by the notation U(0, 1)). These
random numbers can then be converted to the desired statistical distribution, or random
variate. The random variates are used to represent the random events in the model.

The importance of a good source of uniformly distributed random numbers is that all proce-
dures for generating non-uniformly distributed random variates involve a mathematical
transformation of uniform random numbers.

For example, the following formula converts uniformly distributed numbers into exponen-
tially distributed random numbers. Suppose Ri is the ith random number generated from
U(0, 1). Suppose further that the desired random variate is exponentially distributed with
rate λ. These values can be generated from:

Equation 1.1 - Random variate generator for the exponential distribution

where Xi is the ith random variate generated (for example, the time between the arrival of
the ith and the (i + 1)st loads), and ln represents the natural logarithm. Suppose λ = 1/10
arrivals per minute. If R1 = 0.3067:

This random variate generator uses the inverse-transform technique. Other distributions are
generated using other techniques, such as convolution, acceptance-rejection, and composi-
tion. For more information about this subject, refer to Law and Kelton (2000).

AutoMod has two built-in random number generators that produce a sequence of random
numbers. The first is the Tausworthe generator, which is not discussed in this textbook. The
other is the linear congruential generator (LCG) that was documented by Knuth (1969).
The LCG is defined by its parameters. The numbers generated by the LCG are actually
“pseudorandom,” because they can be reproduced from the starting value so that mod
can be repeated and the results reproduced. The length of the sequence prior to repe
itself is very long (around two billion numbers on a 32-bit computer).

AutoMod also has the ability to generate a sample from an empirical distribution (a d
bution of the raw input data) that is either discrete or continuous.

Xi
1
λ

 1 Ri–()ln–=

Xi
1

1 10⁄

 1 .3067–()ln– 3.66= =

ote
Note
✎

rev 1.0 1.17

Principles of Simulation Getting Started with AutoMod

 it is

lows:

nd that
 at the
e

uires a
en

min-

e that
ur are
 there
nutes

e time
f parts

ge or a

 dis-
ta, the
 one

ble

period
stri-
Input data
For each element in a system being modeled, the simulation analyst must decide upon a way
to represent the associated random variables. The presentation of the subject that follows is
based on Banks, Carson, and Goldsman (1998).

The techniques used may vary depending on:

• The amount of available data.
• Whether the data is real or just someone’s best guess.
• Whether each variable is independent of other input random variables or whether

related in some way to other input.

In the case of a variable that is independent of other variables, the choices are as fol

• Assume that the variable is deterministic (constant).
• Fit a probability distribution to the data.
• Use the empirical distribution of the data.

These three choices are discussed in the next three subsections.

Assuming randomness away

Some simulation analysts may be tempted to assume that a variable is deterministic, a
the value can be obtained by averaging historic information. Or they may even guess
value. However, if there is randomness in the model, this technique can invalidate th
results.

Suppose that a machine manufactures parts in exactly 1.5 minutes. The machine req
tool change according to an exponential distribution with a mean of 12 minutes betwe
occurrences. The tool change time is also exponentially distributed with a mean of 3
utes.

It would be very inaccurate to add up the mean processing and change times and us
value. For example, in this system, you could simplify and say that 12 minutes per ho
devoted to tool changes, leaving 48 minutes of each hour for manufacturing. Therefore
are 32 parts made per hour (48/1.5), with a total processing time per part of 1.875 mi
(60/32). These values are not accurate.

In reality, the exponentially distributed change times and change rates would cause th
per part to vary much more widely, affecting measures such as the average number o
in the system or the time that parts spent waiting before the machine. Using an avera
guess can invalidate your simulation.

Fitting a distribution to data

If there are sufficient data points (100 or more), it may be appropriate to fit a probability
tribution to the data using conventional methods. When there is a small amount of da
tests for goodness-of-fit, such as the chi-squared test, offer little guidance in selecting
distribution form over another.

There are also underlying processes that give rise to distributions in a rather predicta
manner. For example, if arrivals:

1. Occur one at a time, and
2. Are completely at random without rush or slack periods, and
3. Are completely independent of one another,

then it is a Poisson process, which means that the number of arrivals in a given time
follows a Poisson distribution and the time between arrivals follows an exponential di
bution.
1.18 rev 1.0

Getting Started with AutoMod Principles of Simulation
Several vendors provide software to perform input data analysis. However, if a goodness-
of-fit test is being conducted without the aid of input data analysis software, the following
three-step procedure is recommended:

Step 1 Hypothesize a candidate distribution. First, ascertain whether the underlying process is dis-
crete or continuous. Discrete data arises from counting processes. Examples include the
number of customers that arrive at a bank each hour, the number of tool changes in an eight-
hour day, and so on. Continuous data arises from measurement (time, distance, weight, etc.).
Examples include the time to produce each part, the time to failure of a machine, and so on.

Discrete distributions frequently used in simulation include the Poisson, binomial, and geo-
metric distributions. Continuous distributions frequently used in simulation include the uni-
form, exponential, normal, triangular, lognormal, gamma, and Weibull distributions.

Information about these distributions, as well as the syntax required for using distributions
in AutoMod logic, is provided in the AutoMod Syntax Help.

Step 2 Estimate the parameters of the hypothesized distribution. For example, if the hypothesis is
that the underlying data is normal, then the parameters to be estimated from the data are the
mean and the variance.

Step 3 Perform a goodness-of-fit test. If the test rejects the hypothesis, that is a strong indication
that the hypothesis is not true. In that case, return to step 1, or use the empirical distribution
of the data, as discussed in the next section.

The three-step procedure is described more extensively in engineering statistics texts and in
many simulation texts, such as Banks, Carson, Nelson, and Nicol (2000) and Law and Kel-
ton (2000). Even if software is being used to aid in the development of an underlying distri-
bution, understanding the three-step procedure is recommended.

Using the empirical distribution of the data

When only a small amount of data is available, an attempt to fit a distribution is inappropri-
ate, as indicated previously. Also, when all possibilities have been exhausted for fitting a
distribution using conventional techniques, then the empirical distribution (actual data val-
ues) can be used.

Consider a real-world example in which the times to repair a conveyor system after a failure,
denoted by x, for the previous 100 occurrences were given as follows:

No distribution could acceptably be fit to the data using conventional techniques. It was
decided to use the data, as generated, for the simulation. That is, samples were drawn, at ran-
dom, from the continuous distribution shown above. Linear interpolation was used so that
simulated values might be in the form 2.89 hours, 1.63 hours, and so on.

ote
Help
8

Intervals (hours) Frequency of Occurrence

0 < x < 1.0 27

1.0 < x < 2.0 13

2.0 < x < 3.0 31

3.0 < x < 4.0 18

4.0 < x < 8.0 11
rev 1.0 1.19

Principles of Simulation Getting Started with AutoMod

 “dis-
ly. A
 form
 min-
um

ibu-
isson
bout
ould

 when,
ms
What to do when no data is available

There are many cases where no data is available. This is particularly true in the early stages
of a study, when the data is missing, when the data is too expensive to gather, or when the
system being modeled does not yet exist.

One possibility in such a case is to obtain a subjective estimate concerning the system. Thus,
if the estimate is that the time to repair a machine is between 3 and 8 minutes, a crude
assumption is that the data follows a uniform distribution with a minimum value of 3 min-
utes and a maximum value of 8 minutes. The uniform distribution is referred to as the
tribution of maximum ignorance,” because it assumes that every value is equally like
better “guess” occurs if the most likely value can also be estimated. This would take the
“the time to repair the machine is between 3 and 8 minutes with a most likely time of 5
utes.” Now, a triangular distribution can be used with a minimum of 3 minutes, a maxim
of 8 minutes, and a most likely value (mode) of 5 minutes.

As indicated previously, there are naturally occurring processes that give rise to distr
tions. For example, if the time to failure follows the (reasonable) assumptions of the Po
process, indicated previously, and the machine operator says that the machine fails a
once every two hours of operation, then an exponential distribution for time to failure c
be assumed, initially with a mean of two hours.

Estimates made on the basis of guesses and assumptions are strictly tentative. If, and
data, or more data, becomes available, both the parameters and the distributional for
should be updated.
1.20 rev 1.0

Getting Started with AutoMod Principles of Simulation
Verification and validation
When using simulation, the analyst must abstract information about the real system to make
a conceptual model. The conceptual model is then coded into the operational simulation
model. There is a two-step process to ensure that the operational model is an accurate rep-
resentation of the real-world system. The process involves verification and validation of the
simulation model.

Verification A determination of whether the model built in the simulation package (the operational
model) is a correct representation of the conceptual model.

Validation A determination of whether the simulation model can be substituted for the real system for
the purposes of experimentation.

This process is iterative. If there are discrepancies between the operational and conceptual
models, or between the operational model and the real-world system, the operational model
must be examined for errors, or the conceptual model must be modified in order to better
represent the real-world system (with subsequent changes in the operational model). The
verification and validation process should then be repeated.

Verification

The verification process involves examination of the simulation program to ensure that the
operational (simulation) model accurately reflects the conceptual model. There are many
common-sense ways to perform verification. Balci (1998) presents more detailed informa-
tion on the topic.

1. Follow the principles of structured programming. The first principle is top-down
design (that is, construct a detailed plan of the simulation model before coding). The
second principle is program modularity (that is, break the simulation model into sub-
models). As you will see, AutoMod models follow the modularity principle.

Write the simulation model in a logical, well-ordered manner. It is highly advisable to
prepare a detailed flow chart indicating the macro activities that are to be accom-
plished. This is particularly true for large, real-world problems. It is possible to think
through all of the logic needed for the exercises in this textbook. However, the amount
of computer logic required for these exercises is small compared to that of real-world
problems.

2. Make the model as self-documenting as possible. This requires comments on most
lines, and sometimes between lines, of logic. Imagine that one of your colleagues is
trying to understand the computer logic that you have written, but that you are not
available to offer any explanation.

3. Have the model code checked by more than one person. There are several software
engineering techniques used to review code that can be applied to simulation models,
including: code reviews to highlight design deficiencies; audits to verify that the devel-
opment of the code is proceeding logically and that the requirements are being met;
and code inspection. A code inspection involves the designer, the modeler, a tester, and
a moderator. The team meets and reviews the design and the model line by line. The
documentation is also reviewed. Errors are written up, classified, and fixed, and
another inspection occurs to make sure all issues have been addressed. Any of these
methods can be used to verify your model.

4. Ensure that the values of the input data are being used appropriately. For exam-
ple, if the interarrival times are in minutes, but the model is using seconds, the model is
inaccurate.
rev 1.0 1.21

Principles of Simulation Getting Started with AutoMod

am-
h a cri-

he
nge

world

se no
 of

hat
nt and

son-

able.

re
 you.

 the
5. For a variety of input data values, ensure that the outputs are reasonable. Many
simulation analysts are satisfied when they receive output, but that is far from enough.
If there are 100 loads in a waiting line, but you only expect 10, there is probably some-
thing wrong, such as modeling the capacity of a resource incorrectly.

6. Use the AutoMod Debugger to check that the program operates as intended. The
Debugger is a very important verification tool that should be used for all real-system
models. An example of one of the capabilities of the Debugger is a trace, which per-
mits following the execution of the computer logic step-by-step.Using the AutoMod
Debugger is not described in this textbook. For information about using the Debugger,
see the “Running a Model” chapter in volume 1 of the AutoMod User’s Manual, online.

7. Watch the model’s animation. Using animation, the simulation analyst can detect
actions that are illogical. For example, you may observe that when a resource fails, its
graphic is supposed to turn red on the screen. While watching the animation, the
resource never turns red. This could signal an error in the way that down times were
modeled.

Validation
A variety of subjective and objective techniques can be used to validate the conceptual
model. Balci (1998) and Sargent (1992) offer many suggestions for validation.

Subjective techniques include the following:

1. Face validation – A conceptual model of a real-world system must appear reasonable
“on its face” to those that are knowledgeable about the real-world system. For ex
ple, the system experts can validate that the model assumptions are correct. Suc
tique aids in identifying deficiencies or errors in the conceptual model. Eliminating
these errors enhances the credibility of the conceptual model.

2. Sensitivity analysis – As model input is changed, the output should change in a pre-
dictable direction. For example, if the arrival rate increases, the time loads spend in
queues should increase (barring other modifications, such as increased capacity).

3. Extreme-condition tests – Does the model behave properly when input data is at t
extremes? If the arrival rate is set extremely high, does the output reflect this cha
with increased numbers in the queues, increased time in the system, and so on?

4. Validation of conceptual model assumptions – There are two types of conceptual
model assumptions: structural assumptions (concerning the operation of the real-
system) and data assumptions. Structural assumptions can be validated by observing
the real-world system and by discussing it with the appropriate personnel. Becau
one person knows everything about the entire system, you must consult a variety
people to validate structural assumptions.

Data assumptions should also be validated. For example, suppose it is assumed t
the arrival times between customers at a bank during peak periods are independe
in accordance with an exponential distribution. To validate these assumptions:

• Consult with appropriate personnel to determine when peak periods occur.
• Collect interarrival data from these periods.
• Conduct statistical tests to ensure that the assumption of independence is rea

able.
• Estimate the parameter of the assumed exponential distribution.
• Conduct a goodness-of-fit test to ensure the exponential distribution is reason

Information from intermediaries should also be questioned. For example, if you a
subcontracting, make sure you understand the information the contractor is giving
One simulation consultant was working through another consulting firm on an
extremely large model of a distant port operation. It was only after a site visit that
1.22 rev 1.0

Getting Started with AutoMod Principles of Simulation

ure
Simi-
 been

pare
ystem
 gen-
mly
r is
 engi-
quate.
oubt

.
 of

ri-

red
 vali-
simulation consulting firm discovered that one of the major model assumptions con-
cerning how piles of iron ore are formed was wrong.

5. Consistency checks – Continue to examine the operational model over time. For
example, if you use a simulation model annually, before using the model, make s
that there are no changes in the real system that must be reflected in the model.
larly, the data should also be validated. For example, a faster machine may have
installed, but the processing time data was not updated.

6. Turing tests – Persons knowledgeable about system behavior can be used to com
model output to system output. For example, suppose that five reports of actual s
performance over five different days are prepared, and five simulated outputs are
erated. These 10 reports should be in the same format. The 10 reports are rando
shuffled and given to an expert on the system, such as an engineer. The enginee
asked to distinguish between the two kinds of reports, actual and simulated. If the
neer identifies a substantial number of simulated reports, then the model is inade
If the engineer cannot distinguish between the two, then there is less reason to d
the adequacy of the model.

Objective techniques include the following:

1. Validating input-output transformations – The basic principle of this technique is
the comparison of output from the operational model to data from the real system
Input-output validation requires that the real system currently exists. One method
comparison uses the familiar t-test, discussed in most statistics texts.

2. Validation using historical input data – Instead of running the operational model
with artificial input data, we could drive the operational model with the actual histo
cal record. It is reasonable to expect the simulation to yield output results within
acceptable statistical error of those observed from the real-world system. The pai
t-test, discussed in most statistics texts, is one method for conducting this type of
dation.
rev 1.0 1.23

Principles of Simulation Getting Started with AutoMod

L(t),
tem,

 the
d on
h with

on-
tical
utput

Experimentation and output analysis
The analysis of simulation output begins with the selection of performance measures. Per-
formance measures can be time weighted, based on counting the occurrences of an event, or
arise from the tabulation of expressions including means, variances, and so on.

An example of a time-weighted statistic is the average number of loads in a system over a
time period of length “t.” The graph below shows the number of loads in the system,
at time t, from to . The time-weighted average number of loads in the sys

, at , is given by the sum of the areas of the rectangles divided by t. Thus,

Number of loads in system, L(t), at time t

An example of a statistic based on counting the number of occurrences of an event is
number of acceptable loads completed in 24 hours of simulated time. A statistic base
the tabulation of expressions is the patent royalties from three different part types, eac
a different contribution per load, for a 24-hour period.

The simulation of a random, or stochastic, system results in performance measures that c
tain random variation. Proper analysis of the output is required to obtain sound statis
results from these replications. Questions that must be addressed when conducting o
analysis are:

• What is the appropriate run length of the simulation (unless the system dictates a
value)?

• How do we interpret the simulated results?
• How do we analyze the differences between different model configurations?

t 0= t 60=
L t 60=

L 0 10×() 1 10×() 2 15×() 1 10×() 0 5×() 1 5×() 2 5×()+ + + + + +[]
60

--- 1.08= =

L(t)

0

0

1

2

10 20 3010 40 6050 t
1.24 rev 1.0

Getting Started with AutoMod Principles of Simulation

 true
rcent)
 mean
any

d from

 a 99
 nor-

Statistical confidence

A confidence interval for the performance measure being estimated by the simulation model
is a basic component of output analysis.

The AutoStat statistical analysis package can determine confidence intervals for you, as dis-
cussed in chapter 8, “Basic Statistical Analysis Using AutoStat.”

A confidence interval is a numerical range that has a probability of including the
value of the performance measure, where is the confidence level (such as 95 pe
for the interval. For example, let us say that the performance measure of interest is the
time in the queue, , and a percent confidence interval for is desired. If m
replications are performed and independent confidence intervals on are constructe
those replications, then approximately percent of those intervals will contain
Consider the following example.

Example 1.2: Confidence intervals
For the data in the table below, we want to calculate both a 95 percent and
percent two-sided confidence interval. Assuming that the values for X are
mally distributed, a confidence interval for the mean, , is given by
where is the sample mean and h is the half width.

Time in process data

The equation for is given by:

Equation 1.2 - Sample mean

where n = the total number of replications.

The half width, h, of the confidence interval is computed as follows:

Equation 1.3 - Half width

where is the upper critical value of the t distribution with
degrees of freedom, and S is the sample standard deviation.

ote
Note
✎

Replication
Number (i)

Time in Process (Xi)
(in seconds)

1 752.23

2 785.49

3 645.13

4 639.96

5 610.13

6 661.42

7 645.28

8 606.32

9 677.74

10 584.53

1 α–
1 α–

µ 100 1 α–() µ
µ

100 1 α–() µ.

α 0.05=()
α 0.01=()

1 α– µ X h, X h+–()
X

X

X Xi

n

i 1=

n

∑=

h t1 α 2⁄ n 1–,–
S()
n

--------=

t1 α 2⁄ n 1–,– 1 α 2⁄– n 1–
rev 1.0 1.25

Principles of Simulation Getting Started with AutoMod

ases.
ords,
ence
To compute S, first use equation 1.4 to compute the sample variance, as follows:

Equation 1.4 - Sample variance

Taking the square root of yields S.

Because we want a two-sided confidence interval, we use to compute the half width.
Using equations 1.2 and 1.4, we obtain = 660.82 seconds and S = 63.655 seconds.

In addition, when using equation 1.3, you can substitute a constant value for based
on the confidence level you want (see Banks, Carson, Nelson, and Nicol (2000) for a table
of t statistics). Constants for two commonly used confidence levels are shown below:

 (95 percent confidence)

 (99 percent confidence)

Therefore, using equation 1.3, we obtain a half width of:

 so (95 percent confidence)

and

 so (99 percent confidence)

The confidence interval is given by

Therefore, the 95 percent confidence interval is (615.29, 706.35) seconds, while the 99 per-
cent confidence interval is (595.40, 726.24) seconds.

As demonstrated in example 1.2, the size of the interval depends on the confidence level
desired, the sample size, and the inherent variation (measured by S). The higher level of con-
fidence (99 percent) requires a larger interval compared with the lower confidence level (95
percent). In addition, the number of replications, n, and their standard deviation, S, are used
in calculating the confidence interval. In simulation, each replication is considered one data
point. Therefore, the factors that influence the width of the confidence interval are:

• Total number of replications

• Level of confidence

• Standard deviation of performance measure

The relationship between these factors and the confidence interval is:

• As the number of replications increases, the width of the confidence interval decre
• As the level of confidence increases, the width of the interval increases. In other w

a 99 percent confidence interval is wider than the corresponding 95 percent confid
interval.

• As the standard deviation increases, the width of the interval increases.

S2
,

S
2

Xi X–
2()

i 1=

n

∑
n 1–()

--------------------------------=

S
2

α 2⁄
X

1 α 2⁄–

t1 .05 2⁄ 9,– 2.262=

t1 .01 2⁄ 9,– 3.250=

h 2.262
63.655

10
----------------= h 45.53=

h 3.250
63.655

10
----------------= h 65.42=

X h, X h+–()

n()
1 α–()

S()
1.26 rev 1.0

Getting Started with AutoMod Principles of Simulation

ve of
fixed
xed,

 repli-
er the

of

ue

ll of
Terminating versus non-terminating systems

The procedure for output analysis differs based on whether the system is terminating or non-
terminating.

Terminating systems
In a terminating system, the duration of the simulation is fixed as a natural consequence of
the model and its assumptions. The duration can be fixed by specifying a finite length of
time to simulate or by limiting the number of loads created or disposed. An example of a
terminating system is a bank that opens at 9:00 A.M. and closes at 4:00 P.M. Some other
examples of terminating systems include a check processing facility that operates from 8:00
P.M. until all checks are processed, a ticket booth that remains open until all the tickets are
sold or the event begins, and a manufacturing facility that processes a fixed number of jobs
each day and then shuts down.

By definition, a terminating system is one that has a fixed starting condition and an event
definition that marks the end of the simulation. The system returns to the fixed initial con-
dition, usually “empty and idle,” before the system begins operation again. The objecti
the simulation of terminating systems is to understand system behavior for a “typical”
duration. Because the initial starting conditions and the length of the simulation are fi
the only controllable factor is the number of replications.

Therefore, the analysis procedure for terminating systems is to simulate a number of
cations, compute the sample variance of the selected estimate, and determine wheth
width of the resulting confidence interval is within acceptable limits.

For example, to analyze a model in which the average number of parts in a queue is
interest:

Step 1 Conduct a pilot run of “n” replications.

Step 2 Compute the confidence interval for the expected average number of parts in the que
using the observations recorded from each replication.

Step 3 If the confidence interval is too large, determine the number of additional replications
required to bring it within limits.

Step 4 Conduct the additional replications and recompute the new confidence interval using a
the data. Iterate steps 3 and 4 until the confidence interval is of satisfactory size.
rev 1.0 1.27

Principles of Simulation Getting Started with AutoMod

ehav-
t is,
se can

n
alue
you
bias

es or
ding
ome

l crib
about
d that

g the
more
if the
Non-terminating systems
In a non-terminating system, the duration is not finite; the system is in perpetual operation.
An example of a non-terminating system is an assembly line that operates 24 hours a day, 7
days a week. Another example of this type of system is the manufacture of glass fiber insu-
lation for attics. If operation of the system is stopped, the molten glass solidifies in the fur-
nace, needing to be tediously chipped away before restarting the system. The objective in
simulating a non-terminating system is to understand the long run, or “steady-state” b
ior. To accurately study steady-state behavior, the effects of the initial conditions (tha
the transient phase), must be removed from the simulation results. The transient pha
be removed using one of the following methods:

• Swamping
• Pre-loading
• Deletion

Swamping
Swamping suppresses the initial-condition effects by conducting a very long simulatio
run — so long that any initial conditions have only a minuscule effect on the long-run v
of the performance measure. For example, if the initial conditions last for 100 hours,
would simulate for 10,000 hours. A problem with the swamping technique is that the
from starting empty and idle will always exist, even if it is small.

Pre-loading

Pre-loading primes the system before the simulation starts by placing loads at resourc
on transportation devices, or in a waiting line for one of these. In other words, pre-loa
attempts to make the initial conditions match steady-state conditions. This requires s
rough knowledge of how the system looks in steady-state.

For example, if we are simulating a tool crib that has one line forming before three too
attendants, we need to observe the tool crib in operation in order to obtain information
the usual situation. We may find that the three tool crib attendants are usually busy, an
there are about four people in line. This is how the simulation would begin when usin
pre-loading technique. The tool crib is a very simple system to observe. However, for
complex systems, this initialization procedure becomes somewhat difficult, especially
system is still in the design phase.
1.28 rev 1.0

Getting Started with AutoMod Principles of Simulation

 to
sing
Deletion
Deletion excludes the transient (warmup) phase, in which the system is influenced by the
initial conditions. Data is collected from the simulation only after the transient phase has
ended. This idea is demonstrated in the illustration below:

Deletion of initial observations for a non-terminating system

The difficulty with the deletion method is the determination of the length of the transient
phase. Although elegant statistical techniques have been developed, a satisfactory method
is to plot the output of interest over time and visually observe when steady-state is reached.
Welch (1983) provides a formal description of this method. AutoStat, which can be used to
determine a model’s transient warmup period, uses Welch’s method. Using AutoStat
determine the warmup time of a model is discussed in chapter 15, “Warmup Analysis U
AutoStat.”

Performance
Measure

Time

Transient phase (warmup)

Steady-state phase
rev 1.0 1.29

Principles of Simulation Getting Started with AutoMod

 passed
 there

ened
few
hat’s
 9:00

ded in
d:

istri-
riable
with an

f nine
verage

a
Queueing theory
We often need to simulate queues, or waiting lines. When we talk about a queue, we mean
the line that forms before either a machine or a person (called a server). When we talk about
a server, we mean both the queue and the server. Queues include work-in-process (WIP) that
is waiting for a machine, WIP that is waiting for a transportation device, resources that are
waiting to be repaired, and so on. In just a few paragraphs, we want to provide some very
basic notions from the study of steady-state queues or waiting lines. Further information is
available in Banks, Carson, Nelson, and Nicol (2000).

When we say a queue has reached “steady state,” we mean that the waiting line has
the transient phase (when it started empty and idle), and reached a situation in which
is random variation in a finite range. If you went to your neighborhood bank when it op
at 9:00 A.M., you would see the tellers and other service people idle. It would take a
minutes (the warmup period) to reach the normal hum of activity (the steady state). T
because the bank started empty and the tellers and other service people were idle at
A.M.

You can use the following queuing equations to determine how many servers are nee
a system, whether a server is fully utilized, and so on. The following symbols are use

 = arrival rate

 = service rate

 = server utilization

 = number of servers

When there is one server, the utilization coefficient is:

We usually talk about queueing in terms of distributions of time between arrivals and d
butions of service time. For example, we can say that if the arrival rate is a random va
that averages four customers per hour and the service rate is also a random variable
average of five customers per hour, the server utilization average is:

On the average, the server is busy 80 percent of the time.

When there is more than one server, the utilization coefficient is:

For example, if the mean time between arrivals is 6.67 minutes (for an average rate o
arrivals per hour) with two servers each able to serve a customer in 10 minutes (an a
of six customers per hour), then the utilization rate would be

For any number of servers, if , the system is explosive. An explosive system is a sys-
tem that grows without bound over time. Therefore, must be less than one to maintain
stable system.

Even if < 1, the system might be explosive if there are reentrant queues (see Banks and
Dai, 1997).

λ
µ
ρ
c

ρ λ µ⁄=

ρ 4
5
--- 0.8= =

ρ λ
cµ()

-----------=

ρ 9
2() 6()[]

-------------------- 0.75= =

ρ 1≥
ρ

ote
Note
✎

ρ

1.30 rev 1.0

Getting Started with AutoMod Principles of Simulation
Another important part of queuing theory uses the following symbols to discuss time in sys-
tem and number of items in a queue:

A very important result in queueing theory attributed to Little (1961) is that:

Thus, if w is known, then L is also known, because is just a parameter. Conversely, if L
is known, w is known. It is also the case that:

Thus, if is known, then is known, because is just a parameter. Conversely, if
is known, is known.

Consider the possible states of a load in the system; the load can be in service or in the queue.
So, the time in the system is composed of waiting in the queue plus being serviced, or

Multiplying both sides by gives:

or:

So, if any of the four measures is known, all of them are known.

Summary
This chapter began with a definition and example of simulation. We presented the underly-
ing concepts of simulation and discussed the four simulation modeling methods used by the
simulation community: process-interaction, event scheduling, activity scanning, and the
three-phase method. We presented both the advantages and disadvantages of simulation,
along with mitigating factors for the disadvantages. We then briefly outlined some of the
applications of AutoMod and discussed the steps for completing a simulation study.

Our discussion of simulation included a presentation of the manner in which random num-
bers and random variates are generated and three ways that might be used for generating
input data: assuming randomness away, fitting a distribution to data, and using the empirical
distribution of the data. However, the first method, assuming randomness away, is discour-
aged. We described the important concepts of verification and validation, both of which are
necessary for a simulation study. We also addressed the all-important topic of experimenta-
tion and output analysis. Lastly, we discussed some of the important elements of queueing
theory.

L average number of loads in the system=

LQ average number of loads in the queue=

w average time that a load is in the system=

wQ average time that a load is in the queue=

L λw=

λ

LQ λwQ=

wQ LQ λ LQ
wQ

w wQ
1
µ
---+=

λ

λw λwQ
λ
µ
---+=

L LQ ρ+=

L, LQ, w, wQ()
rev 1.0 1.31

Principles of Simulation Getting Started with AutoMod

tion”
to

1.1.

 Cre-

eate a

00
ram.)

-

ct

t ser-
ere are

bers

d hoc
ers.
Exercises

Exercise 1.1

Given the following numbers that represent the average time that loads spent in a process
(in minutes) for 10 replications, find the 95 percent and 99 percent confidence intervals (see
“Example 1.2: Confidence intervals” on page 1.25):

Exercise 1.2

Rework the ad hoc simulation table in example 1.1 (see “Example 1.1: Ad hoc simula
on page 1.4) using the following service times (in order of their appearance from left
right):

Use the same random numbers for time between arrivals that were used in example

Exercise 1.3

Using a spreadsheet package such as Excel, use the equation for generating random variates
to generate 1000 random values with per minute (see “Equation 1.1 - Random
variate generator for the exponential distribution” on page 1.17 for more information).
ate a histogram to display these values.

Steps for creating a histogram in Excel are included below (if you are using another spread-
sheet package, consult that package’s documentation for information about how to cr
histogram):

Step 1 Calculate the random values.

Step 2 In an empty column, define a column of numbers that begins with 0 and increments to 1
in intervals of 10. (These values are used later to defined the bin range for the histog

Step 3 From the Tools menu, select Add-Ins. The Add-Ins window opens.

Step 4 If it is not already selected, select Analysis ToolPak and click Ok. You have now added his
togram functionality to your spreadsheet.

Step 5 From the Tools menu, select Data Analysis. The Data Analysis window opens.

Step 6 Select Histogram and click Ok. Use the window to create the histogram (be sure to sele
Chart Output to create a histogram chart).

Exercise 1.4

Rework the ad hoc simulation table in exercise 1.2 by doubling service times (the firs
vice time is now 4 minutes, the second is now 10 minutes, and so on). Also assume th
two tool crib attendants working independently. Continue using the same random num
for time between arrivals.

Exercise 1.5

Using a spreadsheet program such as Excel, solve example 1.1 (see “Example 1.1: A
simulation” on page 1.4). Have the spreadsheet generate the required random numb

122.91 125.55 92.44 29.82 145.57 139.58 131.17 159.13 99.29 163.89

2 5 1 3 6 5 3 2 1 6 3 4 1 6 3 3 2 4 4 5

λ 1 10⁄=

ote
Tip

☞

1.32 rev 1.0

Getting Started with AutoMod Principles of Simulation
Exercise 1.6

People arrive at the division of motor vehicles to get license plates at a random rate with a
mean time between arrivals of 5 minutes. An attendant can serve each person in an average
time of 19 minutes. What is the minimum number of attendants needed so that the system is
not explosive?

Exercise 1.7

Widgets at a facility are generated at a random rate with a mean time between arrivals of 20
minutes. The facility has four identical machines that process the widgets; a widget needs to
be processed by only one machine. The amount of time that a machine takes to process a
widget is randomly distributed with a mean of 90 minutes. Is this system stable or explosive?
Why or why not?
rev 1.0 1.33

Principles of Simulation Getting Started with AutoMod
1.34 rev 1.0

Getting Started with AutoMod Using the Software
Chapter 2

Using the Software

Opening the AutoMod software... 2.3
The edit environment .. 2.4

Importing a model... 2.5
Counting the number of entities in your model .. 2.5

Displaying entity allocation ... 2.6

Running a model ... 2.7
The simulation environment ... 2.7

Example model 2.1: Load inspection and processing in an AGV system 2.8

Pausing and continuing a simulation... 2.9

Changing the display step... 2.9

Toggling the animation on and off... 2.9

Changing the view ... 2.10
Centering and zooming ... 2.10
Rotating the picture ... 2.11

Using keyboard shortcuts... 2.13
Saving the configuration of windows and views .. 2.13

Displaying statistics ... 2.14
Displaying process system summary statistics ... 2.15
Displaying queue summary statistics .. 2.16
Displaying resource summary statistics .. 2.17
Displaying vehicle statistics .. 2.18
Displaying counter summary statistics.. 2.19
Closing the AutoMod software ... 2.20

Closing the simulation environment .. 2.20
Closing the edit environment ... 2.20

Copying a model .. 2.20

Editing a model.. 2.21
Changing the length of a simulation ... 2.22
Changing the load creation rate... 2.23
Exporting a model ... 2.24
Running the revised model.. 2.24
rev 1.0 2.1

Using the Software Getting Started with AutoMod
Editing a source file ...2.25
Commenting model logic ...2.25

Opening a path mover system..2.26
Changing the number of vehicles ..2.26

Summary ..2.27

Exercises ...2.28
Exercise 2.1..2.28
Exercise 2.2..2.28
Exercise 2.3..2.28
Exercise 2.4..2.28
Exercise 2.5..2.28
2.2 rev 1.0

Getting Started with AutoMod Using the Software
Chapter 2

Using the Software

In this chapter, you are going to learn how to open the AutoMod software and import and
run a model. The chapter will also briefly describe some output from the simulation and
show you how to edit a model.

Simulation and AutoMod are subjects that require both study and hands-on experience. You
are going to need to spend time studying this textbook and working through the exercises at
the end of each chapter to become proficient with the software. After completing this text-
book, you will be able to build accurate and effective AutoMod simulation models.

Opening the AutoMod software
To open the AutoMod software, do the following:

Step 1 From the Start menu, select AutoMod 9.1 (Student Version) > AutoMod. The Work Area
window opens.

or

Step 1 Using Explorer, navigate to the bin directory of the AutoMod installation.

Step 2 Double-click the “amod.exe” file. The Work Area window opens.
rev 1.0 2.3

Using the Software Getting Started with AutoMod

ork

chap-
The edit environment

There are two parts to the AutoMod software: the edit environment and the simulation envi-
ronment.

The edit environment, also referred to as the build environment, is where you build your
model and define model parameters. The simulation environment is where you run the
model and view the results. You will learn more about the simulation environment later in
this chapter (see “The simulation environment” on page 2.7).

When you first open the AutoMod software, you are in the edit environment and the W
Area window is displayed.

Work Area window

In this window, you can either create a new model or import an existing model. In this
ter, you will import an existing model.
2.4 rev 1.0

Getting Started with AutoMod Using the Software

 ver-
ion).

ory

h

 the

pera-
ned in

.

u try
ve
ties,
lick
Importing a model
Importing a model allows you to open an archived model. You will learn more about the
difference between importing and opening models later in this textbook (see “Exporting
sus saving a model” on page 3.5 of the “AutoMod Concepts” chapter for more informat

To import the example model for this chapter, complete the following:

Step 1 From the Model menu in the Work Area window, select Import.

Step 2 Navigate to the “demos\gswa\examp02_1” directory in the AutoMod installation direct
(“gswa” is short for Getting Started With AutoMod).

Step 3 Double-click the “examp21.arc” folder.

Step 4 Select the “model.amo” file and click Open. The Entity Limit Status window opens, whic
is discussed in the next section.

Step 5 Click OK to continue. The imported model is displayed in the Work Area window and
Process System palette appears.

Counting the number of entities in your model

The student version of the AutoMod software limits the number of entities (such as o
tors, queues, and equipment) in a model to 100. To check the number of entities defi
your model, do the following:

Step 1 From the Model menu, select Check Entity Limit. The Entity Limit Status window opens

Entity Limit Status window

The Entity Limit Status window opens whenever you import a model, or whenever yo
to build, save, or run a model containing over 100 entities. It also opens when you ha
placed fifty percent of the available entities, seventy-five percent of the available enti
and when you place the last ten entities. If you want to turn off the entity limit warning, c
the Disable Warnings button.
rev 1.0 2.5

Using the Software Getting Started with AutoMod

-
n dis-

odel.

each

 enti-
Displaying entity allocation
Entities in a model are grouped into systems, such as a conveyor system, a vehicle system,
and so on (systems are discussed in detail in “Systems” on page 3.7 of the “AutoMod Con
cepts” chapter). For more detailed information about the entities in your model, you ca
play the number and type of entities in each system:

Step 1 In the Entity Limit Status window, click the Show Entity Allocation button. The Entity Allo-
cation window opens, displaying the number of each type of entity currently in your m

Entity Allocation window

The Entity Allocation window lists each system and indicates the number of entities of
type within that system.

Step 2 Click OK to close the Entity Allocation window.

Step 3 Click OK to close the Entity Limit Status window.

You will be able to complete all of the exercises in this textbook using fewer than 100
ties.

You are now ready to run the model and watch the simulation.

ote
Note
✎

2.6 rev 1.0

Getting Started with AutoMod Using the Software

n” on
Running a model
To run the example model and watch it the simulation:

Step 1 From the Model menu in the Work Area window, select Run Model. A confirmation win-
dow opens.

Step 2 Click Yes to build (compile) the example model. After the model has been compiled, the
simulation environment opens.

The simulation environment

The simulation environment is where you run a model, watch the animation, and gather
statistics, as shown below:

Simulation environment

The simulation environment consists of three windows:

Simulation
window

Shows the model layout and animation.

Status window Shows the current simulation time and indicates whether the simulation has been paused or
is continuing (running).

Message
window

Shows messages and errors for the model. (For more information, see “The print actio
page 4.12 of the “Introduction to AutoMod Syntax” chapter.)
rev 1.0 2.7

Using the Software Getting Started with AutoMod

th.

rocess-
nto the
, they
 a vehi-
l path.

les
iring
pping
cing a
ch
s vehi-
Example model 2.1: Load inspection and processing in an AGV system
Take a moment to consider the layout for example model 2.1. An enlarged picture of the lay-
out is shown below:

Example model 2.1 layout

The example model contains a system of paths on which automated guided vehicles (AGVs)
can travel. Two types of loads (which represent products) are carried onboard vehicles in
the facility: red loads and blue loads. Both types of loads first arrive in the queue (waiting
area) near the center of the path system. The loads are then picked up by a vehicle on one of
two spur paths located on either side of the arrival queue.

Red loads travel by vehicle to an inspector to the right. They are inspected while on the vehi-
cle, and then travel to the drop-off point marked by an “X” on the lowest horizontal pa

Blue loads travel by vehicle to a processing area on the upmost horizontal path. The p
ing area consists of a machine with a queue on either side. Blue loads are unloaded i
queue on the right side, where they wait to use the machine. After using the machine
are placed in the queue on the left side and wait to be picked up by a vehicle. Once on
cle, the blue loads are taken to the drop-off location at the end of the uppermost vertica

There is a battery swapping area on the first vertical path on the right, to which vehic
travel to have their batteries replaced when the charge is running low. Only AGVs requ
battery replacement travel on that path. The vertical path to the right of the battery swa
area is a bypass for vehicles that need to travel around the system, but are not repla
battery or delivering a red load to be inspected. Finally, there is a parking area to whi
empty vehicles travel when there are no loads requiring delivery; the parking area get
cles out of the way so they do not block vehicles traveling on the path.

inspector

processing
machine

starting location
2.8 rev 1.0

Getting Started with AutoMod Using the Software

er-

r the
s the
t the

m-

ee the

 can

n off

in the
 is

om-

se).
Pausing and continuing a simulation
When the simulation environment first opens, the simulation is paused. To continue the sim-
ulation:

Step 1 From the Control menu, Select Continue.

Take a moment to watch the simulation. There are two labels near the top of the screen that
indicate the number of red and blue loads in the system. The green label (to the left) indicates
the number of batteries that have been replaced.

Notice the clock at the bottom of the Simulation window; the time is displayed in the fol-
lowing format: days:hours:minutes:seconds:hundredths of seconds.

After you have watched the simulation for a few minutes, pause the simulation by selecting
Pause from the Control menu.

You can also toggle the simulation between paused or continued by pressing “p” (low
case).

Changing the display step
The display step is the period of simulated time between animation updates. The longe
display step, the faster the simulation. Conversely, setting a shorter display step slow
simulation because graphics need to be redrawn more frequently. The display step a
beginning of a simulation is set to one second.

To change the display step:

Step 1 From the Control menu, select Display Step. The Change Display Step window opens.

Step 2 Type a number, then select a unit of time measurement from the drop-down list. For exa
ple, type “2” and select “seconds” to set the display step to 2 seconds.

Step 3 Click OK to close the Change Display Step window. The display step has now been
changed.

If the model is currently paused, press “p” to continue the simulation so that you can s
effect of the new display step.

You can double the display step during a simulation by pressing “D” (uppercase). You
halve the display step during a simulation by pressing “d” (lowercase).

Toggling the animation on and off
You can greatly increase the speed of a simulation by turning off the animation. To tur
the animation:

Step 1 From the Control menu, select Turn off Animate.

If the model is currently paused, press “p” to continue the simulation.

Because the animation is turned off, the clock is not updated and there is no change
Simulation window. The Status window indicates whether the simulation is paused or
continuing.

The message “End of Run” appears in the Message window when the simulation is c
plete.

You can turn animation on by selecting Turn on Animate from the Control menu.

You can toggle the animation on and off during a simulation by pressing “g” (lowerca

ote
Note
✎

ote
Tip

☞

ote
Tip

☞

ote
Note
✎

ote
Tip

☞

rev 1.0 2.9

Using the Software Getting Started with AutoMod
Changing the view
Because AutoMod animation is 3-dimensional, you can zoom in or out and rotate graphics
to view the simulation from any position in 3-D space. Centering and zooming the screen is
accomplished using the mouse.

Centering and zooming

On a PC with a two-button mouse, the right mouse button is used for centering and zooming.
On a PC with a three-button mouse, the middle mouse button is used for centering and zoom-
ing.

To center the display at the position of the mouse pointer, move the pointer to the desired
location and click the appropriate mouse button. Wherever you click becomes the center of
the screen.

To zoom in on an area, hold down the button for centering and zooming (indicated above),
drag the mouse to “band” the area, and release the mouse button. The banded area enlarges
to fill the window.

You can undo the last zoom (or other view change) with the keyboard command
Control+Shift+U. You can return to the top view by pressing “v” (lowercase).

ote
Note
✎

2.10 rev 1.0

Getting Started with AutoMod Using the Software
Rotating the picture

AutoMod models are 3-dimensional and contain an origin around which the graphics can be
viewed. The View Control window allows you to change the view of your model.

The View Control works the same in both the edit environment and the simulation environ-
ment.

To open the View Control window:

Step 1 Click View Control in the lower-left corner of the Work Area window.

The View Control window opens.

View Control window

Options in the View Control window are:

Rotate Rotating moves the model graphics around the different axes.

Translate Translating moves the model graphics along the different axes.

Scale Scaling the model makes the graphics bigger or smaller on the screen.

Child
Windows on

Top

This option prevents the palette and dialog windows from moving behind other windows,
such as the Simulation window.

Perspective Perspective controls the view of the model. When selected, Perspective shows all lines
leading to a vanishing point; this is how we naturally view the world.

When the perspective box is cleared, the model is shown in Orthogonal view. All lines are
at right angles to each other; this is a projection of a 2-D drawing into a 3-D view.

Solid Solid displays model entities as solid objects. When solid is off, only the wireframe outlines
of shapes are displayed.

Friction Friction controls continuous movement, including translation, rotation, and scaling. When
friction is on, the graphics move only when you indicate. When friction is off, any move-
ment command causes the model to move continuously until you explicitly stop it, either by
toggling friction on again or by pressing the space bar.

ote
Note
✎

rev 1.0 2.11

Using the Software Getting Started with AutoMod

inates
s-

t view
e the
rop-

, do
Axis Display Axis Display causes a triad (X, Y, Z) to be displayed at the model’s origin.

Screen The Screen check box controls the movement of the model in relation to screen coord
or world coordinates. The world coordinates are in relation to the model’s origin (Axis Di
play). The screen coordinates are in relation to the current screen view.

The axes of the following views originate from the world coordinates:

Top View the entity from the positive Z axis.

Front View the entity from the negative Y axis.

Bottom View the entity from the negative Z axis.

Back View the entity from the positive Y axis.

Right Side View the entity from the positive X axis.

Left Side View the entity from the negative X axis.

Create Views It is possible to define views of your model and name them so that you can display tha
later. To do this, adjust your model to the desired view, then click Create Views. Nam
view. When you want to return to a view later, select the name of the view from the d
down list in the View Control window.

Set Limits This button displays the Set Limits window, which allows you to adjust the size of the
drawing grid.

Take a few minutes to familiarize yourself with the view control. When you are finished
the following:

Step 1 In the View Control window, select Child Windows on Top.

Step 2 Close the view control.

Remember that you can return to the top view by pressing “v” (lowercase).
ote

Tip

☞

2.12 rev 1.0

Getting Started with AutoMod Using the Software

 for
Using keyboard shortcuts
Many of the viewing changes you have just made can also be accomplished using the
keyboard.

There is a help file that lists all of the AutoMod keyboard shortcuts. To open the help file,
select Keyboard Help from the Help menu. The Keyboard Command Help opens.

All keyboard commands are case-sensitive.

Take a few minutes to review the help file and become familiar with some of the basic key-
board shortcuts, such as:

h = Help file display

X = rotate X axis clockwise

x = rotate X axis counterclockwise

Y = rotate Y axis clockwise

y = rotate Y axis counterclockwise

Z = rotate Z axis clockwise

z = rotate Z axis counterclockwise

G = grid toggle

w = solid

When you are finished, close the Keyboard Command Help.

Saving the configuration of windows and views
To save the current size and position of your windows, as well as the angle and view of the
graphics, save the startup configuration. Every time you run this model, the view appears as
you have saved it.

For example, you can organize the placement of the windows on your screen in any manner
you desire: resize the Simulation window, reposition the Message and Status windows,
rotate the picture, and set options from the View Control.

To save the Startup Configuration:

Step 1 Once the window locations, views, and other options are set as you want, select Save Startup
Config from the Control menu.

A new file called “.am2rc,” is created in the model directory; it contains the instructions
setting up the model. When you open any model within the directory containing the
“.am2rc” file, the screen appears as you have set it.

ote
Help

8
ote
Note
✎

rev 1.0 2.13

Using the Software Getting Started with AutoMod

rage.

on, as
Displaying statistics
If you have not already done so, run the simulation to completion. The simulation runs for
five days.

Remember that you can speed up the simulation by turning off the animation.

Whenever you run a simulation model, statistics are recorded to help you understand the sys-
tem’s behavior. Statistics can be displayed in three formats:

Statistics
summary

Summarizes the statistics for a group of similar entities (for example, all queues, all
resources, and so on).

Sorted
Statistics

Sorts entities in a statistic summary by a selected value, such as total, current, or ave
Statistics can be sorted from low values to high, or from high to low.

Single statistic Displays statistics for a single entity (for example, a specific queue or resource).

In this chapter, we are concerned only with displaying statistics summaries.

Statistics are dynamically updated; you can display them at any time during a simulati
well as at the end of the run.

ote
Tip

☞

ote
Note
✎

2.14 rev 1.0

Getting Started with AutoMod Using the Software

ter).
tistic

r
ber

mber
.
Displaying process system summary statistics

Processes are sets of instructions for the products being sent through the system (for more
information, see “The process system” on page 3.7 of the “AutoMod Concepts” chap
Process statistics provide information about each set of instructions. To display a sta
summary for processes, do the following:

Step 1 From the Processes menu, select Statistics Summary. The Statistics Summary window
opens, as shown below:

Process summary statistics

Process statistics are defined as follows:

Name The name of the process.

Total The total number of loads that were sent to the process.

Cur The number of loads that are currently in the process.

You can calculate the number of loads that completed each process by subtracting the Cu
statistic (the number of loads currently in the process) from the Total statistic (the num
of loads that were sent to the process).

Average The average number of loads that were in the process at the same time.

Max The maximum number of loads that were in the process at the same time.

Min The minimum number of loads that were in the process at the same time.

Av_Time The average time that loads spent in the process.

Throughout this textbook, you will frequently use process statistics to determine the nu
of loads that completed a process and the average time that loads spent in a process

ote
Tip

☞

Note
Important

▲!
rev 1.0 2.15

Using the Software Getting Started with AutoMod

, as

tion

luding
s are
 could
Displaying queue summary statistics

Queues are physical spaces where loads can wait or be processed (for more information, see
“Queues” on page 5.12 of the “Process System Basics” chapter).

To display a statistic summary for queues:

Step 1 From the Queues menu, select Statistics Summary. The Queue Statistics window opens
shown below:

Queue summary statistics

Queue statistics are defined as follows:

Name The name of the queue.

Total The total number of loads that have entered the queue.

Cur The number of loads that are currently in the queue.

Average The average number of loads that have been in the queue at the same time.

Capacity The total number of loads allowed in the queue at the same time.

Max The maximum number of loads that have been in the queue at the same time.

Min The minimum number of loads that have been in the queue at the same time.

Util The fraction of the queue’s capacity that loads utilized. (In this example model, utiliza
statistics are not reported because every queue has infinite capacity.)

Av_Time The average amount of time that each load spent in the queue.

Av_Wait The average time that loads waited to enter a queue; this is the average of all loads, inc
loads that entered the queue without waiting. (In this example model, Av_Wait statistic
not reported, because every queue has an infinite capacity; an infinite number of loads
enter each queue at the same time, without needing to wait for available space.)
2.16 rev 1.0

Getting Started with AutoMod Using the Software

sics”

hat

e that
n very
Displaying resource summary statistics

Resources represent machines, operators, tools, fixtures, and other entities that process
loads (for more information, see “Resources” on page 5.6 of the “Process System Ba
chapter).

To display a statistic summary for resources:

Step 1 From the Resources menu, select Statistics Summary. The Resource Statistics window
opens, as shown below:

Resource summary statistics

Resource statistics are defined as follows:

Name The name of the resource.

Total The total number of loads that have claimed the resource.

You can calculate the number of loads that have completed using the resource by subtracting
the loads that are currently (Cur) using the resource from the Total.

Cur The number of loads that are currently using the resource.

Average The average number of loads that used the resource at the same time.

Capacity The maximum number of loads allowed to use the resource at the same time.

Max The maximum number of loads that used the resource at the same time.

Min The minimum number of loads that used the resource at the same time.

Util The fraction of the resource’s capacity that loads utilized.

Av_Time The average time a load spent using the resource.

Av_Wait The average time a load waited to use the resource. This is the average of all loads t
claimed the resource, including loads that claimed the resource without waiting.

State The name of the current state of the resource.

Resources that have utilization close to 100 percent could indicate bottlenecks. Notic
utilization of resources is reasonable in this model. Battery swapping does not happe
often, which is why the resource R_swap’s utilization is low.

ote
Tip

☞

rev 1.0 2.17

Using the Software Getting Started with AutoMod

ds,

is not

is sta-

icle

e per-
cause

ount
ed.
Displaying vehicle statistics

To display statistics for vehicles:

Step 1 From the Path Mover menu, select Vehicles. The Path Mover Statistics window opens, as
shown below:

Vehicle statistics

Vehicle statistics are divided into four categories:

• Delivering
• Retrieving
• Going to park
• Parking

The categories list the following statistics for each vehicle and for all vehicles:

Percent Of
Total Time

The percent of total simulation time that vehicles spent delivering loads, retrieving loa
going to park, or parking.

Trips Made The number of trips made to deliver loads, retrieve loads, or go to park. (This statistic
available for parking.)

Average Time/
Trip

The average time spent per trip delivering loads, retrieving loads, or going to park. (Th
tistic is not available for parking.)

Vehicle congestion statistics

Vehicle statistics also provide the average capacity and total capacity lost due to veh
congestion.

Average
Capacity Lost

The percentage of vehicle capacity lost due to congestion. The statistic represents th
cent of time that vehicles were attempting to move but were blocked (for example, be
they were waiting behind a stopped vehicle on the path).

Total Capacity The total vehicle capacity lost due to congestion. This statistic represents the total am
of vehicle capacity that was available, but was not used because vehicles were block
2.18 rev 1.0

Getting Started with AutoMod Using the Software

lling
mple
stem),
 the
).

ns,

 in this

ber of

er of

l,
acity,

 swaps.

ait

 the

por-
of the
Displaying counter summary statistics

Counters are user-defined entities for tracking an integer value that increases or decreases
during a simulation (for more information, see “Collecting custom statistics and contro
capacity with counters” on page 14.4 of the “Additional Features” chapter). In this exa
model, counters are used to track the total number of all loads in the system (C_insy
the total number of red loads in the system (C_red), the total number of blue loads in
system (C_blue), and the total number of batteries that have been replaced (C_swap

To display a statistics summary for counters:

Step 1 From the Counters menu, select Statistics Summary. The Counter Statistics window ope
as shown below:

Counter summary statistics

Counter statistics in this model are defined as follows:

Name The name of the counter.

Total The total number of loads created or batteries replaced.

Cur The current number of loads in the system or batteries replaced.

Average The average number of loads in the system or batteries replaced.

Capacity The total number of loads allowed to claim the counter at the same time. The counters
model have infinite capacity.

Max The maximum number of loads in the system at the same time or the maximum num
batteries replaced.

Min The minimum number of loads in the system at the same time or the minimum numb
batteries replaced.

Util The fraction of the counter’s capacity that was utilized at the same time. In this mode
counter utilization statistics are not reported because every counter has an infinite cap
so loads do not need to wait to claim a counter.

Av_Time The average time that loads spent in the system or the average time between battery

Av_Wait The average time that a load waited to claim the counter. In this model, counter Av_W
statistics are not reported because every counter has an infinite capacity.

You can define counters to track any integer value. Depending on what you are using
counters for, the statistics might mean different things than they do in this model.

As you can see, AutoMod provides a lot of statistical information. You will have an op
tunity to examine model statistics again when you complete the exercises at the end
chapter.
rev 1.0 2.19

Using the Software Getting Started with AutoMod

el for

l and

ne
other

cop-
Closing the AutoMod software

To close the AutoMod software, you need to close both the simulation environment and the
edit environment.

Closing the simulation environment
To close the simulation environment and return to the edit environment:

Step 1 From the Control menu in the Simulation window, select Edit Model. The simulation envi-
ronment closes and the edit environment opens.

Closing the edit environment
To close the edit environment and quit the AutoMod software:

Step 1 From the Model menu in the Work Area window, select Quit.

or

Step 1 Click the close box.

Now you are going to make a copy of the example model so you can experiment with it.

Copying a model
Before continuing, create a working copy of the example model for this chapter. You will
need the original example model to complete the exercises at the end of the chapter, so do
not edit the original model; only edit your copy.

To copy the example model for this chapter:

Step 1 In Windows, navigate to the “demos\gswa” directory of the AutoMod installation.

Step 2 Select the example model’s parent directory. The parent directory of the example mod
chapter 2 is named “examp02_1.”

Step 3 From the Edit menu, Select Copy.

Step 4 Navigate to a new destination directory where you want to place the copy of the mode
select Paste from the Edit menu. A copy of the directory appears.

AutoMod models should always reside in their own directory. If you have more than o
model in the same directory, output from one model could overwrite the output from an
model.

Step 5 Rename the copied directory to prevent you from confusing the original model with the
ied model. For example, rename the copied directory “examp21copy.”

Note
Important

▲!
2.20 rev 1.0

Getting Started with AutoMod Using the Software

l is

e the
rted

 path
he pro-
hich
d by
Editing a model
You are now ready to edit the copy of the example model. To open the model for editing:

Step 1 Double-click the directory that you copied in the previous section.

Step 2 Double-click the model’s .arc directory (“examp21.arc”).

Step 3 Double-click the “model.amo” file. The AutoMod software opens and the copied mode
imported.

You are now ready to make changes to the model.

AutoMod models can contain several systems. For example, a process system, wher
model logic is defined, and one or more movement systems, where loads are transpo
from one location to another. Each type of movement system, such as a conveyor or
mover system, is defined separately. In this example model, there are two systems: t
cess system and a path mover system. A path mover system is a vehicle system in w
vehicles and paths are defined. When the model opens, the process system is opene
default and the Process System palette is displayed, as shown below:

Process system palette

You will use the palette to make changes in the process system.
rev 1.0 2.21

Using the Software Getting Started with AutoMod
Changing the length of a simulation

The first thing you will edit in this model is the length of the simulation. You need to make
the run shorter.

To change the length of the simulation:

Step 1 Click Run Control on the Process System palette. The Run Control window opens, as shown
below:

Run Control window

Currently, the run length is five days, as defined by the snap. A snap is a period of time after
which statistics are written to reports. The length of the simulation depends on the length of
all defined snaps. You will only define one snap for the models in this textbook.

Step 2 Select the snap, then click Edit. The Define Snap Control window opens.

Define Snap Control window

Step 3 In the Snap Length text box, type “2.5” to reduce the snap length to 2.5 days.

Step 4 Click OK to close the Define Snap Control window.
2.22 rev 1.0

Getting Started with AutoMod Using the Software

,”

t want
ction
Changing the load creation rate

Now increase the rate at which red loads arrive in the system.

To change the creation rate of red loads:

Step 1 Click Loads on the Process System palette. The Loads window opens.

Step 2 In the Load Types select list, select L_red, then click Edit. The Edit A Load Type window
opens, as shown below:

Edit A Load Type window

In the window, there is one load creation defined. We can see that red loads are being created
according to an exponential distribution with a mean of 5 minutes. The limit is “Infinite
indicating that loads are created continuously until the simulation ends.

Step 3 Select the load creation, then click Edit. The Define a Creation Spec window opens.

Step 4 In the Mean text box, change the “5” to a “4,” as shown below:

Define a Creation Spec window

It is possible to change the distribution used to generate the loads, although you do no
to do so for this model. Distributions are discussed in more detail in chapter 4, “Introdu
to AutoMod Syntax.”

Step 5 Click OK to close the Define a Creation Spec window.

Step 6 Click OK to close the Edit A Load Type window.

You are now ready to export (save) and run the model.

The mean is now
4 minutes

The distribution used
to generate loads

ote
Note
✎

rev 1.0 2.23

Using the Software Getting Started with AutoMod

om-

ou

ds

well. If
 sim-
Exporting a model

At this point, save your changes by exporting the model. Exporting a model does the
following:

• Saves the model.
• Creates an archive of the model, which allows you to move the model from one c

puter to another.

Exporting in AutoMod is equivalent to saving in other applications. Therefore, when y
are making changes to a model, export frequently.

Step 1 From the Model menu, select Export.

Step 2 Click Yes twice to confirm that you want to export the model.

Running the revised model

To verify the effect of the shorter run length and the increase in the number of red loa
entering the system:

Step 1 Run the model (see “Running a model” on page 2.7 if you need more information).

The arrival rate for red loads has increased. The run length has been decreased, as
you turn off the animation and let the simulation run to completion, you will see that the
ulation stops after 2 days and 12 hours (instead of the previous length of 5 days).

Once the simulation is complete and you have looked at the results, edit the model:

Step 2 Select Edit Model from the Control menu to return to the edit environment.

Now you are ready to take your first look at the model logic.

ote
Tip

☞

2.24 rev 1.0

Getting Started with AutoMod Using the Software

at it

n of
es a

 text
 is
with-

ction

an of

s in the
Editing a source file

Source files are text files in which you write the processes, or instructions, for a model. Pro-
cesses are written using the AutoMod language, which is discussed later in this textbook.

In this example, you will edit the model’s source file to lengthen the amount of time th
takes the inspector to inspect red loads.

Step 1 Click Source Files on the Process System palette. The Source Files window opens.

Step 2 Select logic.m in the Source Files select list, then click Edit. The AutoMod editor, BEdit,
opens to display the model logic.

The syntax for line 11 is:

use R_insp for exponential 3 min

which means “Use the inspector for a time that is exponentially distributed with a mea
three minutes.” We will comment this line of code and replace it with a line that includ
new inspection time.

Commenting model logic
You can add comments to model logic using the symbols /* at the beginning of the com-
ment and */ at the end of the comment. Comments can span multiple lines of text. Any
between the comment symbols is not executed when the model is run. Commenting logic
useful for providing explanations of the model logic or for making temporary changes (
out deleting logic).

To comment the current logic for line 11 and write a new line that lengthens the inspe
time, do the following:

Step 1 Edit line 11 of the model logic by typing /* at the beginning of the line and */ at the end of
the line, as shown below:

/* use R_insp for exponential 3 min */

Step 2 Position the cursor at the end of line 11, then press Enter to insert a new line.

Step 3 On the new line, type:

use R_insp for exponential 4 min

The inspection process will now take a time that is exponentially distributed with a me
four minutes (instead of three).

Step 4 From the File menu, select Save and Quit. BEdit closes.

The next change you need to make to the model is to decrease the number of vehicle
simulation from four to three.
rev 1.0 2.25

Using the Software Getting Started with AutoMod

-

tion
s have
Opening a path mover system

To make changes to the paths or vehicles in the model, you must open the path mover
system.

To open the path mover system:

Step 1 From the System menu, select Open. The Open A System window opens.

Step 2 In the System select list, select “pm” (for path mover), then click Open. The path mover sys
tem opens and the Path Mover palette appears, as shown below:

Path Mover palette

You will use the palette to make changes in the path mover system.

Changing the number of vehicles

The number of vehicles in the model is currently four.

To change the number of vehicles from four to three:

Step 1 Click Vehicle on the Path Mover palette. The Vehicles window opens.

Step 2 In the Vehicles select list, select DefVehicle, then click Edit. The Edit A Vehicle Definition
window opens.

Step 3 In the Number of Vehicles text box, change the “4” to a “3”.

Step 4 Click Done to close the Edit A Vehicle Definition window.

Step 5 Export and run the model.

Look at the area in the middle of the layout labeled “All loads arrive here.” As the simula
continues, the stack of loads in this queue grows quickly, because the inspection time
increased and the number of vehicles has decreased, creating delays in the system.
2.26 rev 1.0

Getting Started with AutoMod Using the Software

Summary
After completing this chapter, you now know the basic steps for running a simulation:

Step 1 Import a model in the AutoMod software.

Step 2 Edit the model (if desired).

Step 3 Export the model to save changes.

Step 4 Build and run the model.

Step 5 Continue the simulation.

Turn off the animation or increase the display step to accelerate the simulation.

Step 6 Display simulation statistics.

You have also learned how to change views in the AutoMod software and how to make
some basic changes to a model, including commenting and editing the model’s logic.

ote
Tip

☞

rev 1.0 2.27

Using the Software Getting Started with AutoMod

d

erage

model.

een the

imum

min-

e two

n?
Exercises
The following exercises ask you to copy example model 2.1; copy the original example
model (not the copied model that you edited while reading the chapter). Remember to
export the model after each assignment.

Exercise 2.1

Copy example model 2.1 to a new directory. Run the copied model and record the maximum
number of loads in process P_agvsys. Edit the copied model. Change the number of AGVs
to three.

Edit the source file logic.m. Change line 11 from use R_insp for exponential 3 min to
use R_insp for exponential 2 min so that the mean service time of red loads is two minutes.

Run the model using the changed values. What is the difference in the maximum number of
loads in process P_agvsys between the runs?

Exercise 2.2

Copy example model 2.1 to a new directory and edit the source file logic.m. Notice that on
line 49, the time between battery swaps is normally distributed with a mean of 480 minutes
and a standard deviation of 60 minutes (wait for normal 480, 60 min). On line 51, the
swap time is a constant 15 minutes (use R_swap for 15 min). Run the model. View the
resource statistics and record the Total and Av_Time for the resource R_swap with this con-
figuration.

Edit the source file and change the time between battery swaps to a time that is normally
distributed with a mean of 240 minutes and a standard deviation of 30 minutes
(wait for normal 240, 30 min). Change the time required to replace the batteries to a
constant 7.5 minutes (use R_swap for 7.5 min)

Run the model using the changed values and record the resource R_swap’s Total an
Av_Time statistics for the new configuration.

Exercise 2.3

Copy example model 2.1 to a new directory. Run the copied model and record the av
time that loads spend in process P_agvsys.

Edit the copied model and comment out procedure P_swap (lines 44 to 56). Run the

What is the difference in the average time that loads spend in process P_agvsys betw
two simulations?

Exercise 2.4

Copy example model 2.1 to a new directory. Run the copied model and record the max
number of loads in the queue Q_entry.

Edit the copied model and change the interarrival time of part L_blue to a constant 5
utes. Run the model.

What is the difference in the maximum number of loads in queue Q_entry between th
simulations?

Exercise 2.5

Copy example model 2.1 to a new directory. Run the model for 25 days.

What is the maximum number of blue loads in the system during the 25 day simulatio

Note
Important

▲!
2.28 rev 1.0

Getting Started with AutoMod AutoMod Concepts
Chapter 3

AutoMod Concepts

The AutoMod file system.. 3.4

Exporting versus saving a model ... 3.5
Archived (exported) models.. 3.5
Saved models .. 3.5
Executable models... 3.5

Using the example models .. 3.6

Systems ... 3.7
The process system.. 3.7
Movement systems.. 3.8
System naming conventions.. 3.8

Loads .. 3.9

Territories and space .. 3.10

Source files ... 3.11
AutoMod syntax.. 3.11
AutoMod Syntax Help .. 3.11
Entity naming conventions.. 3.12
Using BEdit ... 3.13

Submitting exercise solutions ... 3.14
Archiving a model in the Zip format... 3.14
Printing the model logic .. 3.15

Summary .. 3.15

Exercises... 3.16
Exercise 3.1 ... 3.16
rev 1.0 3.1

AutoMod Concepts Getting Started with AutoMod
3.2 rev 1.0

Getting Started with AutoMod AutoMod Concepts

ed to
ol for
: the
ng
Chapter 3

AutoMod Concepts

In chapter 2, “Using the Software,” you gained some hands-on experience using the
AutoMod software. This chapter provides you with an overview of the concepts need
understand how the AutoMod software works and how it can be used as an effective to
creating your own simulation models. The concepts discussed in this chapter include
AutoMod file structure, systems, loads, territories, and archiving models and submitti
them to your instructor.
rev 1.0 3.3

AutoMod Concepts Getting Started with AutoMod
The AutoMod file system
In order to work with example models and complete the assignments in this textbook, it is
necessary to understand the files and directories that get created for each AutoMod model.
The illustration below shows a model directory, which contains an exported model, a saved
model, and an executable (built) model:

An AutoMod model’s file hierarchy

The model directory is a folder that you create to store a model; you can give the directory
any name that you want.

Each model must be stored in its own model directory. If you store more than one model in
the same model directory, the output from one model will overwrite the output from another
model.

The model files are stored in a directory that has one of two extensions:

.arc An archived, ASCII text representation of a model; the <modelname>.arc directory is cre-
ated when you export a model.

.dir A binary version of a model; the <modelname>.dir directory is created when you save or
export a model.

Depending on your operating system, the model name may need to be DOS compatible (that
is, no more than eight alphanumeric characters with no spaces or special characters). All of
the example models that are installed with the AutoMod software are archived and have
DOS-compatible names.

Model directory

Archived (exported) model

Saved model

Executable model

Note
Important

▲!

Note
Important

▲!
3.4 rev 1.0

Getting Started with AutoMod AutoMod Concepts

l as a

n you

 the
.

ine.
 that
t of the
st

tory
n the

e
ith
efore,
r copy

 and
t a

 of the

ou
 addi-
table
annot
Exporting versus saving a model
There are two ways to “save” a model in AutoMod: exporting and saving.

Exporting a model creates an archived copy of the model. Think of an exported mode
backup that you frequently update throughout the process of building the model. The
exported model is also the distributable version that you can send to other people whe
are finished with the model.

When you export a model, the model is also automatically saved. Therefore, develop
habit of exporting your model often, just as you would save often in other applications

When you save a model, a version-specific copy of the model is stored on your mach
Think of a saved model as a working version of the model. When you make changes
you are not certain you want to keep, you can save and run the model to test the effec
changes. If you decide you do not want to keep the changes, you can revert to the la
exported version by importing the archived model.

Archived (exported) models

An archived model consists of a <modelname>.arc directory and its contents. The direc
and the files it contains are created automatically when you export a model from withi
AutoMod software.

To open an exported model within the AutoMod software, import the “model.amo” file.

Archived models have two advantages over saved models. First, archived models ar
smaller than saved models. Second, archived models provide upward compatibility w
newer versions of the AutoMod software and can be moved to another computer. Ther
whenever you need to need to send a model to another party (such as your instructor) o
a model to a different computer, you should use the archived version of the model.

Saved models

A saved model consists of a <modelname>.dir directory and its contents. The directory
many of the model files it contains are created automatically when you save or expor
model from within the AutoMod software.

To use a saved model within the AutoMod software, open the “<modelname>.mod” file.

Saved models are version-specific; they can only be opened using the same version
AutoMod software that created them.

Executable models

An executable model consists of a <modelname>.exe file and a saved model. When y
build or run a model within the AutoMod software, the saved model expands. Several
tional files are automatically created in the <modelname>.dir directory, and an execu
file is created in the model directory. Because of the size of an executable model, you c
run most models on a diskette; the models must be saved on a hard drive.

You can run a model by double-clicking on the <modelname>.exe file.

ote
Note
✎

ote
Tip

☞

rev 1.0 3.5

AutoMod Concepts Getting Started with AutoMod

e

ter 2.

through
l and a
Using the example models
Several example models are installed with the AutoMod software for use with this textbook.
An archived version of these models can be found in the “demos\gswa” directory in th
AutoMod installation directory. The model directories are named using the following
convention:

Example model naming convention

The name above indicates that the directory contains the first example model in chap

In some cases, we may ask you to make changes to an example model as you read
a chapter. In these cases, the model directory contains a “base” version of the mode
“final” version of the model, both in separate subdirectories, as shown below:

“Base” and “final” versions of an example model

The base version of a model is the version you should copy and modify as you read the
chapter.

The final version of a model is the version you should copy and use for the exercises at the
end of the chapter. The chapter modifications have already been made in the final version
of the example model.

Always copy an example model before using it. If you accidentally make changes to an orig-
inal model, you will need to reinstall the AutoMod software to restore the example model.

examp02_1

example
model
prefix

chapter
number

model
number

Note
Important

▲!
3.6 rev 1.0

Getting Started with AutoMod AutoMod Concepts

 nam-

 each
eeds to

more

ave

).

ding
Systems
AutoMod models can contain several systems, or collections of entities. AutoMod models
must have one process system, and can optionally have one or more movement systems.

The process system

The process system defines the model logic that controls how products (loads) are pro-
cessed in a model. There can be only one process system in each model. However, the pro-
cess system can contain an infinite number of processes.

A process is a logical subsystem that defines a set of activities for loads during a simulation.
Loads are sent to a process to perform one or more actions, such as using a resource or mov-
ing into a queue. The actions that a load performs when sent to a process are defined in the
process’ arriving procedure, which is a “to do” list for loads.

For example, a model might contain the following processes:

We recommend beginning each process name with “P_”. For a complete list of entity
ing conventions, see “Entity naming conventions” on page 3.12.

Each of the processes in a model has an arriving procedure that tells a load how long
step of the procedure takes, which resources the load needs to use, where the load n
travel, and so on. The logic for each arriving procedure is defined in a source file (for
information about source files, see “Source files” on page 3.11).

There can be multiple loads in a process at the same time, and multiple loads may h
actions they need to do at the same instant in simulated time.

Individual processes have no physical constraints or graphical representation in the
AutoMod software; their purpose is solely to provide logical control of products (loads

The process system also allows you to define many other entities within a model, inclu
resources (machines or operators) and queues (waiting lines).

Process name Description

P_inspection An inspection process.
P_paint A paint shop process.
P_grinding A grinding operation.

ote
Note
✎

rev 1.0 3.7

AutoMod Concepts Getting Started with AutoMod

ate
ll.

mple,
em, one

se they
r, the
g:

mple,
odel.

tions:

tems,
).

easily
ven-
Movement systems

A movement system contains components that can be used to simulate the transportation of
loads, such as the components of a conveyor system. A path mover system in AutoMod is
a flexible path-based system that can be used to simulate automated guided vehicles
(AGVs), fork trucks, or people who carry loads through a facility along a predetermined
path.

In the first few chapters of this text, you will use and create only the process system in your
models. Beginning in chapter 6, “Introduction to Conveyors,” you will learn how to cre
conveyor systems. After that, you will learn how to create path mover systems, as we

You can have any number and combination of movement systems in a model. For exa
a model could contain a process system and two conveyor systems, or a process syst
conveyor system, and one path mover system.

This text discusses only two movement systems, conveyors and path movers, becau
are the only movement systems available in the student version of AutoMod. Howeve
fully-licensed version of the AutoMod software has other movement systems, includin

• Power & free (widely used in the automotive industry)
• AS/RS (Automated Storage/Retrieval systems)
• Bridge cranes
• Kinematics (used for robotic modeling)
• Tanks & pipes

You can also create static systems, which add stationary graphics to a model (for exa
graphics imported from a CAD drawing). Static systems add graphical realism to a m

System naming conventions

When naming systems in a model, we recommend using the following naming conven

If you define multiple movement systems of the same type, such as two conveyor sys
you can enumerate them to distinguish them (such as conv1 and conv2, for example

Using naming conventions ensures consistency among models and makes systems
recognizable. All of the example models for this textbook are named using these con
tions.

ote
Note
✎

System type System name

Process system proc

Conveyor system conv

Path mover system pm
3.8 rev 1.0

Getting Started with AutoMod AutoMod Concepts

. The
oduct

ctions
 leave

, for a
color,
aking it

elp.
11.)

nam-
Loads
Loads are used to represent physical entities that move through a system, such as products
or people. Loads are the active entity in the AutoMod software, meaning that they execute
logic and cause events to happen. When writing logic, you write a set of instructions for
loads to follow.

Loads must be created in each model. You will learn how to define a creation specification,
which causes loads (products) of a certain type to enter the model at a certain rate. For exam-
ple, you may define a specification that starts 10 product A’s per day into the system
creation specification also defines which process the loads go to first. For example, pr
A’s begin at P_sort, while product B’s begin at P_sand.

After loads are created, they move logically from one process to another, executing a
for the process, which are contained in arriving procedures. When loads are ready to
the system, they are sent “to die,” meaning they disappear from the simulation.

Each load has a user-defined description called a load type. Load types contain specifica-
tions about a group of loads, such as a product or a group of operators. For example
given type of product, the load type determines such characteristics as the product’s
shape, and size. By default, a load is square; you can change the shape as desired, m
larger, making it a rectangle, and so on.

For a complete list of valid load colors, see “color expression” in the AutoMod Syntax H
(For more information on opening the help file, see “AutoMod Syntax Help” on page 3.

For example, the following load types might be defined in a model:

We recommend beginning each load type name with “L_”. For a complete list of entity
ing conventions, see “Entity naming conventions” on page 3.12.

ote
Help
8

Load type name Description

L_init A logical load that initializes values in the model.
L_productA A load that represents a manufactured part.
L_productB A load that represents a different manufactured part.

ote
Note
✎

rev 1.0 3.9

AutoMod Concepts Getting Started with AutoMod

ou
s can

d. The

ou
, the
s.)

 a vehi-
itories
any

 its
w
Territories and space
Loads occupy physical places known as territories. A territory is a physical location where
a load is shown graphically. For example, while a load is being processed at a machine, you
want the load to be physically (graphically) in front of the machine, so you would move the
load into a queue in front of the machine’s graphic. While a product is being stored, y
want to stack it on a rack, which can also be modeled using a queue. In AutoMod, load
be located in the following physical territories:

• Queues
• Path mover vehicles
• Conveyor sections

Loads must be in one of these territories at all times from the moment they are create
first territory that all loads go to is a default queue called Space. When you send loads to
their first location, such as a queue, they leave Space.

Loads cannot return to Space. Once you move a load into its first location in a process, y
are in control of the load’s physical location. (If you never move the load out of Space
load remains there physically throughout the simulation while it executes its processe

Loads are not visible in Space. When loads are in a user-defined territory, such as on
cle or in a queue, they appear graphically in the model. You move loads between terr
through actions in process procedures. Loads can move from any type of territory to
other, as shown below:

Territories in the AutoMod software

If there is no room in a destination territory due to limited capacity, a load must wait in
current territory until it can physically move to its destination. Waiting to move to a ne
territory delays the load’s processing.

ote
Note
✎

Space

Vehicle Conveyor Queue
3.10 rev 1.0

Getting Started with AutoMod AutoMod Concepts

at
oce-

amed

tax,

s.

e that
s are

ore

cess.
t to
s later

 con-
 can

tax in

nd
Source files
As mentioned in “The process system” on page 3.7, processes contain procedures th
describe the manufacturing process. You use the AutoMod syntax to write arriving pr
dures, or instructions, for loads.You write arriving procedures in a source file, which is a
text file that is part of your model.

Source files must be named with a “.m” extension.

In each of the example models for this text, the model logic is saved in a source file n
“logic.m.”

AutoMod syntax

An example of an arriving procedure for a sorting process, written using AutoMod syn
is shown below:

begin P_sort arriving procedure

use R_sorter for exponential 8 min

send to die

end

Procedures begin with the syntax begin and end with the syntax end. The process, for which
this procedure is defined, is named P_sort. The words arriving procedure after the pro-
cess name indicate that loads execute this procedure when they arrive at the proces

The second line of the procedure tells loads to use a resource named R_sorter for a tim
is exponentially distributed with a mean of 8 minutes. After using the resource, the load
sent to die (the loads leave the simulation).

The logic shown in all examples of this textbook is indented to help make the logic m
readable. Indenting is not required, but it is highly recommended.

You cannot tell by looking at this procedure how loads are being sent to the P_sort pro
Loads might be sent to this process from a creation specification, or they may be sen
P_sort from another procedure. You will learn more about sending loads to procedure
in this textbook.

AutoMod Syntax Help

This textbook discusses basic AutoMod syntax requirements as you learn about new
cepts. However, if you need help remembering how to write a certain command, you
consult the AutoMod Syntax Help while writing your logic.

The AutoMod Syntax Help contains diagrams that show the required and optional syn
the AutoMod language, and the order in which syntax must appear.

To open the help system from within the AutoMod software:

Step 1 From the Help menu in the Work Area window, select Syntax Help. The AutoMod Syntax
Help opens.

To open the help system from outside the AutoMod software:

Step 1 From the Start menu, select AutoMod 9.1 (Student Version) > Documentation > Help >
AutoMod Syntax. The index for the AutoMod Syntax Help opens. Use the Contents a
Index tabs to locate a topic.

Note
Important

▲!

ote
Note
✎

ote
Help
8

rev 1.0 3.11

AutoMod Concepts Getting Started with AutoMod

ven-
sing
d

vents
as a
se
Entity naming conventions

In the logic you have seen so far, the names of entities have always begun with a prefix that
consists of a capital letter followed by an underscore (for example, P_sort and R_sorter).
Like the system naming conventions discussed previously (see “System naming con
tions” on page 3.8), it is important to use conventions when naming model entities. U
naming conventions makes it easier for you and others to understand your model an
ensures consistency between models.

Because AutoMod syntax is always lowercase, using capital letters in entity names pre
you from accidentally using a keyword, which is a reserved word in AutoMod syntax,
name. We recommend using the following prefixes when naming entities (each of the
entities is discussed later in this textbook):

Prefix Entity type

A_ Attribute

B_ Block

C_ Counter

F_ Function

L_ Load type

LBL_ Label

OL_ Order list

P_ Process

Q_ Queue

R_ Resource

RC_ Resource cycle

S_ Subroutine

T_ Table

V_ Variable
3.12 rev 1.0

Getting Started with AutoMod AutoMod Concepts

s
s are

fining
riting

logic
 first,
m pal-

n you
 built

ion to

rrors

ed to
 con-

ber to
Using BEdit

BEdit is the built-in text editor in which you write and edit logic in AutoMod models. In
order for your model to work correctly, you must both write logic and define the entities that
are used in the logic. You can perform these two actions in either order; you can either define
entities first and then reference them in logic, or you can write logic that uses undefined enti-
ties, then define the entities when you save and quit the source file.

BEdit prompts you to define all undefined entities when you save and quit a source file. For
example, if you created a new model and typed the P_sort arriving procedure shown in
“AutoMod syntax” on page 3.11 in BEdit, you would be prompted to define the proces
P_sort and the resource R_sorter when you saved the source file, because the name
unrecognized syntax.

The order in which you do these two steps is up to you. Referencing an entity before de
it means that you do not need to remember what you named an entity when you are w
the model logic.

However, you may want to define an entity and place its graphics before writing your
so that you can see a graphical layout of the system as you work. If you define entities
you can look up the name of an entity that you created earlier (from the Process syste
ette) by using the Entity Help to bring up a list of all defined Process system entities.

To open the Entity Help, select Entity Help from the Help menu in BEdit.

You may find that there are times when you do the steps in one order and times whe
do them in the other order. You will develop a personal style of working after you have
several models on your own.

When you save and close a file in BEdit, the software checks for syntax errors in addit
prompting you to define any undefined entities. If the model logic contains any syntax
errors, a window opens with an explanation of the error. You must resolve all syntax e
before you can save and quit the editor.

If you want to quit the editor without correcting an error (for example, because you ne
check the name of an entity in a movement system), you can comment the procedure
taining the error (see “Commenting model logic” on page 2.25). Commented logic is not
checked for errors. When you later return to the source file to correct the error, remem
remove the comment markers so that the logic is used when you run the simulation.

ote
Help
8

ote
Tip

☞

rev 1.0 3.13

AutoMod Concepts Getting Started with AutoMod

els
 soft-

ow:

elp
Submitting exercise solutions
If you purchased this textbook for use in a simulation class, you may be required to submit
your solutions to exercises at the end of each chapter to an instructor. In later chapters, exer-
cises are solved by creating or editing an AutoMod model. We will discuss two methods for
submitting exercise solutions:

• Archiving a model in the Zip file format
• Printing the model logic

Archiving a model in the Zip format

Archiving your solution models in the Zip file format allows you to compress your mod
so that they can be submitted on a diskette or emailed to your instructor. The AutoMod
ware includes a utility for easily creating a zip file containing your solution model.

To compress a model into a Zip file:

Step 1 Export the model from within the AutoMod software.

Step 2 Open the Model Zip utility by selecting AutoMod 9.1 (Student Version) > Utilities >
Model Zip from the Start menu. The Model Zip Archiver window opens, as shown bel

Model Zip Archiver

Step 3 In the Model drop-down list, select the model you want to submit or click Browse to locate
the desired model.

Step 4 Click Archive. The Zip file is created and saved in the model directory.

You can now copy the Zip file to a diskette or email the file to your instructor.

Additional information about using the Model Zip Archiver can be accessed from the H
menu in the Model Zip Archiver window.

Select a model in the
Model drop-down list

Click Archive to create
the zip file

ote
Help
8

3.14 rev 1.0

Getting Started with AutoMod AutoMod Concepts

e to
 and

 the
ven-
ions to
Printing the model logic

Printing the logic for a model allows you to submit a printout of your model’s source fil
an instructor. You can print a model’s logic by first saving your source file as a text file
then printing the text file from any text editor, such as Notepad or WordPad.

To print the logic for a model:

Step 1 Open the model.

Step 2 Edit the model’s source file. The file is opened in BEdit.

Step 3 From the File menu, select Save As. The Save window opens.

Step 4 Navigate to the location where you want to save the file.

Step 5 Name the file with a .txt extension (for example, “johndoe02_1.txt”).

Step 6 Click Save. A text file containing the model logic is saved in the defined location.

Step 7 Open the text file in a text editor and print the file.

Summary
This chapter provides an overview of some of the basic concepts necessary for using
AutoMod software, including systems, loads, territories, source files, and naming con
tions. This chapter also discussed methods for submitting your chapter exercise solut
an instructor. These concepts are used throughout the rest of this textbook.
rev 1.0 3.15

AutoMod Concepts Getting Started with AutoMod

?

 with-
Exercises

Exercise 3.1

Answer the following questions:

1. What is the difference between saving and exporting a model?
2. What is the difference between opening and importing a model?
3. How many process systems can a model have?
4. Can a model have more than one conveyor system?
5. Can a person carrying products from one location to another be modeled using a path

mover system?
6. What is the limit to the number of processes in a model?
7. Why would you name a process with the prefix P_?
8. What is the correct extension of an AutoMod source file?
9. How many examples of the “use” action are provided in the AutoMod Syntax Help
10. Is P_init a word that is reserved syntax in the AutoMod language?
11. Can loads be magenta?
12. Can loads be longer than they are wide?
13. In what territory do loads begin?
14. Is it possible to move from the territory of a queue to the territory of Space?
15. Can a load move from the territory of Space to the territory of a conveyor system

out first moving into the territory of a queue?
3.16 rev 1.0

Getting Started with AutoMod Introduction to AutoMod Syntax

.. 4.9

.. 4.1

.. 4.12

. 4.12

. 4.13
.. 4.13

4.14

.... 4.14

... 4.1

... 4.15

.... 4.15

. 4.16

. 4.17

... 4.1
. 4.19
Chapter 4

Introduction to AutoMod Syntax

Example 4.1: A two-process model.. 4.4
Logic for example model 4.1 .. 4.4

Arriving procedures.. 4.5

The wait action .. 4.5

Distributions .. 4.5
Exponential distribution .. 4.6
Normal distribution ... 4.7
Triangular distribution .. 4.8
Uniform distribution.. 4.9

Calculating a uniform distribution’s mean and offset..
Constant distribution ...0

Units of time measurement... 4.10

Obtaining the current simulation time.. 4.10

Performing mathematical calculations in logic .. 4.11

The print action ... 4.12
Printing constant strings ..
Printing a load’s ID number and load type ..
Printing the result of a mathematical calculation ...

Rounding printed values ..
Printing to a file... 4.14

Printing to a file in the model’s archive directory ...

The send action .. 4.14
Sending loads to a process ..
Sending loads to die ...4

Creating example model 4.1 ... 4.15
Creating a new model...
Creating the process system ..
Writing the model logic ...

Defining unknown entities..
Creating new loads...8

Limiting the number of loads created ...
rev 1.0 4.1

Introduction to AutoMod Syntax Getting Started with AutoMod
Defining the length of a simulation ...4.20
Displaying process system statistics ..4.20

Summary ..4.21

Exercises ...4.22
Exercise 4.1..4.22
Exercise 4.2..4.22
Exercise 4.3..4.22
Exercise 4.4..4.23
Exercise 4.5..4.23
Exercise 4.6..4.24
4.2 rev 1.0

Getting Started with AutoMod Introduction to AutoMod Syntax
Chapter 4

Introduction to AutoMod Syntax

This chapter presents the AutoMod simulation language in more detail. The chapter intro-
duces the distributions available for generating random numbers in the AutoMod software,
and the syntax for using distributions in processes. The chapter also discusses syntax for
writing procedures, defining time delays, getting time values from the simulation clock,
printing information, and sending loads to processes. After learning basic AutoMod syntax,
you will recreate the example model in this chapter.
rev 1.0 4.3

Introduction to AutoMod Syntax Getting Started with AutoMod

 The

ocess
el is

nder
Example 4.1: A two-process model
Example model 4.1 is a very basic manufacturing system that can be modeled in two pro-
cesses. In this hypothetical facility, loads are created with an interarrival time that is expo-
nentially distributed with a mean of 12 minutes. Loads first go to a sorting process, where
each load is sorted for a time that is uniformly distributed between 8 and 12 minutes. The
sorted loads then go to a processing station that processes loads in three steps for the amount
of time shown in the table below:

After the unloading step, loads leave the system.

In the model, after each load is sorted but before it travels to the processing station, a mes-
sage is printed to the Message window that indicates the load’s ID number and type.
current simulation time is also printed whenever a load leaves the system.

The model is defined to run for one eight-hour shift.

Logic for example model 4.1

Recall that the logic in an AutoMod model is executed by loads. Loads are sent to a pr
and execute that process’ arriving procedure. The logic to simulate the example mod
shown below:

begin P_sort arriving procedure /* All procedures start with begin */

wait for uniform 10, 2 min /* Delay load for 8 to 12 minutes */

print this load “ was just sorted.” to message

/* Load ID and text are printed to the Message window */

send to P_procstation /* Sends load to another process */

end /* All procedures end with an end */

begin P_procstation arriving /* The word “procedure” is optional */

wait for 100 sec /* Time units (seconds) are specified */

wait for uniform 8, 5 min /* Delay load for 3 to 13 minutes */

wait for 20 /* Default time units are seconds */

print this load “ left at ” (absolute clock/3600) as .2 “ hours.”
to message

/* Arithmetic operations can be performed in many places */

send to die /* The load leaves the system */

end

A detailed explanation of the example model’s logic is provided throughout the remai
of this chapter.

Step Time

1 - Preparation Constant 100 seconds

2 - Processing Uniformly distributed between 3 and 13 minutes

3 - Unloading Constant 20 seconds
4.4 rev 1.0

Getting Started with AutoMod Introduction to AutoMod Syntax

ndom
eed to

 load
pend

 gener-

tion.
Arriving procedures
An arriving procedure is a set of instructions at a process that tell loads what to do during
that operation. Arriving procedures are performed as soon as a load arrives at the process.

All procedures begin with the syntax begin and end with the syntax end. The statement

begin P_sort arriving procedure

includes the name of the procedure, in this case it is P_sort, and the syntax arriving pro-
cedure to identify the type of procedure that is being defined.

The syntax procedure is optional, so begin P_sort arriving is the same as begin P_sort
arriving procedure.

Loads in example model 4.1 are sent to two processes: P_sort and P_procstation. An arriving
procedure is defined for each process.

The wait action
Example model 4.1 simulates the length of time that loads are sorted and processed. The
delays are modeled in the P_sort and P_procstation arriving procedures using the wait
action.

The wait action causes a load to pause for a specific period of time. The first wait action in
the example model is:

wait for uniform 10, 2 min /* Delay load for 8 to 12 minutes */

The action causes the load to delay for a uniformly distributed random time between 8 and
12 minutes, all values being equally likely. The uniform distribution is discussed in more
detail in the following section.

Distributions
One of the challenges of simulation is determining how to correctly model events that occur
randomly in the real world. “Input data” on page 1.18 discusses methods of handling ra
input data. The examples and exercises in this textbook provide the information you n
model random events using standard distributions within the AutoMod software.

The system in example model 4.1 involves several random events: the time between
creations, the length of time required to sort loads, and the length of time that loads s
processing. The AutoMod software supports several distributions that can be used to
ate random numbers; this chapter discusses four of them:

• Exponential
• Normal
• Triangular
• Uniform

This chapter also discusses the constant distribution, which is a non-random distribu

ote
Tip

☞

rev 1.0 4.5

Introduction to AutoMod Syntax Getting Started with AutoMod

y den-

mean
Exponential distribution

An exponential distribution is typically used for modeling completely random events that
have high variability.

The range of an exponential distribution is all positive real numbers. The probability of data
values varies depending on the distribution’s mean, represented by in the probabilit
sity functions below:

Exponential () probability density functions

The exponential distribution has the following properties:

• 63 percent of the data values are less than the mean.
• 37 percent of the data values are greater than the mean.
• 14 percent of the data values are greater than two times than the mean.
• 5 percent of the data values are greater than three times the mean.
• 2 percent of the data values are greater than four times the mean.

The syntax for generating a random number using an exponential distribution in the
AutoMod software is:

exponential

For example, to cause a load to delay for a time that is exponentially distributed with a
of 2 minutes, you can use the wait action as follows:

wait for exponential 2 min

You can abbreviate the syntax exponential to its first letter, e. For example,

wait for e 2 min

is the same as

wait for exponential 2 min

β

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

x

f(x)

β =

β =

β = 1

β = 2

1
2

2
3

β

β

ote
Tip

☞

4.6 rev 1.0

Getting Started with AutoMod Introduction to AutoMod Syntax

in the

od

an of
Normal distribution

A normal distribution is represented by a symmetrical, bell-shaped curve. Normal distri-
butions are typically used for modeling events with limited variability (for example, pro-
cessing times and repair times). Because, in practice, many of these types of events are
described using values that are skewed rather than symmetrical, the normal distribution is
the least commonly-used of the four distributions discussed in this chapter.

The range of the normal distribution is all real numbers. Virtually all values fall between
plus or minus five standard deviations. If negative values are generated, they are automati-
cally set to zero by the AutoMod software. The probability of data values varies depending
on the distribution’s mean () and the standard deviation ().

Normal (,) probability density function

The normal curve is symmetrical about its mean, so values are equally likely to occur
interval ranging from to as they are from to .

The normal distribution has the following properties:

• 68.27 percent of the data values fall within (,).
• 95.45 percent of the data values fall within (,).
• 99.73 percent of the data values fall within (,).
• >99.99 percent of the data values fall within (,).

The syntax for generating a random number using a normal distribution in the AutoM
software is:

normal ,

For example, to cause a load to delay for a time that is normally distributed with a me
60 seconds and a standard deviation of 5 seconds, you can use the wait action as follows:

wait for normal 60, 5 sec

You can abbreviate the syntax normal to its first letter, n. For example,

wait for n 60, 5 sec

is the same as

wait for normal 60, 5 sec

µ σ

µ µ + σ µ + 2σµ - σµ - 2σ0
x

f(x)

µ σ

µ σ– µ µ µ σ+

µ σ– µ σ+
µ 2σ– µ 2σ+
µ 3σ– µ 3σ+

µ 4σ– µ 4σ+

µ σ

ote
Tip

☞

rev 1.0 4.7

Introduction to AutoMod Syntax Getting Started with AutoMod

um

Mod

mini-
u can
Triangular distribution

A triangular distribution is used to approximate any unimodal, skewed distribution that
has a bounded range. When exact data is not available, but the most likely value and rough
estimates of the minimum and maximum values can be obtained, a triangular distribution
can provide an approximation for the desired random numbers.

The probability of data values varies depending on the triangular distribution’s minim
(lower) value (L), most probable value, or mode (D), and the maximum (upper) value (U).
The range of the distribution is from L to U.

Triangular (0, 2, 10) probability density function

The syntax for generating a random number using a triangular distribution in the Auto
software is:

triangular L, D, U

For example, to cause a load to delay for a time that is triangularly distributed with a
mum value of 3 minutes, a mode of 5 minutes, and a maximum value of 10 minutes, yo
use the wait action as follows:

wait for triangular 3, 5, 10 min

You can abbreviate the syntax triangular to its first letter, t. For example,

wait for t 3, 5, 10 min

is the same as

wait for triangular 3, 5, 10 min

L = 0 D = 2
(Mode)

U = 10

0.2

f(x)

x
3.7

Median
4

Mean

ote
Tip

☞

4.8 rev 1.0

Getting Started with AutoMod Introduction to AutoMod Syntax

mean

od

an of
Uniform distribution

A uniform distribution is used when all values within the range of the distribution are
equally probable.

The values that are generated from a uniform distribution depend on the distribution’s
(m) and offset (h). The range of the distribution is from (m – h) to (m + h), as shown below:

Uniform (5,3) probability density function

The syntax for generating a random number using a normal distribution in the AutoM
software is:

uniform m, h

For example, to cause a load to delay for a time that is uniformly distributed with a me
10 minutes and an offset of 2 minutes, you can use the wait action as follows:

wait for uniform 10, 2 min

The delay has an equal probability of being any value between 8 and 12 minutes.

You can abbreviate the syntax uniform to its first letter, u. For example,

wait for u 10, 2 min

is the same as

wait for uniform 10, 2 min

Calculating a uniform distribution’s mean and offset
Often, the exercises in this textbook provide a range of values and require you to calculate
the mean and offset to use in the distribution. For example, suppose you want to delay a load
for a time that is uniformly distributed between 6 and 12 minutes.

To find the offset, subtract the minimum value from the maximum value and divide by two:

To find the mean, subtract the offset from the maximum value:

Thus, the syntax for delaying the load is defined as:

wait for uniform 9, 3 min

f(x)

x

0.17

0
m - h = 2 m = 5 m + h = 8

ote
Tip

☞

12 6–()
2

------------------- 3=

12 3– 9=
rev 1.0 4.9

Introduction to AutoMod Syntax Getting Started with AutoMod
Constant distribution

A constant distribution is used when a constant time value is needed to represent a single,
recurring event. For example, you may wish to model the morning break for a typical factory
worker as a constant value of 15 minutes.

Unlike the other distributions, the syntax for using a constant distribution consists only of
the constant value (you do not need to type the name of the distribution). For example, to
cause a load to delay for a constant time of 100 seconds, you can use the wait action as fol-
lows:

wait for 100 sec

Units of time measurement
The AutoMod software supports several units of time measurement:

You can use any of these units of time measurement with the wait action to specify the
length of the time delay. For example, the syntax

wait for 5 hr

causes the load that executes the action to wait for 5 hours.

The default time unit is seconds. Therefore, if you do not specify any units of time measure-
ment, the delay is in seconds. For example, the syntax

wait for 5

causes the load that executes the action to wait for 5 seconds.

Obtaining the current simulation time
Example model 4.1 prints a message containing the current simulation time whenever a load
leaves the system. You can access the current simulation time in model logic by using the
syntax absolute clock, which provides the simulation time in seconds (for example
532.09).

The syntax absolute clock can be abbreviated as ac.

AutoMod syntax Time unit description

sec seconds (default)
min minutes
hr hours
day days

ote
Tip

☞

4.10 rev 1.0

Getting Started with AutoMod Introduction to AutoMod Syntax
Performing mathematical calculations in logic
The AutoMod software supports the standard arithmetic operators for performing mathe-
matical calculations, as shown in the table below:

You can perform a mathematical calculation anywhere in the model logic that a numeric
value can be used. The order in which operations are performed follows the standard rules
of operator precedence (multiplication, division, and modulo division have a higher prece-
dence than addition and subtraction). You can use parentheses to cause operations to be per-
formed in an order other than the default. For example,

(2 + 6) * 8

evaluates to 64, whereas

2 + 6 * 8

evaluates to 50.

In example model 4.1, the syntax

(absolute clock/3600)

causes the current simulation time to be divided by 3600, which converts the time value
from seconds to hours (there are 3600 seconds in an hour).

Mathematical calculations are often used when converting time values. For example, to
delay loads for a time that is exponentially distributed with a mean of 3 minutes 16 seconds,
you can use the following syntax to convert the minutes to seconds:

wait for e (3*60)+16 sec

Arithmetic
Operator Description

– Subtraction

+ Addition

* Multiplication

/ Division

% Modulo division (the result is the absolute value
of the remainder, after integer division).
rev 1.0 4.11

Introduction to AutoMod Syntax Getting Started with AutoMod

win-

char-
 the

lt of

uto-
The print action
In example model 4.1, messages are printed to the Message window after each load is sorted
and whenever a load leaves the system. You can print messages to the Message window dur-
ing a simulation using the print action. By default, the print action prints to a file named
“modelname.print,” which is in your model directory, but you can print to the Message
dow or to another file, as explained in the following sections.

Printing constant strings

A constant string, sometimes called a literal string, is any sequence of alpha-numeric
acters enclosed in quotes. The syntax for printing the constant string “Hello world.” to
Message window is:

print “Hello world.” to message

You can print any number of constant strings in the same print action. For example,

print “This message ” “consists of 3 ” “constant strings.” to message

When typing print statements, include spaces as shown or words in the Message window
will run together.

Of course, the message above could easily be printed in one constant string. However, when
you begin printing other values (for example, mathematical calculations) in a printed mes-
sage, it will become clear why printing multiple strings is useful (see “Printing the resu
a mathematical calculation” on page 4.13 for an example).

Printing a load’s ID number and load type

Each load that is created during a simulation is assigned a load ID number. Load ID numbers
begin with 1 (for the first load in the simulation) and increment by 1 for each additional load
that is created.

You can print the ID number and type of the load that is executing an arriving procedure
using the syntax this load. In example model 4.1, the ID and type of each load that exe-
cutes the arriving procedure for process P_sort is printed to the Message window using the
following syntax:

print this load “ was just sorted.” to message

During a simulation, the following message is printed to the Message window when the first
load completes sortation:

Load 1 (L_loads) was just sorted.

The load’s ID number is “Load 1” and the load’s type is “L_loads” (the load’s type is a
matically printed in parentheses).

ote
Note
✎

4.12 rev 1.0

Getting Started with AutoMod Introduction to AutoMod Syntax
Printing the result of a mathematical calculation

You can print constant numeric values within a constant string. However, to print the result
of a mathematical calculation, the calculation must occur outside of a constant string.

For example, the syntax

print “There are 2+6 containers” to message

prints the text within the quotes exactly as it appears:

There are 2+6 containers

To perform the mathematical calculation and print the sum, the following syntax is used:

print “There are ” 2+6 “ containers” to message

Because the calculation occurs outside of the quotes, the following message is printed:

There are 8 containers

Rounding printed values
When you print a calculation involving numeric values containing decimals, the AutoMod
software prints the solution to the sixth decimal place (the solution is rounded if necessary).
For example, the syntax

print 2.0/3.0 to message

prints the following message during a simulation:

0.666667

You can control how many decimal places are printed using the syntax as followed by a dec-
imal and the number of decimal places you want to print. For example, the syntax

print 2.0/3.0 as .2 to message

prints the following message during a simulation:

0.67

The quotient is rounded to the second decimal place.

In example model 4.1, the following syntax is used to print a message whenever a load
leaves the simulation:

print this load “ left at ” (absolute clock/3600) as .2 “ hours.”
to message

When the first load leaves the simulation, the following message is printed:

Load 1 (L_loads) left at 0.43 hours.

The time value is rounded to the second decimal place.
rev 1.0 4.13

Introduction to AutoMod Syntax Getting Started with AutoMod

ol-

ion.

ion.

le.
e loca-

ntax
y
Printing to a file

You can print to a file during a simulation by replacing the syntax to message with the syn-
tax to followed by the path and filename of the destination file, enclosed in quotes.

For example to print “Hello world.” to a file named “Hello.txt” on your C drive, use the f
lowing syntax:

print “Hello world.” to “C:/Hello.txt”

Use forward slashes “/” when specifying a path to the destination file.

If the file Hello.txt does not exist on your C drive, the file is created during the simulat
If the file already exists, the file is replaced during the simulation.

The file created by AutoMod is always an ASCII text file, but you can give it any extens
For example, you can name it .dat for data or .rep for report.

Printing to a file in the model’s archive directory
It is often useful to print to a file in the model’s archive (.arc) directory. Printing to the
model’s archive directory is advantageous because it makes your model more portab
Because you are using a relative path, you do not need to worry about changing the fil
tion if you run the model on a different computer.

To print to a model’s archive directory, use “arc/” as the file path. For example, the sy
for printing “Hello world” to a text file named “Hello.txt” in the model’s archive director
is shown below:

print “Hello world.” to “arc/Hello.txt”

The send action
The send action is used to send loads from one process to another. The send action can also
be used to remove loads from a simulation.

Sending loads to a process

To send a load to a process, use the syntax send to followed by the name of the process to
which you are sending the load.

For example, in example model 4.1, loads are sent from process P_sort to process
P_procstation using the following syntax:

send to P_procstation

When the send action is executed, the load leaves process P_sort, enters process
P_procstation, and begins executing the arriving procedure for the new process.

Sending loads to die

When loads have completed processing, you can remove them from a simulation using the
following syntax:

send to die

Example model 4.1 uses this syntax to remove loads that have completed processing in pro-
cess P_procstation.

Note
Important

▲!
4.14 rev 1.0

Getting Started with AutoMod Introduction to AutoMod Syntax

auto-
_1, but

lowing:

d
Creating example model 4.1
Now that you are familiar with the logic in example model 4.1, you are ready to create the
example model in the AutoMod software using the following steps:

Step 1 Create a new model.

Step 2 Create the process system.

Step 3 Write the model logic.

Step 4 Create new loads.

Step 5 Define the length of the simulation.

Step 6 Run the model.

Each of these steps is discussed in detail in the following sections.

Creating a new model

To create a new model, do the following:

Step 1 Open the AutoMod software. The Work Area window opens.

Step 2 From the Model menu, select New. A navigation window opens.

Step 3 Navigate to an empty directory in which you want to store the model.

You can create a new directory by clicking in the navigation window.

Step 4 In the File Name text box, type “examp41” and click Save. The new model is created.

Model names cannot contain special characters, except for underscores. A period is
matically added before the extension. For example, you can name a model example4
not example4.1.

You are now ready to create the process system.

Creating the process system

Every model must contain a process system. To create the process system, do the fol

Step 1 Select New from the System menu. The Create a New System window opens.

Create a New System window

Step 2 In the System Name text box, type “proc” and click Create. The process system is create
and the Process System palette appears.

The next step is to write the model logic in a source file.

ote
Tip

☞

Note
Important

▲!
rev 1.0 4.15

Introduction to AutoMod Syntax Getting Started with AutoMod
Writing the model logic

To write the model logic, you must define a source file:

Step 1 Click Source Files on the Process System palette. The Source Files window opens.

Step 2 Click New. The Define a Source File window opens.

Step 3 In the Name text box, type “logic.m” and click Edit. The BEdit window opens.

Source files must end in a .m extension.

Step 4 Type the logic shown below:

begin P_sort arriving procedure /* All procedures start with begin */

wait for uniform 10, 2 min /* Delay load for 8 to 12 minutes */

print this load “ was just sorted.” to message

/* Load ID and text are printed to the Message window */

send to P_procstation /* Sends load to another process */

end /* All procedures end with an end */

begin P_procstation arriving /* “procedure” syntax is optional*/

wait for 100 sec /* Time units (seconds) are specified */

wait for uniform 8, 5 min /* Delay load for 3 to 13 minutes */

wait for 20 /* Default time units are seconds */

print this load “ left at ” (absolute clock/3600) as .2 “ hours.”
to message

/* Arithmetic operations can be performed in many places */

send to die /* The load leaves the system */

end

When you are finished typing the logic, you are ready to save the source file and define the
model’s entities.

Note
Important

▲!
4.16 rev 1.0

Getting Started with AutoMod Introduction to AutoMod Syntax

ist, so
ook).

ens,

Edit

rrors,
kes
u.

gic.
Defining unknown entities
When you save and quit a source file, BEdit prompts you to define entities that have been
named in the model logic, but which have not been defined. In this model, we need to define
the processes P_sort and P_procstation. To define the processes, do the following:

Step 1 Select Save and Quit from the File menu in BEdit. The Error Correction window opens, indi-
cating that P_sort is undefined.

Error Correction window

Step 2 Select Define. The “Change to” field changes to the “Define as” drop-down list.

Step 3 You want to define P_sort as a process, which is the type selected in the drop-down l
click Define As. The Array Size window opens (arrays are discussed later in this textb

Step 4 Click OK to define the process with an array size of 1. The Error Correction window op
indicating that P_procstation is undefined.

Step 5 Repeat steps 3 and 4 to define P_procstation as a process. When you are finished, B
closes.

If you get any other error messages, they are caused by typing errors. To fix typing e
click the Return To Edit button in the Error Correction window to return to fix the mista
on the lines specified. When you are finished, select Save and Quit from the File men

Step 6 Click OK to close the Define a Source File window. You have now defined the model lo

Step 7 Export your model before continuing.

ote
Note
✎

rev 1.0 4.17

Introduction to AutoMod Syntax Getting Started with AutoMod

d cre-
n.

c

ed
Creating new loads

Now that you have defined two processes and their arriving procedures, you are ready to
define a new load type in the model. In the AutoMod software, you can define as many load
types as necessary to distinguish between different types of parts in a system. In this model,
we want to process only one type of load in the system.

When you define a load type, you can also define a load creation specification that defines
the number of loads of that type that are created during a simulation and the time between
load arrivals. The load creation specification also specifies which process the loads execute
first.

To define the load type and load creation specification, do the following:

Step 1 Click Loads on the Process System palette. The Loads window opens.

Step 2 To the right of Load Types, click New to define a new load type, as shown in the window
below:

Loads window

The Define A Load Type window opens.

Step 3 In the Name text box, type “L_loads”.

You have now defined a new load type named L_loads. Now you need to define a loa
ation specification to indicate the quantity and arrival rate of the loads in the simulatio

Step 4 To define the load creation specification, click New Creation. The Define a Creation Spe
window opens.

In this model, loads are created with an interarrival time that is exponentially distribut
with a mean of 12 minutes.

Step 5 Select Exponential in the Distribution drop-down list.

Click New to create a new load type
4.18 rev 1.0

Getting Started with AutoMod Introduction to AutoMod Syntax

n

imula-

ne

g the

. By
n

nite

 run
con-
 all
ill get
nter-
odel.
Step 6 In the Mean text box, type “12” and select minutes in the time units drop-down list, as show
below:

Define a Creation Spec window

Step 7 Click the First Process button to define the first process that loads execute during a s
tion. The Pick A First Process window opens.

Step 8 Select P_sort in the list and click OK. The name of the first process is displayed in the Defi
a Creation Spec window.

Step 9 Click OK to close the Define a Creation Spec window, then click OK to close the Define A
Load Type window. You have now created a new load type that will be generated durin
simulation.

Limiting the number of loads created
When you are defining a load creation specification, you can define a generation limit,
which controls how many loads of that specification are created during the simulation
default, loads for each specification are created continuously throughout the simulatio
(there is no limit), so the generation limit is Infinite. However, if you want to create a fi
number of loads of a certain type, set the generation limit to the desired value.

Generation limits are useful for controlling a simulation’s length. Rather than specify a
length, you can limit the simulation using a generation limit. If you do not define a run
trol and you limit the number of loads generated, the model stops automatically once
loads have finished their process procedures. If you do not define a run control, you w
a warning at runtime that no run control is defined and the model will not stop without i
vention, but you can ignore the message because the generation limit will stop the m

The time between load arrivals is
exponentially distributed

The mean time between arrivals
is defined as 12 minutes

ote
Tip

☞

rev 1.0 4.19

Introduction to AutoMod Syntax Getting Started with AutoMod

,

ves the

s

r
ber

either
the def-
e 2.15
Defining the length of a simulation

Before running your model, you need to define the length of the simulation, which for this
model is one eight-hour shift. To define the run length, do the following:

Step 1 Click Run Control on the Process System palette. The Run Control window opens.

Step 2 Click New to define a new snap. The Define Snap Control window opens.

Step 3 In the Snap Length text box, type “8” to define an eight-hour snap, as shown below:

Define Snap Control window

Step 4 Click OK to close the Define Snap Control window.

You have now created your first model in the AutoMod software.

Step 5 Export the model.

Step 6 From the Model menu, select Run. Build the model. When the Simulation window opens
continue the model.

Displaying process system statistics

Step 1 As the simulation runs, watch the Message window. The print statements you wrote are
sending messages to the window each time a load is sorted and each time a load lea
system.

Step 2 At the end of the run, select Statistics Summary from the Processes menu. The Statistic
Summary window opens, as shown below:

Process Statistics window

You can calculate the number of loads that completed each process by subtracting the Cu
statistic (the number of loads currently in the process) from the Total statistic (the num
of loads that were sent to the process). In this model, there are no loads currently in
process, so the Total and the number completed are the same (31 loads). To review
initions of these statistics, see “Displaying process system summary statistics” on pag
of the “Using the Software” chapter.
4.20 rev 1.0

Getting Started with AutoMod Introduction to AutoMod Syntax
Summary
After completing this chapter, you know some of the basic syntax for writing model logic.
You know how to use the wait, print, and send actions, and you are familiar with several
distributions. You also learned the basic steps for creating a model in the AutoMod software:

Step 1 Create a new model.

Step 2 Create the process system.

Step 3 Write the model logic and define the necessary entities.

Step 4 Create new loads.

Step 5 Define the length of the simulation.

Step 6 Run the model.
rev 1.0 4.21

Introduction to AutoMod Syntax Getting Started with AutoMod

 logic
Exercises

Exercise 4.1

Create a new model to simulate the following sorting operation:

Loads are created with an interarrival time that is exponentially distributed with a mean of
10 minutes. The time required to sort each load is triangularly distributed with a minimum
value of 7 minutes, a most-likely value of 8 minutes 22 seconds, and a maximum value of
10 minutes 22 seconds. After sorting, loads leave the system.

Run the model for eight hours.

What was the maximum number of loads in the sorting operation at any one time?

Exercise 4.2

Copy your solution model for exercise 4.1 to a new directory. Edit the copied model so that
the load ID, the load type, and the simulation clock time are printed to the Message window
each time a load arrives or departs. Use the following format:

Time: <x.xx> hours -- load arriving: <load ID (load type)>

and

Time: <x.xx> hours -- load departing: <load ID (load type)>

Time values are rounded to the second decimal place.

Exercise 4.3

Copy your solution model for exercise 4.2 to a new directory. Edit the copied model and
change the printed message when loads depart to each of the following:

a) print this load “ left at ” (absolute clock/3600) as .3 “ hours” to message
b) print this load “ left at ” absolute clock as .1 “ seconds” to message
c) print absolute clock to message

When you make the changes for b) and c), comment out your previous work so that the
is still in the source file.

Run the model after each change to determine how the new print statements differ.

ote
Note
✎

4.22 rev 1.0

Getting Started with AutoMod Introduction to AutoMod Syntax
Exercise 4.4

Create a new model to simulate the following sorting operation:

Loads simultaneously enter a sorting operation with interarrival times that are determined
by three different distributions, shown below:

The time required to sort each load is a constant 10 minutes. After sorting, loads leave the
system.

Run the model for 1000 hours.

What was the maximum number of loads in the sorting operation at any one time?

Exercise 4.5

Create a new model to simulate the following process:

Loads are created with an interarrival time that is exponentially distributed with a mean of
4 minutes. The loads go through four sequential processes that take the following amounts
of time:

Run the model for 100 days.

What was the average number of loads in each process?

Load arrival # Time between arrivals

1 exponential with a mean of 15 minutes

2 exponential with a mean of 20 minutes

3 exponential with a mean of 30 minutes

Process # Time in seconds

1 normal 150, 10

2 triangular 120, 200, 240

3 exponential 180

4 constant 160
rev 1.0 4.23

Introduction to AutoMod Syntax Getting Started with AutoMod

age

ogram

pread-
eate a

00
m.)

ect
Exercise 4.6

Create a new model that generates loads according to the following creation rate, then ana-
lyze the interarrival times using a spreadsheet package such as Excel:

Create 1001 loads with an interarrival time that is normally distributed with a mean of 60
minutes and a standard deviation of 10 minutes.

To limit the number of loads that are created during the simulation, define the load creation
specification using a generation limit (see “Limiting the number of loads created” on p
4.19 for more information).

Print the arrival time, in minutes, to a text file as each load arrives.

In the spreadsheet, calculate the 1000 interarrival times. Use your spreadsheet’s hist
feature to generate a histogram of the interarrival times.

Steps for creating a histogram in Excel are included below: (If you are using another s
sheet package, consult that package’s documentation for information about how to cr
histogram.)

Step 1 Import the file you created into Excel.

Step 2 Calculate the time between arrivals (interarrival times).

Step 3 In an empty column, define a column of numbers that begins with 20 and increments to 1
in intervals of 10. (These values are used later to define the bin range for the histogra

Step 4 From the Tools menu, select Add-Ins. The Add-Ins window opens.

Step 5 If it is not already selected, select Analysis ToolPak, then click Ok. You have now added
histogram functionality to your spreadsheet.

Step 6 From the Tools menu, select Data Analysis. The Data Analysis window opens.

Step 7 Select Histogram, then click Ok. Use the window to create the histogram (be sure to sel
Chart Output to create a histogram chart).

ote
Tip

☞

ote
Tip

☞

4.24 rev 1.0

Getting Started with AutoMod Process System Basics

. 5.16
5.17
.. 5.19
.. 5.20
... 5.21
... 5.23

... 5.27

. 5.28
...
.. 5.30
..
... 5
.. 5.32
Chapter 5

Process System Basics

Example 5.1: Producing widgets at Acme, Inc. .. 5.4
Running the example model.. 5.5

Resources.. 5.6
Claiming and releasing resources.. 5.6

Determining which actions to use when claiming resources 5.7
Defining a resource ... 5.8

Placing resource graphics .. 5.10
Importing graphics.. 5.11

Queues .. 5.12
Moving loads into queues ... 5.12

Separating waiting and processing queues .. 5.12
Defining a queue ... 5.13

Placing queue graphics .. 5.13

Modeling resource unavailability .. 5.16
Modeling down times using logic ... 5.16

Using “dummy” loads to execute down time processes ...
Writing repeating logic to model down times..

Modeling resource down times using resource cycles ..
Replacing the P_down arriving procedure...
Creating a resource cycle ..
Attaching a resource cycle to a resource...

Verifying down times for resources... 5.24

Creating business graphs to view statistics ... 5.25
Displaying a business graph...

Interpreting reports .. 5.28
Version and clock information...
Process statistics... 5.29

Calculating the average time in system ...
Queue statistics.. 5.31
Resource statistics ...32

Determining how many loads a resource has completed...
rev 1.0 5.1

Process System Basics Getting Started with AutoMod
Scheduling down times for when a resource is idle ..5.33
Example 5.2: Modeling a planer..5.33
Defining a resource cycle that delays until idle...5.34

Attaching the resource cycle to the planer ...5.36
Setting an alarm to pause the simulation at a specific time..5.37

Modeling similar processes using arrayed entities ...5.38
Example 5.3: Grinding operation ..5.39

Modeling example 5.3 using individual entities...5.39
Using procindex to align arrayed entities ..5.40
Writing conditional syntax using if...then...else ..5.41
Creating example model 5.3 ..5.42

Placing graphics for arrayed entities ..5.43
Defining the load creation specification...5.44
Defining the run control ...5.44
Running the example model ...5.45

Determining when to use arrays versus multiple-capacity resources5.46

Selecting entities alternately using the nextof distribution ..5.47
Using the nextof distribution with arrayed entities..5.47

Summary ..5.48

Exercises ...5.49
Exercise 5.1..5.49
Exercise 5.2..5.49
Exercise 5.3..5.50
Exercise 5.4..5.51
Exercise 5.5..5.52
Exercise 5.6..5.52
Exercise 5.7..5.53
Exercise 5.8..5.53
Exercise 5.9..5.54
Exercise 5.10..5.55
5.2 rev 1.0

Getting Started with AutoMod Process System Basics

sing
 how
here

be used

 syn-
n
Chapter 5

Process System Basics

In chapter 4, “Introduction to AutoMod Syntax,” you modeled load sortation and proces
operations by creating time delays in arriving procedures. In this chapter, you will learn
to create resources (people or machines that process loads) and queues (locations w
loads await processing). This chapter also discusses resource down times, which can
to model machine failures or operator breaks.

In addition to learning about new process system entities, you will learn new AutoMod
tax, including how to select alternating values from a distribution. Finally, you will lear
how to interpret AutoMod reports.
rev 1.0 5.3

Process System Basics Getting Started with AutoMod
Example 5.1: Producing widgets at Acme, Inc.
Example model 5.1 demonstrates a simple factory that produces widgets. The factory pro-
duces widgets in three steps. In the first step, widgets are cut and shaped by an automatic
lathe. In the second step, an operator drills each widget using a drilling machine. In the last
step, the operator inspects each drilled widget for defects.

Widget blanks are started in the factory every 10 minutes. The blanks move into an infinite-
capacity queue, where they wait to be cut and shaped. The lathe can cut and shape two
blanks at the same time. The amount of time required to cut and shape each blank is expo-
nentially distributed with a mean of 18 minutes.

After they have been cut and shaped, widgets are placed in another queue that can hold a
maximum of six widgets at a time. The widgets wait in this queue until the drilling machine
becomes available. An operator sets up the machine for each new widget. The time required
for the operator to set up each widget for drilling is exponentially distributed with a mean of
2 minutes. The drill then runs (without operator assistance) for a time that is exponentially
distributed with a mean of 4 minutes. Finally, the operator removes the completed widget
from the drill. The removal takes a time that is exponentially distributed with a mean of 55
seconds.

After drilling, completed widgets are placed in an infinite-capacity queue to await inspec-
tion. When not setting up the drill, the operator of the drill inspects completed widgets for
defects. Inspection takes a time that is exponentially distributed with a mean of 50 seconds.

The operator takes a 30 minute lunch break that occurs four hours into the shift. The operator
takes two additional breaks per day. Both breaks last 15 minutes and occur two hours into
the shift and six hours into the shift, respectively.

The factory operates 7 days a week, 24 hours a day. Operators are scheduled in 8-hour shifts.
In addition, the drilling machine randomly breaks down according to an exponential distri-
bution with a mean of 200 minutes. The repair time is also exponentially distributed with a
mean of 10 minutes.

You will simulate this system for 100 days of operation.
5.4 rev 1.0

Getting Started with AutoMod Process System Basics

 inspec-
s where
present

 in a
Running the example model

The directory for example model 5.1 contains both a base and final version of the model.
The final version is a completed model that simulates the facility as it is described. The base
version is a starting point from which you can add to the model throughout the chapter,
learning how to define resources, queues, and so on. To begin, you will run the final version
to view the system while it operates. Then you will edit the base version and define many of
the components of the model to learn how to create resources and queues.

To become familiar with the processing of loads in the system:

Step 1 Import and run a copy of the final version of example model 5.1.

Step 2 To turn solids on, press “w”. The model is laid out as shown below:

Example model 5.1 layout

The solid shapes represent resources that process loads (the lathe, the drill, and the
tion operator). The other boxes represent queues. The large queues are waiting area
loads accumulate while waiting to be processed by a resource. The smaller queues re
areas where loads are located while they are being processed.

Step 3 Quit the model.

After observing the system in operation, you are ready to learn how to use resources
simulation.

Q_lathe_wait

Q_lathe R_lathe

Q_drill_wait

Q_inspect_wait

Q_drill R_drill

Q_inspect R_inspect
rev 1.0 5.5

Process System Basics Getting Started with AutoMod

 role in
oving

ystem,

-
me, for
ity as

 con-
nd an
ssed

rma-

he
 a load
ilable.

en

,

 a
Resources
Resources represent machines, operators, tools, fixtures, and other entities that process the
items moving through the system (which are modeled as loads).

A person can be modeled using either resources or loads, depending on the person’s
the real system. If the person is an operator or attendant that services other entities m
through the system, model the person using a resource. If a person is serviced in a s
model the person as a load.

Resources in the AutoMod software have capacity, which is how many items they can pro
cess at the same time. A machine may be able to process more than one load at a ti
example. To allow a resource to process only one load at a time, you define its capac
one.

As in the real world, when machines break or are unavailable for processing, they are
sidered “down.” In an AutoMod model, a machine goes down when it needs service, a
operator goes down when offshift or on break. Modeling resource down times is discu
later in this chapter (see “Modeling resource unavailability” on page 5.16 for more info
tion).

Claiming and releasing resources

In the AutoMod software, loads execute the get action to claim a resource and the free
action to release a resource. The get action claims one unit of a resource’s capacity, and t
free action releases one unit of capacity. If a resource has no available capacity when
tries to claim it, the load is delayed until a unit of the resource’s capacity becomes ava

For example, the syntax:

get R_resource

wait for 10 min

free R_resource

causes a load to claim one unit of R_resource’s capacity, wait for 10 minutes, and th
release one unit of the resource’s capacity.

As an alternative to using the get, wait, and free actions, you can perform the same claim
delay, and release of a resource using a single use action, as shown below:

use R_resource for 10 min

Think of the use action as a shortcut for getting a resource, delaying, and then freeing
resource.

ote
Note
✎

5.6 rev 1.0

Getting Started with AutoMod Process System Basics
Determining which actions to use when claiming resources
The use action makes it easy to claim a resource, delay for a specified amount of time, and
then release the resource. The use action is limited, however, because a load cannot execute
any other actions in the model logic while the resource is claimed. Because of this limitation,
when loads must perform more actions than a single wait action while claiming a resource,
you must use the get and free actions to claim and release the resource.

For example, the following logic shows the drilling operation in the example model. Notice
that in this procedure, loads use two resources: the drill and the operator who sets up and
removes loads from the drill.

get R_drill /*claim the drill*/

use R_operator for e 2 min /*setup time*/

wait for e 4 min /*drill time*/

use R_operator for e 55 sec /*remove time*/

free R_drill /*now drill can be freed*/

send to P_inspect

First, a load claims the drill. While the drill is claimed, the load also claims the operator to
set up the drill. After the setup time (e 2 min), the operator is released, and the machine
drills the load. The load then reclaims the operator, who removes the load from the machine
(e 55 sec). After the removal time, both the operator and the drill are released.

While loads are claiming the drill, they must perform more than one action; consequently,
the get and free actions are used to claim and release the drill. In contrast, only a time delay
is required while loads are claiming the operator, so the use action is used to model the setup
and removal times.
rev 1.0 5.7

Process System Basics Getting Started with AutoMod

:

Defining a resource

The base model for example 5.1 does not have the lathe machine defined. Therefore, define
and place the lathe resource in a copy of the base model.

To define a resource:

Step 1 Import a copy of the base version of example model 5.1.

An attention window opens during import, indicating that there are errors in the model logic.
The errors exist because the entities required for the lathe operation are currently missing
from the model. You are going to add the necessary entities to the model, so click OK to
close the window.

Step 2 To turn solids on, press “w”.

Step 3 Click Resources on the Process System palette. The Resource window opens.

Step 4 Click New to the right of the Resources list to define a new resource, as shown below

Resources window

The Define A Resource window opens.

Step 5 In the Name text box, type “R_lathe”.

ote
Note
✎

Click New to define a new resource
5.8 rev 1.0

Getting Started with AutoMod Process System Basics

o

rce.
Step 6 In the Default Capacity text box, type “2” (the lathe can cut and shape a maximum of tw
loads at the same time).

Edit A Resource window

Step 7 Click OK to close the Edit A Resource window. You have now defined the lathe resou

Set the
capacity to 2
rev 1.0 5.9

Process System Basics Getting Started with AutoMod

sy, or
nt

-

ues

 then
Placing resource graphics
Placing a resource’s graphic allows you to visually see the state of a resource (idle, bu
down) during a simulation. Resource graphics change color depending on their curre
activity, as defined in the following table:

To place the R_lathe resource’s graphic:

Step 1 In the Resources window, select R_lathe, then click Edit Graphic. The Edit Resource Graph
ics window opens.

Step 2 Click Place.

Step 3 In the Work Area window, press and hold the mouse button; a box representing R_lathe
appears. Drag the resource graphic until it is positioned to the left of the two large que
(see the illustration below), then release the mouse button.

Placing resource R_lathe

If you need to move the resource, click Move in the Edit Resource Graphics window,
drag the resource graphic to a new location in the Work Area window.

Step 4 Click Done to close the Edit Resource Graphics window.

You have now placed the graphic for R_lathe.

Step 5 Export the model.

Resource’s activity Color

processing one or more loads green

idle (not being used by any loads) blue

down red

Drag the resource graphic so that it is
positioned to the left of the two large queues

R_lathe

Q_drill_wait

Q_inspect_wait

ote
Tip

☞

5.10 rev 1.0

Getting Started with AutoMod Process System Basics

rea

n-
Importing graphics
The student version of AutoMod includes several predefined graphics (called cell files) that
you can use to add graphical realism to your model. These instructions show you how to
import a cell file for a resource; you can also import cell files to increase the graphical real-
ism of other entities, such as loads or vehicles.

In example model 5.1, you will import a cell file of a man to use for the operator.

To import the cell file:

Step 1 In the Resources window, select R_operator, then click Edit Graphic. The Edit Resource
Graphics window opens.

Step 2 Select Import from the Shape Definition drop-down list. The Open a File window opens.

Edit Resource Graphics window

Step 3 Navigate to the /demos/amodprims directory in the installation directory.

Step 4 Select “man.cell” and click Open. The graphic of a man replaces the box in the Work A
window.

Now rotate the man so that he is facing the queue Q_inspect:

Step 5 Click Z rotate.

Step 6 Type 180 in the Z Rotate box, then press Enter. The graphic is rotated in the Work Area wi
dow.

Step 7 Click Done to close the Edit Resource Graphics window.

Select Import

Click Z
Rotate and
type 180 to
rotate the
man
rev 1.0 5.11

Process System Basics Getting Started with AutoMod

use a
 the load
lps sep-

,
s out of
 into a
f the

ea,

ned
ds

 with
ator for
tomati-

ues:
ction,

sually

chine
, both
o sep-
spend
ds
 accu-
Queues
Queues represent physical space where loads can be stored. Like resources, you can define
the capacity of queues to limit the number of loads that are allowed to wait in a queue at the
same time.

Later in this textbook, you will learn how to move loads out of queues and onto conveyors
and vehicles. Until then, loads in a simulation must always be located in a queue while wait-
ing or processing.

In the AutoMod software, queues and resources are used together to represent a piece of
equipment. A load cannot physically be on a resource, because a resource is not a territory
(see “Territories and space” on page 3.10 of the “AutoMod Concepts” chapter). Beca
load cannot be on a resource, you must use a queue on or near the resource to store
while it is being processed by the resource. Using a queue with each resource also he
arate true queue (waiting) time from processing time, as discussed below.

Moving loads into queues

Loads move in and out of queues using the move action. When a load moves into a queue
the available capacity of the queue decreases by one. Conversely, when a load move
a queue, the queue’s available capacity increases by one. If a load attempts to move
queue that has no remaining capacity, the load is delayed and must wait until a unit o
queue’s capacity becomes available before continuing.

The following logic is used in the example model to move loads into the inspection ar
simulate the inspection time, and then remove loads from the system:

begin P_inspect arriving

move into Q_inspect_wait /*limit = infinity*/

move into Q_inspect /*limit = 1*/

use R_operator for e 50 sec /*inspection time*/

send to die

end

The procedure first moves loads into the queue named Q_inspect_wait, which is defi
with infinite capacity. Therefore, loads never wait to move into the waiting queue. Loa
wait in the waiting queue until they can move into queue Q_inspect, which is defined
a capacity of one. When a load moves into queue Q_inspect, it uses resource R_oper
the required inspection time, and is then sent to die. Loads that are sent to die are au
cally removed from queue Q_inspect, freeing the capacity for another load.

Separating waiting and processing queues
Notice that in the P_inspect arriving procedure, loads move sequentially into two que
first Q_inspect_wait and then Q_inspect. The first queue is where loads wait for inspe
and the second queue is where loads are actually inspected by the operator.

In the examples and exercises in this textbook, loads that are waiting for a resource u
wait in a separate queue from the loads that are using a resource.

In most real-world systems, parts wait in a bin or rack until they can be moved to a ma
or are held by an operator for processing. Therefore, modeling two queues is realistic
graphically and statistically. By separating the waiting and processing queues, you als
arate the waiting statistics from the processing statistics. The length of time that loads
in a queue waiting for a resource is tracked separately from the length of time that loa
spend in a queue using a resource, making it easier for you to verify that the model is
rate.

ote
Note
✎

5.12 rev 1.0

Getting Started with AutoMod Process System Basics

me

ssing
their
efined

Defining a queue
You are now ready to define the waiting and processing queues for the lathe resource. Defin-
ing queues is very similar to defining resources.

To define a queue:

Step 1 Click Queues on the Process System palette. The Queues window opens.

Step 2 Click New to create a new queue. The Define A Queue window opens.

Step 3 In the Name text box type “Q_lathe_wait”.

Step 4 In the Default Capacity text box, type “i” for infinite.

Step 5 Click OK/New to define another queue.

Step 6 In the Name text box, type “Q_lathe”.

Step 7 In the Default Capacity text box, type “2” (the lathe can cut and shape two loads at the sa
time).

Step 8 Click OK to close the Define A Queue window.

You have now defined the two queues for the lathe resource.

Placing queue graphics
Placing queue graphics allows you to visually see whether loads are waiting or proce
at various places during the simulation. Queue graphics change color depending on
current contents (either no loads in the queue or at least one load in the queue), as d
in the following table:

To place the graphic for the processing queue:

Step 1 In the Queues window, select Q_lathe, then click Edit Graphic. The Edit Queue Graphics
window opens.

Step 2 Click Place.

Queue’s contents Color

One or more loads green

No loads red
rev 1.0 5.13

Process System Basics Getting Started with AutoMod
Step 3 In the Work Area window, drag the queue graphic until it is positioned to the left of the lathe
resource (see the illustration below).

Placing queue Q_lathe

Step 4 Click Done to close the Edit Queue Graphics window.

To place the graphic for the waiting queue:

Step 5 In the Queues window, select Q_lathe_wait and click Edit Graphic.

Step 6 Click Place and click to the left of Q_Lathe. It is alright to place the graphic outside of the
grid. A box representing the waiting queue appears.

Because the waiting queue has infinite capacity, make it larger than the processing queue.

Step 7 To enlarge the waiting queue, select the Scale All check box in the Edit Queue Graphics
window. Type “2” in the Scale text box, then press Enter, as shown below:

Edit Queue Graphics window

The queue graphic is scaled to 2 feet in every direction.

Drag the processing queue graphic so that it is
positioned to the left of the resource R_lathe

R_latheQ_lathe

Select Scale All

Type “2” in the Scale text box, then press Enter
5.14 rev 1.0

Getting Started with AutoMod Process System Basics
Step 8 If the queue you just placed is too close to R_lathe or is out of position, click Move in the
Edit Queue Graphics window. In the Work Area window, drag the waiting queue so that it
is positioned to the left of the processing queue, as shown below:

Placing queue Q_lathe_wait

Step 9 Click Done.

Step 10 Export and run the model.

If an Error window opens when you try to run the model, verify that you have entered the
names of the lathe resource and queues exactly as they appear in this textbook, because the
entities have been defined using names that are spelled exactly as written (names are case-
sensitive).

Step 11 Verify that loads are using the new queues and resource by watching the graphics and check-
ing the resource and queue statistics.

Step 12 When you are ready to continue, edit the model.

Drag the waiting queue graphic so that it is
positioned to the left of the processing queue

Q_lathe

Q_lathe_wait

ote
Tip

☞

rev 1.0 5.15

Process System Basics Getting Started with AutoMod

le to

elayed
ource
o

lly
sumes
 to use
ing,
ining,

ted
Modeling resource unavailability
Resources become unavailable for several reasons, which vary based on the type of resource
being modeled (a piece of equipment, an operator, and so on). Reasons that resources might
be unavailable include: failures, scheduled maintenance, off-shift periods, breaks, and
lunches. By default in AutoMod, all of these types of unavailability are modeled as down
times (resources are either “down” or “up”). A resource that is taken down is unavailab
process loads. A resource that is up is able to process loads.

When a resource is down, loads that attempt to claim the resource are automatically d
until the resource is brought up. When the resource is brought up, loads claim the res
in first-in first-out (FIFO) order (the load that has been waiting the longest is the first t
claim the resource).

If a resource is taken down while a load is using the resource, the load is automatica
delayed until the resource is brought up. When the resource is brought up, the load re
processing for the remaining processing time. For example, assume a load is required
a resource for 5 minutes. If the resource goes down 2 minutes into the load’s process
when the resource is brought up, the load still has 3 minutes of processing time rema
regardless of the length of time that the resource was down.

Resources can be taken down and brought up in two ways:

• Using logic in a procedure
• Using resource cycles

Modeling down times using logic

A load can execute the take down action in an arriving procedure to make a resource
unavailable during a simulation. After a delay, the load can execute the bring up action to
make a resource available again. For example, the syntax:

take down R_resource

wait for e 12 min

bring up R_resource

takes down resource R_resource, waits for a repair time that is exponentially distribu
with a mean of 12 minutes, and then brings up resource R_resource.

Using “dummy” loads to execute down time processes
Until now, all processes in a model have related directly to the item being manufactured or
serviced, and are therefore executed by the load being manufactured. With down time pro-
cedures, however, you cannot use the load that represents the product to control down times,
because when a resource goes down, any loads that are claiming the resource are automati-
cally delayed, and therefore could not bring the resource back up. Consequently, a process
that models resource down times should be executed by a single dummy load (a load that is
not one of the products moving through the system) that executes the take down and bring
up actions in a continuously repeating loop throughout a simulation. The dummy load
should have a generation limit of one and be sent to the process at time zero (for more infor-
mation, see “Creating a dummy load at time zero” on page 5.18).

Repeating logic can be written in an arriving procedure using the syntax while...do.
5.16 rev 1.0

Getting Started with AutoMod Process System Basics

ks in

n.

 the

sents
ak

r a 15

shift
 min-

r the

time

or

xam-
resent
Writing repeating logic to model down times
The syntax while...do indicates that as long as a condition is true, certain actions should
be executed. For example, procedure P_break models the operator’s lunch and brea
example model 5.1 using a while...do loop. In this case, the condition is while 1=1, and
because 1 is always equal to 1, the loop repeats continuously for the entire simulatio

begin P_break arriving

while 1=1 do /*do for entire simulation*/

begin

wait for 120 min /*works for 2 hours*/

take down R_operator /*first break*/

wait for 15 min /*lasts for 15 min*/

bring up R_operator /*back to work*/

wait for 105 min /*work until lunch*/

take down R_operator /*lunch time*/

wait for 30 min /*30 minute lunch*/

bring up R_operator /*back to work*/

wait for 90 min /*works for 1.5 hours*/

take down R_operator /*second break*/

wait for 15 min /*lasts for 15 min*/

bring up R_operator /*back to work*/

wait for 105 min /*work until shift ends*/

end

end

The while...do syntax is followed by a series of actions that start with begin and end with
end. The begin and end syntax defines a loop that executes as long as the condition in
while...do syntax remains true.

Look at how the operator’s down times are scheduled inside the loop. Each loop repre
one shift (all of the time delays in the loop add up to 8 hours). The operator’s first bre
occurs two hours (120 minutes) into the shift, so the first take down action occurs after a
120 minute time delay. The break lasts 15 minutes, so the operator is brought up afte
minute delay.

After the morning break, the operator works until lunch, which begins 4 hours into the
(105 minutes after the end of the morning break). Consequently, after delaying for 105
utes, the operator is taken down for lunch and brought up again after 30 minutes.

The operator’s afternoon break occurs 6 hours into the shift, which is 90 minutes afte
lunch break ends. Consequently, the next take down action occurs after a time delay of 90
minutes. The break lasts 15 minutes, so the operator is brought up after a 15 minute
delay.

The last time delay in the loop is 105 minutes, which is the amount of time the operat
works before the shift ends. The loop repeats for the next shift.

A dummy load usually remains in Space throughout the simulation, as it does in this e
ple (the load does not move into a queue or any other territory), because it does not rep
a physical item in the facility.

ote
Note
✎

rev 1.0 5.17

Process System Basics Getting Started with AutoMod
The P_break procedure is executed by a single dummy load named L_break. The creation
specification for the L_break load type has a generation limit of one (only one load of type
L_break is created during the simulation), and the load is created at time zero, as shown
below:

Creating a dummy load at time zero

The model contains a second down time procedure, named P_down, to model the drilling
machine failures. The P_down procedure is executed by a single dummy load named
L_down.

Another method for defining down times is using resource cycles, which is discussed next.

The Distribution is
constant 0 seconds

The Generation
Limit is 1
5.18 rev 1.0

Getting Started with AutoMod Process System Basics

g time
mplete

riving
Modeling resource down times using resource cycles

A resource cycle is a list of actions that control one or more resources during a simulation.
Resource cycles are an alternative to defining resource down times using arriving proce-
dures. An example resource cycle is shown below:

Resource cycle edit table

Resource cycles are defined in an edit table. The table contains three columns:

Control The Control column defines the beginning and end of a cycle (or loop) of repeating actions.

When The When column defines the times at which actions are performed. You can double-click
a cell in the When column for a list of valid keywords. (You cannot use all AutoMod syntax
in a resource cycle; only the keywords in the list are valid for resource cycles.)

Action The Action column defines one or more actions that control a resource during a simulation.
You can double-click a cell in the Action column for a list of valid actions. (You cannot use
all AutoMod syntax in a resource cycle; only the actions in the list are valid for resource
cycles.)

You can define multiple actions in the same resource cycle. For example, you could model
all the breaks in one shift in the same cycle, as long as you define the cycle’s repeatin
interval so that it is the same as the shift length (one complete cycle represents one co
shift).

The next section discusses how to create a resource cycle to replace the P_down ar
procedure for example model 5.1.

ote
Note
✎

rev 1.0 5.19

Process System Basics Getting Started with AutoMod
Replacing the P_down arriving procedure
Example model 5.1 currently uses the arriving procedure P_down to take down the drill. To
replace the procedure with a resource cycle, you must comment out the procedure, delete the
dummy load that executes the procedure, and define a resource cycle.

To comment the arriving procedure and delete the dummy load:

Step 1 Edit the logic.m source file, then highlight lines 47-55 containing the P_down arriving pro-
cedure.

Step 2 From the Edit menu, select Comment Block. Comment markers are automatically inserted
before and after the procedure, as shown in bold below:

/* begin P_down arriving

while 1=1 do

begin

wait for e 200 min /*up time*/

take down R_drill /*down time begins*/

wait for e 10 min /*down time*/

bring up R_drill /*repair finished*/

end

end */

Step 3 From the File menu, select Save and Quit.

Because the procedure is no longer used, you must delete the dummy load that is being sent
to the procedure, or you will get an error when you run the model:

Step 4 Click Loads on the Process System palette. The Loads window opens.

Step 5 Select L_down in the load types list, then click Delete. A confirmation window opens. Click
Yes to delete the load type.

You are now ready to define a resource cycle.
5.20 rev 1.0

Getting Started with AutoMod Process System Basics

p
e to
Creating a resource cycle
To create a resource cycle to model failures for the drill, do the following:

Step 1 Click Resources on the Process System palette. The Resources window opens.

Step 2 Click New to the right of the Resource Cycles list to create a new resource cycle, as shown
below:

Resources window

The New Resource Cycle window opens.

Step 3 In the Name text box, type “RC_drill” and click OK, Edit. A new resource cycle edit table
opens.

In a resource cycle, you can automatically generate actions to take down and bring u
resources by defining a resource’s mean time between failures (MTBF) and mean tim
repair (MTTR).

Step 4 Click MTBF/MTTR, as shown below:

Resource cycle edit table

The Down Times window opens.

Click New to create a new resource cycle

Click MTBF/MTTR
rev 1.0 5.21

Process System Basics Getting Started with AutoMod

 Inc.”
 min-
an of
According to the example description (see “Example 5.1: Producing widgets at Acme,
on page 5.4), the time between failures is exponentially distributed with a mean of 200
utes, and the time required to repair the machine is exponentially distributed with a me
10 minutes.

Step 5 Enter the distributions in the Down Times window, as shown below:

Defining a resource’s MTBF and MTTR

Step 6 Click OK to automatically generate the resource cycle in the edit table. The resource cycle
opens, as shown below:

Completed resource cycle edit table

The resource cycle causes the same delays as the P_down arriving procedure that we com-
mented in the model logic. Row 1 defines a loop that repeats an infinite number of times
during a simulation. Row 2 waits for the time between failures and then takes down the
resource. Row 3 waits for the amount of time that the resource is repaired and then brings
up the resource. Row 4 defines the end of the loop.

Step 7 From the File menu, select Save.

Step 8 From the File menu, select Quit to close the edit table.

Now that you have defined the resource cycle, you need to attach it the drilling machine.

The mean time between failures is exponentially
distributed with a mean of 200 minutes

The mean time to repair is exponentially
distributed with a mean of 10 minutes
5.22 rev 1.0

Getting Started with AutoMod Process System Basics
Attaching a resource cycle to a resource
In order for a resource to use the cycle you have just defined, you must attach the resource
cycle to a resource, or the cycle will be ignored during the simulation.

You can attach a resource cycle to multiple resources that share the same failure and repair
rates. When a resource cycle is attached to more than one resource, the resources are taken
down and brought up independently (unique random numbers are generated for each
resource). If you need to model different failure rates, either create multiple cycles or use
logic to model the down times.

You need to attach the resource cycle RC_drill to the resource R_drill.

To attach the resource cycle:

Step 1 In the Resources window, select R_drill from the Resources list and click Edit. The Edit A
Resource window opens.

Step 2 Click Add to the right of the Attached Resource Cycle list. The Add Resource Cycle window
opens.

Step 3 The resource cycle RC_drill is already selected, so click Add to attach the cycle to R_drill.
The resource cycle appears in the Attached Resource Cycle list in the Edit A Resource win-
dow.

Step 4 Click OK to close the Edit A Resource window.

Step 5 Export the model and run the simulation.

To verify that the resource is being taken down correctly during the simulation, look at the
single resource statistics, as described in the next section.

ote
Note
✎

rev 1.0 5.23

Process System Basics Getting Started with AutoMod

tiliza-

as

t reset

set sta-
.

t 30
cess
imes.

calcu-
 loads

conds,
ource
 to
e to

 is:
Verifying down times for resources
Until now, you have displayed statistic summaries when analyzing a simulation. Now you
will learn how to display statistics for a single resource, which include information about the
resource’s down times. Single resource statistics also provide information about the u
tion of the resource and whether loads had to wait to use the resource.

To display single statistics for resource R_drill:

Step 1 Run the simulation to completion.

Step 2 From the Resources menu in the Simulation window, select Single Resource. The Pick a
Resource window opens.

Step 3 Select R_drill in the Resource list, then click OK. The Resource statistics window opens,
shown below:

Resource statistics for R_drill

Single resource statistics show two sets of statistics: statistics collected since the las
(relative statistics), and statistics collected since the beginning of the simulation (absolute
statistics. Resetting statistics is not discussed in this textbook, and no models use re
tistics. Therefore, both sets of statistics are the same and cover the entire simulation

Look at the totals for the down and wait statistics. The total wait statistics indicate tha
loads had to wait to claim R_drill because of capacity constraints (the drill can only pro
one load at a time). The total down statistics indicate that R_drill was taken down 664 t

You can verify that the average wait (Av_Wait) statistics are accurate using a simple
lation. If 30 loads wait an average of 555.63 seconds to claim the resource, and 14356
(14386-30) wait zero seconds to claim the resource, the average is calculated as:

which is the value listed as the Av_Wait statistic for the resource.

The down statistics indicate that the resource was down an average time of 583.82 se
or 9.73 minutes. This is close to the mean time to repair of 10 minutes defined in the res
cycle. Similarly, the drill was down for 0.045 (or 4.5 percent of the time). This is close
the time that results from dividing the mean time to repair by the sum of the mean tim
repair and the mean time between failures:

The utilization of the drill was 0.863, and it was down for 0.045, so the drill’s idle time

, or 9.2 percent.

Average time
waiting for
the resource

Total Wait
and Down
statistics

ote
Note
✎

30 555.63() 14356 0()+
14386

--- 1.16=

10
10 200+()

-------------------------- 0.048=

1 0.863– 0.045– 0.092=
5.24 rev 1.0

Getting Started with AutoMod Process System Basics

f the

s in

odel
u can

Creating business graphs to view statistics
So far, all the statistics you have looked at are presented in a textual form. AutoMod also
has the ability to graph these statistics as pie charts, bar charts, and other types of graphs.
Each graph can hold multiple statistics, and you can define multiple graphs for a model.

Suppose that you want to know how the current number of loads in Q_lathe_wait changes
over the first 10 days of the simulation. To get this information, you would create a timeline
business graph. Business graphs are defined in the process system using the Business Graph-
ics option on the palette.

Business graphs can also be defined while running a model; however, graphs defined during
a run are temporary for that run. Graphs defined in the process system are saved and can be
viewed during any run.

To define a timeline graph:

Step 1 Select Edit Model from the Control menu.

Step 2 Click Business Graphics on the Process System palette. The Business Graphics window
opens.

Step 3 Click New. A graph, called “graph0,” is created.

Step 4 Name the graph “Lathe_Queue” (replace the name “graph0”).

Step 5 Select Timeline from the Graph Type drop-down list. The values for the X and Y axes o
graph appear.

Step 6 Define the following values for the X axis (time) and Y axis (the current number of load
Q_lathe_wait):

Y Maximum = 20

Y Increment = 2

X Minimum = 0

X Maximum = 10

X Increment =.5

When creating your own graphs, you can estimate X and Y axis values by running the m
and looking at the statistics you want to graph to get an idea of their values. Then yo
define your X and Y values accordingly.

Step 7 Change the time units of the graph from Hours to Days using the drop-down list. This
defines the X axis as going from zero to 10 days in half-day increments.

Step 8 Change the Update Every interval (how often a data point is graphed) to 1 hour.

ote
Note
✎

ote
Tip

☞

rev 1.0 5.25

Process System Basics Getting Started with AutoMod

d _r
ears

tics is
Now you are ready to define which statistic you are graphing.

Step 9 To define which type of entity you want to graph, select Queue from the drop-down list
above the middle select list, as shown below:

Changing the entity type in a business graph

Step 10 Select Q_lathe_wait in the Queues list.

The third select list, Statistics, contains all of the statistics that you can graph for a queue.
You are interested in graphing the current number of loads in the queue, which is abbrevi-
ated “Cur.”

Statistics that track values which change over time have two values: _a (absolute) an
(relative, or reset, statistics). The Cur(rent) statistic, which you are graphing, only app
in the list once (without _a or _r), because it is not tracked over time. Resetting statis
not covered in this textbook.

To define the current number of loads as the statistic to graph:

Step 11 Select Cur in the Statistics list, then click Add. Cur is added to the list of statistics being
graphed.

Step 12 Click OK.

Step 13 Export the model.

Step 14 From the Model menu, select Run Model. Build the model. Before continuing the simula-
tion, display your business graph, as explained in the next section.

Select Queue to change
the type of entity being
graphed

ote
Note
✎

5.26 rev 1.0

Getting Started with AutoMod Process System Basics

raphs,
uring
to busi-
he pro-
Displaying a business graph

To display the timeline business graph:

Step 1 From the Control menu, select Business Graphics.

Step 2 Highlight Lathe_Queue in the list and click Display.

Step 3 Close the Business Graphics window.

Step 4 Run the simulation and watch the graph update as the simulation runs.

You can turn the model’s animation off and the graph is still updated.

The timeline is shown below:

Timeline graph for Q_lathe_wait

Notice that the values for the X and Y axes are reasonable. When creating your own g
if you have not estimated the axis values correctly, you can edit the X and Y values d
the run by selecting Control > Business Graphics. Just remember that changes made
ness graphs while running the model are not saved. You must make the changes in t
cess system to save them permanently.

ote
Tip

☞

ote
Note
✎

rev 1.0 5.27

Process System Basics Getting Started with AutoMod

ware
ed in
itor

ng:

.

tatis-

l

elow:

used
n,

reset,

com-
rt to
 your
ep set-
ula-
e
Interpreting reports
You have already learned how to display summary statistics and single resource statistics in
the Simulation window. In this chapter, you will learn how to display the statistics for an
entire model by opening the model’s report. At the end of each run, the AutoMod soft
prints all summary statistics to a text file named “<modelname>.report”. The file is sav
the model directory (with the executable model) and can be opened using any text ed
once the simulation has been closed.

To view the report for example model 5.1, finish running the model and do the followi

Step 1 If necessary, run the simulation to completion. Turn off the animation to speed up the run

Step 2 From the Control menu, select Edit Model to close the simulation environment.

The simulation environment must be closed for the report file to be updated with the s
tics for the current run.

Step 3 Using a text editor, such as Notepad, open the “examp51.report” file, located in the mode
directory. Change the file type from “.txt” to “All files” to see the .report file.

The report is opened. The next few sections explain how to interpret the report.

Version and clock information

The report begins with version and clock information about the simulation, as shown b

*** AutoMod Version 9.1 - by AutoSimulations, Inc. ***

Model examp51

Statistics at Absolute Clock = 100:00:00:00.00, Relative Clock = 100:00:00:00.00

CPU time: Absolute: 3.104 sec, Relative: 3.104 sec

The first two lines of the report indicate the version of the AutoMod software that was
to run the model and the model name. The third line shows the length of the simulatio
which is 100 days (recall that the simulation clock is displayed in the format
days:hours:minutes:seconds.hundredths of seconds).

Reports display both absolute and relative times. In this model, the statistics are not
so both sets of statistics are the same and cover the entire simulation.

The fourth line measures the length of the simulation in CPU time (real time). On the
puter that generated this example, the simulation took 3.104 seconds to run from sta
finish. The length of time required to run the model varies depending on the speed of
computer’s processor, as well as whether or not animation is displayed, the display st
ting if the animation is displayed, and whether or not you pause the model during a sim
tion. In this case, the model was run with animation turned off and without pausing th
simulation.

Note
Important

▲!

ote
Note
✎

5.28 rev 1.0

Getting Started with AutoMod Process System Basics

 of the

 times

imu-

two
cess,
ss

drill.
ver,

 that
an

st once
 loads
Process statistics

Process statistics provide information about each process, such as how long loads were in
the process and how many loads were in the process at the same time. (For definitions of
these statistics, refer to “Displaying process system summary statistics” on page 2.15
“Using the Software” chapter.)

The process statistics for P_lathe, the first process in the model, are shown below (all
are in seconds):

Name Total Cur Average Capacity Max Min Util Av_Time Av_Wait

==

P_lathe 14400 6 10.85 -- 47 0 -- 6512.76 --

A total of 14,400 loads were sent to P_lathe during the simulation. At the end of the s
lation, there are six loads currently in P_lathe.

Now look at the queue statistics for the lathe:

Name Total Cur Average Capacity Max Min Util Av_Time Av_Wait

==

.

.

.
Q_lathe_wait 14400 6 9.09 Infinite 45 0 -- 5452.51 --

Q_lathe 14394 2 1.92 2 2 0 0.958 1149.69 5452.51

Notice that Q_lathe_wait currently contains six loads and Q_lathe currently contains
loads. Initially, it may seem like there should be eight loads currently in the P_lathe pro
not six. The reason there are only six is that the two loads in Q_lathe are in the proce
P_drill, as shown in the model logic below:

begin P_lathe arriving

move into Q_lathe_wait /*limit = infinity*/

move into Q_lathe /*limit = 2*/

get R_lathe

wait for e 18 min /*lathing time*/

send to P_drill

end

begin P_drill arriving

move into Q_drill_wait /*limit = 6*/

...

Loads do not move out of Q_lathe and into Q_drill_wait until they are in the process P_
The first action that loads execute in the procedure is to move into Q_drill_wait; howe
this queue has limited capacity. Take a look at the statistics for Q_drill_wait:

Name Total Cur Average Capacity Max Min Util Av_Time Av_Wait

==

Q_drill_wait 14392 6 2.93 6 6 0 0.489 1759.87 89.00

At the end of the simulation, the queue is currently filled to capacity. So, the two loads
are in Q_lathe are still in the process P_drill, waiting to move into Q_drill_wait. (You c
also view the process statistics for P_drill to verify its current contents.)

The maximum number of loads that were in P_lathe at the same time reached 47 at lea
over the 100 day simulation. The minimum number of loads was zero (there are zero
in P_lathe at the beginning of the simulation, and perhaps at other times, as well).
rev 1.0 5.29

Process System Basics Getting Started with AutoMod
Calculating the average time in system
One way of calculating the average time that loads spend in the system (cycle time) is to add
up the time that loads spend in all of their processes. (Later in this textbook, you will learn
an automatic way to track the time that loads spend in the system using load attributes.)

The statistics for the lathe, drill, and inspection processes are shown below:

Name Total Cur Average Capacity Max Min Util Av_Time Av_Wait

==

P_lathe 14400 6 10.85 Infinite 47 0 -- 6512.76 --

P_drill 14394 9 3.99 Infinite 9 0 -- 2392.60 --

P_inspect 14385 0 0.10 Infinite 1 0 -- 57.59 --

The average time that loads spent in the system can be calculated by adding the average time
(Av_Time) that loads spent in P_lathe (6512.76), P_drill (2392.60), and P_inspect (57.59).
Thus, the average time in system was 8962.95 seconds, or 149.38 minutes.

We can determine how much of the average time in the system was spent processing using
the resource statistics:

Name Total Cur Average Capacity Max Min Util Av_Time Av_Wait State

==

R_drill 14386 1 0.86 1 1 0 0.863 518.57 1.16 ----

R_operator 43156 0 0.39 1 1 0 0.385 77.11 28.70 ----

R_lathe 14394 2 1.92 2 2 0 0.958 1149.69 0.00 ----

The average time that loads spent processing can be calculated by adding the average time
that loads spent using R_drill (518.57), R_operator (77.11), and R_lathe (1149.69). Thus,
the average time that loads spent processing was 1656.38 seconds, or 27.60 minutes.

From these statistics, we can tell that loads spent the majority of their time waiting, as cal-
culated by subtracting the time spent processing (27.60 minutes) from the total time in the
system (149.38 minutes), which equals 121.78 minutes, or about two hours.

Now look at the processes that control the down times for resources. Look at the average
time that the dummy loads spent in the P_break and P_down processes:

Name Total Cur Average Capacity Max Min Util Av_Time Av_Wait

==

P_break 1 1 1.00 Infinite 1 0 -- 8640000.00 --

P_down 0 0 0.00 Infinite 0 0 -- 0.00 --

The P_break average time is very high (100 days, or the entire length of the simulation). This
is because the dummy load L_break remains in the P_break process (executing the
while 1 = 1 do loop) throughout the entire simulation. The average time for P_down is
zero, because we deleted the dummy load that was sent to the P_down process and replaced
it with a resource cycle.

To determine the amount of down time for a resource, use the single resource statistics, as
explained in “Verifying down times for resources” on page 5.24.
5.30 rev 1.0

Getting Started with AutoMod Process System Basics

2.16

ds):

ace and
reak,
pace
a new
es into
 enter

ation

. The
der-
nd two
he was

time of
ill arriv-
ever

 loads
Queue statistics

Queue statistics indicate the total, average, and current number of loads in each queue, as
well as the minimum and maximum loads that were in each queue at the same time. (For
definitions of these statistics, refer to “Displaying queue summary statistics” on page
of the “Using the Software” chapter.)

The queues statistics for the example model are shown below (all times are in secon

Queue Statistics

Name Total Cur Average Capacity Max Min Util Av_Time Av_Wait

==

Space 14401 1 1.00 Infinite 2 0 -- 599.96 --

Q_drill_wait 14392 6 2.93 6 6 0 0.489 1759.87 89.00

Q_drill 14386 1 0.91 1 1 0 0.906 544.27 1759.87

Q_inspect_wait 14385 0 0.00 Infinite 1 0 -- 0.00 --

Q_inspect 14385 0 0.10 1 1 0 0.096 57.59 0.00

Q_lathe_wait 14400 6 9.09 Infinite 45 0 -- 5452.51 --

Q_lathe 14394 2 1.92 2 2 0 0.958 1149.69 5452.51

From the queue statistics, we can see that a total of 14,401 loads were created in Sp
one load was still there at the end of the simulation. The load that is still in Space is L_b
the dummy load that executes the P_break procedure; the L_break load remains in S
throughout the simulation. The number of loads in Space increases to two each time
load is created, and then instantly decreases to one when the newly created load mov
the queue Q_lathe_wait (the queue has infinite capacity, so loads never have to wait to
it). Consequently, the maximum number of loads that were in Space during the simul
is two.

There are currently six loads in Q_lathe_wait, which is below its average of 9.09 loads
maximum number of loads that were in the queue at any one time was 45. That is un
standable because the maximum number of loads in the P_lathe procedure was 47, a
of those loads were in the queue Q_lathe. The average time that loads spent in Q_lat
5452.51 seconds, or slightly more than 1.5 hours.

Notice that Q_inspect_wait has an average number of loads of 0.00 and an average
0.00. This is because as soon as the operator and drill resources are freed in the P_dr
ing procedure, the operator is claimed in the P_inspect arriving procedure, so loads n
have to wait in Q_inspect_wait.

The average wait (Av_Wait) statistic for Q_lathe is 5452.51 seconds. That means that
had to wait in Q_lathe_wait an average of 5452.51 seconds to enter Q_lathe.
rev 1.0 5.31

Process System Basics Getting Started with AutoMod

7 of

nds):

2 loads
 div-
 in this
nds, or
s.

is is a
an val-
225 sec-
 to the

 using

 that
s.
Resource statistics

Resource statistics provide information about the utilization of each resource. (For defini-
tions of these statistics, refer to “Displaying resource summary statistics” on page 2.1
the “Using the Software” chapter.)

The resource statistics for the example model are shown below (all times are in seco

Resource Statistics

Name Total Cur Average Capacity Max Min Util Av_Time Av_Wait State

==

R_drill 14386 1 0.86 1 1 0 0.863 518.57 1.16 ----

R_operator 43156 0 0.39 1 1 0 0.385 77.11 28.70 ----

R_lathe 14394 2 1.92 2 2 0 0.958 1149.69 0.00 ----

Resource R_lathe, which has a capacity of 2 loads, was claimed by an average of 1.9
during the simulation. The utilization is shown to be 0.958 (utilization is calculated by
ing the average number of loads that claimed the resource by the resource’s capacity,
case, 1.92/2). The average time that loads used resource R_lathe was 1149.69 seco
19.16 minutes, slightly higher than the resource’s mean processing time of 18 minute

The average time that loads claimed R_operator was 77.11 seconds. To verify that th
reasonable number, refer to the model logic. The operator is used three times with me
ues of 2 minutes, 55 seconds, and 50 seconds, respectively. These values add up to
onds. All loads use the operator three times, and 225/3 = 75 seconds, which is close
average time of 77.11 seconds for this run.

Determining how many loads a resource has completed
For resources, the Total statistic shows how many loads have claimed the resource, includ-
ing both loads that have finished using the resource and loads that are still (currently)
the resource. To calculate the number of loads a resource has completed, subtract the current
(Cur) number from the total (Total) number.

For example, to determine how many loads R_drill has completed, subtract the loads
are currently using the resource (1) from the Total (14386), for 14385 completed load
5.32 rev 1.0

Getting Started with AutoMod Process System Basics
Scheduling down times for when a resource is idle
In manufacturing, both unplanned and planned down times occur. Machine failures are
unplanned down times, while preventative maintenance events are planned. Seldom does
preventative maintenance interrupt processing; rather, the preventative maintenance is per-
formed between jobs.

To model a planned unavailable activity, such as preventative maintenance, you can use a
resource cycle with an unavailable time that occurs only when a resource is idle. A planned
delay is created using the wait until idle action in the Action column of a resource cycle.

The following example shows how to model preventative maintenance and other planned
delays that you want to occur only when a resource is idle.

Example 5.2: Modeling a planer

In example model 5.2, jobs are created with an interarrival time that is exponentially distrib-
uted with a mean of 10 minutes. Jobs first move into an infinite-capacity queue where they
wait to be leveled and smoothed by a planer. When the planer becomes available, jobs move
into a single-capacity processing queue, where they are leveled and smoothed by the planer.
The planer requires a time that is exponentially distributed with a mean of 7 minutes to level
and smooth each job.

The planer fails randomly; the time between failures is exponentially distributed with a
mean of 120 minutes. The time required to repair the planer is also exponentially distributed
with a mean of 10 minutes.

Also, after the planer has operated for 60 minutes, it is stopped and cleaned the next time it
becomes idle. The cleaning takes a time that is normally distributed with a mean of 6 min-
utes and a standard deviation of 30 seconds.

You will simulate this system for 100 days.
rev 1.0 5.33

Process System Basics Getting Started with AutoMod

ond

 New

 the
0 sec-
Defining a resource cycle that delays until idle

The base version of example model 5.2 already has the necessary load creation specifica-
tion, queues, and model logic defined for the planing operation. In addition, a resource cycle
has already been created to model the planer’s failures. But you need to create a sec
resource cycle to model the cleaning operation. In the new resource cycle, use the wait

until idle action to delay the down time until the resource is idle.

To create the cleaning resource cycle:

Step 1 Import a copy of the base version of example model 5.2.

Step 2 Click Resources on the Process System palette. The Resources window opens.

Step 3 Click New to the right of the Resource Cycles list to define a new resource cycle. The
Resource Cycle window opens.

Step 4 In the Name text box, type “RC_clean” and click OK, Edit. A new resource cycle edit table
opens.

Step 5 Click MTBF/MTTR. The Down Times window opens.

The time between cleanings is a constant 60 minutes, and the time required to clean
planer is normally distributed with a mean of 6 minutes and a standard deviation of 3
onds.

Step 6 Enter the distributions in the Down Times window, as shown below:

Defining the planer’s cleaning times

The mean time between cleanings is a
constant 60 minutes

The time required to clean the planer is normally
distributed with a mean of 6 minutes and a
standard deviation of 30 seconds (.5 minutes)
5.34 rev 1.0

Getting Started with AutoMod Process System Basics

e
Step 7 Click OK to automatically generate the resource cycle in the edit table. The generated
resource cycle edit table opens, as shown below:

Generated resource cycle edit table

Now you need to edit the resource cycle so that it only occurs when the resource is idle. To
do this, you need to insert a new line between the two actions and move the take resource
down action to the new line. You can then add a new action to line 2 that delays the down
action until the resource is idle.

Step 8 Highlight row 3 and select Insert from the Edit menu. A new row is inserted.

Step 9 Click the Action in row 2 (“take resource down”) and select Cut from the Edit menu. Click
the Action in row 3 and select paste from the Edit menu. The resource cycle should look lik
the one shown below:

Cutting and pasting an action

Step 10 Double-click in row 2’s Action cell. The Action window opens.

The action is moved from
row 2 to row 3
rev 1.0 5.35

Process System Basics Getting Started with AutoMod

e

 waits
ly dis-
e cycle

rce.

dow

ppears
now

 to
being
Step 11 Select “wait until idle” in the Action list and click Set. The action is inserted in the resourc
cycle edit table, as shown below:

The completed resource cycle edit table

The resource cycle is now complete. After a constant 60 minutes, the resource cycle
until the resource is idle and then takes down the resource. After a time that is normal
tributed with a mean of 6 minutes and a standard deviation of 30 seconds, the resourc
brings up the resource. The cycle repeats continuously throughout the simulation.

Step 12 From the File menu, select Save.

Step 13 From the File menu, select Quit to close the edit table and the list of actions.

Now that you have defined the resource cycle, you need to attach it the planer resou

Attaching the resource cycle to the planer
To attach the resource cycle to the planer, do the following:

Step 1 In the Resources window, select R_plane and click Edit. The Edit A Resource window
opens.

Step 2 Click Add to the right of the Attached Resource Cycle list. The Add Resource Cycle win
opens.

Step 3 Click Add to attach the cycle RC_clean to the resource R_plane. The resource cycle a
in the Attached Resource Cycle list in the Edit A Resource window. (The resource is
controlled by two resource cycles, RC_fail and RC_clean.)

Step 4 Click OK to close the Edit A Resource window.

Step 5 Export the model.

Step 6 Select Run Model and build the model. Before continuing the simulation, you are going
set an alarm, as described in the next section, to help you verify that the resource is
taken down correctly.

The wait until idle action is
inserted in the resource
cycle edit table
5.36 rev 1.0

Getting Started with AutoMod Process System Basics

win-

nd
e

rrent
oad.
le. The

oming
 pause

ver the
Setting an alarm to pause the simulation at a specific time
The first cleaning time in the model is scheduled to occur after a constant 60 minutes of sim-
ulation time. You can set an alarm to automatically pause the simulation after 60 minutes,
allowing you to watch the animation from that point to see whether the down event occurs
when the resource is idle.

To set the alarm for 60 minutes:

Step 1 From the Control menu, select Set Alarm. The Set Alarm Time window opens.

Step 2 In the “What time to break” text box, type “60” and select minutes from the drop-down list,
as shown below:

Set Alarm Time window

Step 3 Click OK to close the Set Alarm Time window. A message is printed to the Message
dow indicating that an alarm has been set for one hour of simulation time.

Step 4 Press “g” to turn off the graphics.

Step 5 Press “p” to continue the simulation. At 60 minutes in the simulation, the alarm rings a
the model is paused. The animation is also updated, so you can see that the resourc
R_plane’s graphic is green, indicating that it is currently processing a load.

Step 6 Press “g” to turn on the graphics, then press “w” to turn graphics solid.

Step 7 Press “u” to open the Display Speed window, and change the display step to 30
seconds. Press Enter to close the window.

Step 8 Press “p” to continue the simulation. The R_plane resource continues to process its cu
load. It is not until almost 24 minutes later that the resource finishes processing this l
Once the resource has finished and becomes idle, it is taken down by the resource cyc
resource’s color changes to red, indicating that it is down.

Another way to pause models automatically is to use a breakpoint, which stops the simu-
lation whenever a certain condition becomes true (such as a resource going down, c
up, becoming idle, and so on). You could set a breakpoint for the resource R_plane to
the simulation any time the resource is going down by selecting Breakpoint from the
Resources menu and selecting Going down. The model automatically pauses whene
resource goes down.

ote
Tip

☞

rev 1.0 5.37

Process System Basics Getting Started with AutoMod

t stay
nd the

d oper-
uld

ange
s).

eristics,
ltiple

ities to
reated

e first

 to
Modeling similar processes using arrayed entities
It is very common in manufacturing to have several people or pieces of equipment that can
do the same type of work. Sometimes, those people or pieces of equipment form parallel
lines or similar work cells. For example, suppose a facility has two assembly lines. Once a
product starts down one line, it cannot jump back and forth between the lines—it mus
on the same line. But the two lines use the same types of equipment and operators, a
processes take the same amount of time. What is the best way to model this?

You could model each line individually, creating the necessary resources, queues, an
ators, and writing two procedures that accomplish the same thing. But your model wo
contain a lot of duplication, and editing the model would be difficult, because every ch
would need to be made in two places (or more, if you added additional assembly line

A better approach is to create multiple “copies” of each entity using an array. An array is a
group of entities (resources, queues, processes, and so on) that share similar charact
such as capacity, down times, or arriving procedures. Arrays also allow you to align mu
entities of different types to form assembly lines or similar work cells.

To define an arrayed queue, resource, process, or other entity, set the number of ent
greater than one when you define the entity. The arrayed entities are automatically c
and named using the format “entityname(#),” as shown below:

Arrayed queues

You can then use the arrayed entities in your logic. For example, to move a load into th
queue in the array, use the syntax:

move into Q_Machine(1)

To move a load into the second queue in the array, use the syntax:

move into Q_Machine(2)

To illustrate how arrays can make modeling easier, the following example shows how
model a simple grinding operation two ways, with and without arrays.

In an array,
the number
of queues is
greater
than one

The arrayed queues are
automatically created and named
5.38 rev 1.0

Getting Started with AutoMod Process System Basics
Example 5.3: Grinding operation

Example model 5.3, which is a grinding operation, has loads arrive in the system with an
interarrival time that is exponentially distributed with a mean of 6 minutes. The grinding
operation consists of three grinding machines. Loads must be processed by all three grinding
machines in sequential order.

Each grinder is preceded by an infinite-capacity waiting queue (where loads wait for the
grinding machine to become available) and a single-capacity processing queue (where loads
are processed by the grinding machine).

A single operator loads each grinder for a time that is normally distributed with a mean of
20 seconds and a standard deviation of 3 seconds. The same operator unloads each grinder
for a time that is exponentially distributed with a mean of 30 seconds.

You will simulate this system for seven days.

Modeling example 5.3 using individual entities
The first approach shows how to model the system without using arrays. The model contains
three processes, three grinding resources, an operator, and several queues:

begin P_FirstGrinder arriving procedure

move into Q_FirstGrinder_wait /* Move into the waiting queue */

move into Q_FirstGrinder /* Move into the processing queue */

get R_FirstGrinder /* Claim the grinder */

use R_Operator for n 20, 3 sec /* Loading */

wait for 4 min /* Grinding */

use R_Operator for e 30 sec /* Unloading */

free R_FirstGrinder /* Free the grinder */

send to P_SecondGrinder /* Send to the next process */

end

begin P_SecondGrinder arriving procedure

move into Q_SecondGrinder_wait /* Move into the waiting queue */

move into Q_SecondGrinder /* Move into the processing queue */

get R_SecondGrinder /* Claim the grinder */

use R_Operator for n 20, 3 sec /* Loading */

wait for 4 min /* Grinding */

use R_Operator for e 30 sec /* Unloading */

free R_SecondGrinder /* Free the grinder */

send to P_ThirdGrinder /* Send to the next process */

end

begin P_ThirdGrinder arriving procedure

move into Q_ThirdGrinder_wait /* Move into the waiting queue */

move into Q_ThirdGrinder /* Move into the processing queue */

get R_ThirdGrinder /* Claim the grinder */

use R_Operator for n 20, 3 sec /* Loading */

wait for 4 min /* Grinding */

use R_Operator for e 30 sec /* Unloading */

free R_ThirdGrinder /* Free the grinder */

send to die /* Remove load from the system */

end

The logic in the three processes is very similar. In fact, the only difference is which queues
and resources are being used and the process to which the load is sent. Imagine how much
logic you would need to model 50 grinding machines instead of only 3.

A more efficient approach is to model the system using arrays, as discussed next.
rev 1.0 5.39

Process System Basics Getting Started with AutoMod
Modeling example 5.3 using arrayed entities

The following example shows how to model example 5.3 using arrayed processes, arrayed
resources, and arrayed queues. There are far fewer lines of logic in this approach than the
previous approach, and once written, the logic in this approach can be used to model any
number of grinding machines without being changed.

This approach uses some new syntax (procindex and if...then...else), which is dis-
cussed in the next two sections.

begin P_grinder arriving /*P_grinder is arrayed by 3*/

move into Q_grinder_wait(procindex)
/*Move into waiting queue 1, 2, or 3*/

move into Q_grinder(procindex)
/*Move into processing queue 1, 2, or 3 */

get R_grinder(procindex) /*Claim grinder 1, 2, or 3*/

use R_operator for n 20, 3 sec /*Loading*/

wait for 4 min /*Grinding*/

use R_operator for e 30 sec /*Unloading*/

free R_grinder(procindex) /*Free the grinder*/

if procindex = 3 then send to die /*If 3, processing is finished*/

else send to P_grinder(procindex+1) /*If 1 send to 2, if 2 send to 3*/

end

Using procindex to align arrayed entities

When you array a process, such as P_grinder, you can define a single arriving procedure that
is shared by each of the arrayed processes. For example, if you array the process P_grinder
by three, you only need to define one arriving procedure, and it will be used by loads that
are sent to P_grinder(1), P_grinder(2), and P_grinder(3). But how will you know which of
the three processes a load is in while it is executing the arriving procedure? AutoMod auto-
matically determines which arrayed process a load is in and stores it in the attribute
procindex, which is an integer attribute.

For example, assume a load is sent to the process P_grinder(1). When the load executes the
arriving procedure, the value of procindex is 1. The next time the load executes the proce-
dure, it is in P_grinder(2), so procindex is 2, and so on.

The procindex attribute is frequently used to align arrayed entities of different types. In this
grinding example, the resource R_grinder and the queues Q_grinder_wait and Q_grinder are
all arrays. A load moves into queues and claims a resource based on the value of procindex.
Loads in P_grinder(1) have a procindex of 1. Therefore, the loads move into
Q_grinder_wait(1), then Q_grinder(1), and claim R_grinder(1). When the loads are in
P_grinder(2), they use the second of each arrayed queue and resource, and then when in
P_grinder(3), the loads use the third of each arrayed queue and resource. Although the loads
are being processed by similar equipment and taking similar delays, they use the correct
equipment for each process.
5.40 rev 1.0

Getting Started with AutoMod Process System Basics

ion.

e load

or
cutes

 delay

rocess
ttler.

apped.
Writing conditional syntax using if...then...else

In example model 5.3, loads need to go through three processes. In the non-arrayed solution,
this is accomplished using a send action at the end of each procedure that sends the load to
the next process. In the arrayed approach, however, you cannot use three different send
actions. You need to know which process you are in currently to know the process to which
to send the load next. The solution is to use if...then...else syntax to perform actions
conditionally:

if procindex = 3 then send to die /*If 3, processing is finished*/

else send to P_grinder(procindex+1) /*If 1 send to 2, if 2 send to 3*/

The if...then and else syntax says, “If a certain condition is true, then execute an act
Otherwise, execute a different action.” In the case of the send action, procindex is used to
determine the current process and to increment the number of the process to which th
is sent. If the load is in process three, then the load is sent to die.

So when the load is in P_grinder(1), procindex is 1. The if condition is not true, so it is
ignored. The next line, beginning with else, sends the load to process P_grinder (1+1),
P_grinder(2). The load is next sent to P_grinder(3). When the load in P_grinder(3) exe
the if line, the condition is true, so the load is sent to die.

You can use the if...then syntax with or without the else clause. For example, if you only
have one condition to check, you can use the following syntax:

move into Q_process

if this load type = L_oversized then

wait for u 30, 15 sec /* oversized load takes extra setup */

use R_worker for e 10, 2 min

If the load that is executing the procedure is of type L_oversized, then the load takes a
that other loads do not, representing an additional setup time due to the load’s size.

If you want to test for more than one condition, you can use else. You can also check mul-
tiple conditions using else...if syntax. For example:

begin P_sort arriving procedure

if this load type = L_can then

send to P_canner

else if this load type = L_bottler then

send to P_bottler

else send to P_scrap

end

If the load that is executing the procedure is of type L_can, then the load is sent to the p
P_canner. If not, the load is tested for another condition, that is, whether it is type L_bo
If so, the load is sent to process P_bottler. If the load is neither of these types, it is scr

You can use as many else...if statements as necessary to test for all conditions.
rev 1.0 5.41

Process System Basics Getting Started with AutoMod

der

ow

,

ult

r-

ting
Creating example model 5.3

You are now ready to create example model 5.3 using arrays.

To create the example model:

Step 1 Open the AutoMod software (if it is not already open) and create a new model named
“examp53”.

Step 2 Create a new process system named “proc”.

Step 3 Create a new source file named “logic.m”.

Step 4 Edit the source file and type the following model logic:

begin P_grinder arriving /*P_grinder is arrayed by 3*/

move into Q_grinder_wait(procindex)
/*Move into waiting queue 1, 2, or 3*/

move into Q_grinder(procindex)
/*Move into processing queue 1, 2, or 3 */

get R_grinder(procindex) /*Claim grinder 1, 2, or 3*/

use R_operator for n 20, 3 sec /*Loading*/

wait for 4 min /*Grinding*/

use R_operator for e 30 sec /*Unloading*/

free R_grinder(procindex) /*Free the grinder*/

if procindex = 3 then send to die /*If 3, processing is finished*/

else send to P_grinder(procindex+1) /*If 1 send to 2, if 2 send to 3*/

end

Step 5 Save and quit the source file. The Error Correction window opens, indicating that P_grin
is undefined.

Step 6 Select Define, then click Define As to define P_grinder as a process. The Array Size wind
opens.

Defining an arrayed process in BEdit

Step 7 In the # of Processes text box, type “3” and click OK. The Error Correction window opens
indicating that Q_grinder_wait is undefined.

Step 8 Select Queue in the “Define As” drop-down list, then click Define As. The Define A Queue
window opens.

Step 9 In the Number of Queues text box, type “3” to create an array of three queues. In the Defa
Capacity text box, type “i” for infinite. Click OK to close the Define A Queue window. The
Error Correction window opens, indicating that Q_grinder is undefined.

Step 10 Repeat steps 8 and 9 to define Q_Grinder as an array of 3 queues; however, define the capac-
ity as 1 (instead of infinite). Click OK to close the Define a Queue window. The Error Co
rection window opens, indicating that R_grinder is undefined.

Step 11 Select Resource in the Define As drop-down list, then click Define As. The Define A
Resource window opens.

Step 12 In the Number of Resources text box, type “3” to create an array of three resources. Click
OK to close the Define A Resource window. The Error Correction window opens, indica
R_operator is undefined.

Change the
number of
processes to 3 to
create an array
5.42 rev 1.0

Getting Started with AutoMod Process System Basics
Step 13 Click Define As to define R_operator as a resource. The Define A Resource window opens.
Click OK to define R_operator as a single resource with a capacity of one.

If you accidentally define an entity incorrectly, comment the code, close the source file, and
edit the entity from the Process System palette. Then edit the source file and remove the
comments.

Step 14 Export the model.

Now that you have defined all the entities necessary for the model, you are ready to place
the entity graphics and define the load creation specification.

Placing graphics for arrayed entities
The graphics for example 5.3 are shown below:

Example 5.3 layout

Placing graphics for arrayed resources and queues requires one additional step to the proce-
dure you have already learned.

To place graphics for arrayed queues:

Step 1 On the Process System palette, click Queues.

Step 2 In the Queues window, select Q_grinder_wait, then click Edit Graphic. The Edit Queue
Graphics window opens.

Step 3 Select Q_grinder_wait(1) in the list and click Place.

Step 4 In the Work Area window, drag the queue until it is positioned as shown in the layout above.

Step 5 Place the graphics for the remaining queues in the array, then click Done.

Step 6 Place the remaining queue and resource graphics as shown above.

ote
Tip

☞

Q_grinder_wait(1) Q_grinder_wait(2) Q_grinder_wait(3)

Q_grinder(1) Q_grinder(2) Q_grinder(3)

R_grinder(1) R_grinder(2) R_grinder(3)

R_operator
rev 1.0 5.43

Process System Basics Getting Started with AutoMod

en-

w

ar in

hown
Defining the load creation specification
Now you need to create loads to send through the grinding process.

To define the load creation specification, do the following:

Step 1 Create a new load type called “L_parts.”

Step 2 Define a creation specification to generate loads with an interarrival time that is expon
tially distributed with a mean of 6 minutes.

Step 3 Click First Process in the Define a LoadType window. The Pick a First Process windo
opens.

Step 4 Select P_grinder from the list on the left. The numbers for each arrayed process appe
the list on the right.

Step 5 Select 1 in the list on the right to choose P_grinder(1) as the first process for loads, as s
below:

Picking an arrayed process as the first process

Step 6 Click OK.

Step 7 Click OK to close the Define a Creation Specification window and click OK to close the
Define a LoadType window.

Defining the run control
You want to simulate the system for seven days.

To define the run control:

Step 1 Click Run Control on the Process System palette.

Step 2 Define a snap of 7 days.
5.44 rev 1.0

Getting Started with AutoMod Process System Basics

oves

load is
 load is

 listed

nt
Running the example model
You are now ready to run the model and look at the results.

Step 1 Export the model and select Run model. The simulation environment opens.

Step 2 Press “w” to turn graphics solid.

Step 3 Press “p” to continue the simulation.

In this grinding example, each load is sent to P_grinder(1). In that process, the load m
into Q_grinder_wait(1) then Q_grinder(1), based on a procindex of 1. The load uses
R_grinder(1). The load is then sent to the next process, P_grinder(2), and the procindex
value is now 2. The load uses the second of each arrayed queue and resource. The
sent to the third process and uses the third of each arrayed queue and resource. The
then sent to die.

To verify that the model is working correctly, use the Load Status window:

Step 4 Select Load Status from the Loads window. The Load Status window opens.

Load Status window

Step 5 Verify that for each load, the index of the process name matches the index of the queue
as the territory.

Step 6 As your model runs, click Update in the Load Status window periodically to get the curre
state of the simulation in the Load Status window.

The process index number here...

...should
match
the
queue
index
number
here
rev 1.0 5.45

Process System Basics Getting Started with AutoMod

ow
h you

to help

at

ilable
re peo-
 atten-

than

s sepa-
ity
ld pro-
Determining when to use arrays versus multiple-capacity resources

In the beginning of this chapter, you learned how to define a single resource that has the abil-
ity to process more than one item at a time (see “Defining a resource” on page 5.8). N
you have learned how to model similar resources using arrays. For situations in whic
have multiple resources doing similar work, when would you use a multiple-capacity
resource, and when would you use an arrayed resource? Use the following guidelines
you decide when to use each approach.

Use multiple-capacity resources when you are modeling a single person or machine th
can do more than one thing at a time.

You would also use multiple-capacity resources when you want to select the first ava
resource from a group of resources. For example, when modeling service centers whe
ple are servicing other people, the people being helped often go to the next available
dant. In these cases, you must use a multiple-capacity resource to model the service
attendants rather than an arrayed resource.

Use arrayed resources to select work from a group of resources based on criteria other
availability, such as evenly distributing work to various lines. (In AutoMod, distributing
work evenly is modeled using the nextof distribution; see “Using the nextof distribution
with arrayed entities” on page 5.47.)

Arrayed resources are also more realistic graphically; you can see all of the resource
rately, such as six attendants, four machines, and so on. If you used a multiple-capac
resource, you would only see one graphic, no matter how many items the resource cou
cess concurrently.
5.46 rev 1.0

Getting Started with AutoMod Process System Basics

s”
ecause

in a pro-
ute
e-

s in
ss using

nately

e sec-

 sent to
e(1),
Selecting entities alternately using the nextof distribution
The nextof distribution is available in AutoMod to simulate alternating, or round-robin,
selection (1, 2, 3, 1, 2, 3...).

For example, to send one-half of loads to P_1 and the other half to P_2, alternating between
the two, use the nextof distribution:

send to nextof(P_1, P_2)

The nextof distribution can also be used with resources, queues, and other entities. To move
a load into one of several queues alternately:

move into nextof(Q_1, Q_2, Q_3)

The first load to execute this action moves into Q_1, the second load moves into Q_2, the
third Q_3, the fourth moves into Q_1, and so on. The alternating cycle continues throughout
the simulation.

Using the nextof distribution with arrayed entities

The nextof distribution does not guarantee that multiple arrayed processes, queues, and
resources are aligned, like procindex does (see “Using procindex to align arrayed entitie
on page 5.40). Loads are delayed for varying amounts of time at queues or resources b
of unavailable capacity or different processing times. When using nextof, the order in
which loads select queues or resources depends on which loads execute the actions
cedure first. Because loads are delayed for varying amounts of time, loads may exec
actions “out of order,” resulting in cases where loads “jump lines” and use a non-corr
sponding entity.

To use the nextof distribution while also aligning arrayed entities, use arrayed processe
addition to arrayed queues and resources. Send loads alternately to the arrayed proce
the nextof distribution, then use procindex to select other arrayed entities.

For example, suppose your system has three lines, which you are modeling as three
resources that each have a waiting queue and a processing queue. You want to alter
send loads to one of the three lines. You could use the approach shown below:

begin P_send arriving

send to nextof(P_machine(1), P_machine(2), P_machine(3))

end

begin P_machine arriving

move into Q_mach_wait(procindex)

move into Q_mach(procindex)

use R_operator(procindex) for e 5 min

send to die

end

The first load is sent to P_machine(1), so its procindex value is 1. The load moves into
Q_mach_wait(1), moves into Q_mach(1), uses R_operator(1), then is sent to die. Th
ond load is sent to P_machine(2), so its procindex value is 2. It uses the second of the
queues in the arrays and the second resource in the resource array. The third load is
P_machine(3), so it uses the third set of entities. The fourth load is sent to P_machin
beginning the cycle again.
rev 1.0 5.47

Process System Basics Getting Started with AutoMod

s
Summary
This chapter contains some core concepts that you will use regularly, including:

• Defining resources and queues
• Interpreting statistics
• Defining down times
• Using arrayed entities
• Using the nextof distribution

As you start to develop your own models from scratch, you will find it helpful to use a
model-building methodology, such as:

Step 1 Define all resources and queues and place their graphics.*

Step 2 Define processes.

Step 3 Create loads and define creation specifications.

Step 4 Create a source file and write the model logic.*

Step 5 Define the run control.

Step 6 Export and run the model.

* Another approach is to define all of the logic first (step 4), then complete the steps a
shown here.
5.48 rev 1.0

Getting Started with AutoMod Process System Basics

vari-
Exercises

Exercise 5.1

Copy the final version of example model 5.1 to a new directory and use the copied model to
answer the following questions with respect to the average number of loads in P_lathe
and P_drill:

a) What is the difference in the above statistics when the capacity of queue Q_drill_wait
is six (its current value), five, or seven widgets?

b) What is the impact on the statistics when the capacity of queue Q_drill_wait is changed
to eight widgets, and the mean processing time of resource R_drill increases to 4.5
minutes (from 4 minutes)?

c) Using the same configuration that you set in model (b) above, what is the impact on the
statistics if the operator takes a 45-minute lunch break, instead of 30 minutes, and skips
the afternoon break (the morning break remains the same)?

Exercise 5.2

Create a new model containing three independent processes, each with one operator. In each
process, loads first move into an infinite-capacity waiting queue, then into a single-capacity
processing queue. Loads are processed by each operator for the times shown below:

Worker_A does the job in a normally distributed time with a mean of 60 minutes and a stan-
dard deviation of 10 minutes.

Worker_B does the job according to a triangular distribution with a minimum of 30 minutes,
most likely value of 60 minutes, and a maximum of 90 minutes.

Worker_C does the job in a uniformly distributed time between 30 and 90 minutes.

Send loads to each process at the same rate (an exponentially distributed interarrival time
with a mean of 68 minutes) to understand the difference in the processing times of the three
workers.

Answer the following:

a) After running the model for 10,000 days, what was the average number of loads in
each process?

b) Determine the variance and the mean of each processing time distribution. Explain
what effect the variance of each distribution has on the total number of loads sent to
each process.

Formulas for calculating the variance (the square of the standard deviation) and mean for
each distribution can be found in the AutoMod Syntax Help by searching the index for “
ance” or “mean.”

ote
Help
8

rev 1.0 5.49

Process System Basics Getting Started with AutoMod

cker’s

vail-
 to the
n of

mber

a

ch
Exercise 5.3

Create a new model to simulate the following vehicle licensing facility:

Customers arrive at the local Division of Motor Vehicles office according to an exponential
distribution with a mean of 3.5 minutes. The customers wait in a line to be helped by one of
two checkers (whoever is available first). The checkers each take an exponentially distrib-
uted 5.25 minutes to check a customer’s paperwork. The customers move to the che
desk when being helped.

After their paperwork is verified, customers wait in their current location for the next a
able clerk. There are six clerks. When a clerk becomes available, the customer moves
clerk’s counter. The clerks’ processing times are exponentially distributed with a mea
15 minutes.

The office is open 8 hours per day. Run the model for one day.

a) Make a timeline graph of the arrival line that shows the average and maximum nu
of people waiting to be helped by a checker.

b) What were the average and maximum number of people waiting to be helped by
checker? How many people were in the system at the end of the day?

c) What is the effect on the measures in (b) if the entire office takes a 15 minute lun
break 3.5 hours into the day?
5.50 rev 1.0

Getting Started with AutoMod Process System Basics

); each

ar-
the
r. The
ith a

e wid-
mbly
tion
ween

ted
 the

ro-
dget?
Exercise 5.4

Apex Corporation produces widgets. The company has decided to use a simulation model
to improve its system. The system consists of the following:

• A widget component waiting area with infinite capacity.
• Three single-capacity widget assembly machines (modeled as arrayed resources

machine has its own queue for processing.
• An inspection waiting area with a capacity of three.
• One inspector and an inspection queue with a capacity of one.

Boxes of widget components arrive at the production facility with an exponential inter
rival time with a mean of 5 minutes. Upon arrival, widget components wait for one of
three assembly machines. The assembly machines are assigned in round-robin orde
assembly machines process the components for a time that is normally distributed w
mean of 12 minutes and a standard deviation of 2 minutes.

Once assembled, widgets attempt to enter the waiting queue for inspection. Only thre
gets can wait in the queue. If the queue is full, widgets must wait at their current asse
machine until space is available. From the waiting queue, loads move into the inspec
queue. The inspector inspects each widget for a time that is uniformly distributed bet
one and five minutes; the inspector can inspect only one load at a time.

The inspector takes 5 minute breaks after working for a time that is uniformly distribu
between 40 and 60 minutes. Print a message to the Message window each time that
inspector starts a break and another message when that break is finished.

Apex wants the system to be simulated for 24 hours.

Create a model of this system and determine the following information for Apex:

a) What is the average time that loads spend waiting for each assembly machine’s p
cessing queue? What is the average time each machine spends assembling a wi

b) What is the average time that widgets wait in the inspection waiting queue?
c) How many widgets does the inspector complete in the 24-hour period?
d) What is the average number of widget components in the waiting queue for the

assembly machines?
e) What is the utilization of the inspector?
rev 1.0 5.51

Process System Basics Getting Started with AutoMod
Exercise 5.5

Create a new model in which jobs are created every 10 minutes. Jobs first move into an infi-
nite-capacity queue where they await processing. Jobs are processed by a single-capacity
drill for a time that is normally distributed with a mean of 7.5 minutes and a standard devi-
ation of 20 seconds. The drill has its own queue where jobs are processed.

Using resource cycles, model the following failure and maintenance events:

The drill breaks down according to an exponential distribution with a MTBF of 2 hours.
Repair time is also exponentially distributed with a MTTR of 15 minutes.

The drill is inspected every hour, when it is idle, for an exponentially distributed time with
a mean of two minutes.

Chips build up in the drill until it requires cleaning. The drill requires cleaning after a pro-
cessing time that is normally distributed with a mean of 2 hours and a standard deviation of
10 minutes. Cleanings are delayed (if necessary) until the drill is idle. Cleanings are com-
pleted in five minutes.

Simulate the system for 28 days.

a) What was the average and maximum number of jobs waiting to be drilled?
b) If the MTBF for the break downs could be lengthened to three hours, what is the

impact on the statistics in (a) above?

Exercise 5.6

Create a new model in which jobs are created with an interarrival time that is exponentially
distributed with a mean of 10 minutes. Jobs first move into an infinite-capacity queue where
they await processing by a single-capacity machine. The machine has its own processing
queue, and processes jobs for a time that is exponentially distributed with a mean of 8 min-
utes.

Run the model for 1000 days.

You are going to determine how modifying the failure and repair rates of the machine affects
the number of jobs that are awaiting processing. Run each scenario below and record the
maximum and average number of jobs in the waiting queue.

The failure and repair times of the machine are exponentially distributed, as shown in the
table below:

MTBF MTTR
Average loads
in waiting queue

Maximum loads
in waiting queue

2 hours 12 minutes

1 hour 6 minutes

30 minutes 3 minutes

15 minutes 1.5 minutes

7.5 minutes 0.75 minutes
5.52 rev 1.0

Getting Started with AutoMod Process System Basics

. Each
 of 10

next
chines.
 require

that is
ared

 has to

ph the

ough-
Exercise 5.7

Create a new model to simulate the following system:

Loads are created with an interarrival time that is uniformly distributed from 10 to 30 min-
utes. Loads wait in an infinite-capacity queue to be processed by one of three single-capac-
ity, arrayed machines. Each machine has its own queue where loads are processed. Waiting
loads move into one of the three queues in round-robin order. Each machine has a normally
distributed processing time with a mean of 48 minutes and a standard deviation of 5 minutes.
Each machine can only process one load at a time.

The machines were purchased at the same time. The mean time between failures is exponen-
tially distributed with a mean of 170 minutes. The repair time is also exponentially distrib-
uted with a mean of 10 minutes.

The machines must also be cleaned. The time between cleanings is a constant 90 minutes
and the cleaning time is a constant value of 10 minutes.

Define all failure and cleaning times using resource cycles.

Run the simulation for 100 days.

What was the average and maximum number of loads in the waiting queue?

Exercise 5.8

Create a new model in which loads are generated with an interarrival time that is exponen-
tially distributed with a mean of 7 minutes. Loads first move into an infinite-capacity queue
where they wait to be processed by one of two intake workers. As soon as there is room in
a worker’s queue, the next waiting load moves into a single-capacity processing queue
intake worker processes a load for a time that is exponentially distributed with a mean
minutes. Each worker can only process one load at a time.

After intake processing, the loads move into an infinite-capacity queue to await their
process. The loads are then sent alternately to one of two single-capacity arrayed ma
Each arrayed machine has its own queue in which loads are processed. The machines
a processing time that is exponentially distributed with a mean of 7 minutes per load.

Before the load leaves the machine, it must be cut by a single-capacity tool for a time
exponentially distributed with a mean of three minutes. There is only one tool that is sh
by the two machines. Once cut, the load leaves the system. Every two hours, the tool
be sharpened for 10 minutes.

Place all graphics and then complete the following:

a) Prepare two time lines that graph the current contents of each waiting queue. Gra
data for the first 5 days of simulated time.

Run the model for 100 days and then answer the following questions:

b) Did the system operate smoothly (were there any excessive lines)?
c) How many loads, on average, were in the initial queue and the holding queue thr

out the simulation?
rev 1.0 5.53

Process System Basics Getting Started with AutoMod

.1” on
opy of

n of
single-
 loads
. Each
 stan-

. The
e

e con-

r the

ain
Exercise 5.9

Create a new model to simulate the following system:

The solution for this assignment is required to complete exercise 7.1 (see “Exercise 7
page 7.34 of the “Advanced Process System Features” chapter); be sure to save a c
your model.

Loads are created with an interarrival time that is exponentially distributed with a mea
20 minutes. Loads wait in an infinite-capacity queue to be processed by one of three
capacity, arrayed machines. Each machine has its own single-capacity queue where
are processed. Waiting loads move into one of the three queues in round-robin order
machine has a normally distributed processing time with a mean of 48 minutes and a
dard deviation of 5 minutes.

The three machines were purchased at different times and have different failure rates
failure and repair times are exponentially distributed with means as shown in the tabl
below:

The machines also must be cleaned according to the following schedule. All times ar
stant:

Place the graphics for the queues and the resources.

Run the simulation for 100 days.

Define all failure and cleaning times using logic (rather than resource cycles). Answe
following questions:

a) What was the average number of loads in the waiting queue?
b) What were the current and average number of loads in Space? How do you expl

these values?

ote
Note
✎

Machine
Mean time between
failures

Mean time to
repair

A 110 minutes 5 minutes

B 170 minutes 10 minutes

C 230 minutes 10 minutes

Machine
Time between
cleanings Time to clean

A 90 minutes 5 minutes

B 90 minutes 5 minutes

C 90 minutes 10 minutes
5.54 rev 1.0

Getting Started with AutoMod Process System Basics
Exercise 5.10

Create a new model to simulate the following system:

Widgets are created with a constant interarrival time of 2.5 minutes. The widgets first move
into an infinite-capacity waiting queue. Making widgets requires three main processes: cut-
ting, welding, and burnishing. Each of these processes has one machine that can process one
load at a time. Each machine has its own queue where loads are processed.

The cutting process has three steps, all of which have times that are triangularly distributed,
as defined in the table below:

The welding process has a waiting queue before it that is limited to six widgets. Loads can-
not leave the cutting process until there is room in the welding queue. The welding process
requires two steps. The processing time of each step is exponentially distributed, as shown
in the table below:

The burnishing machine requires a processing time that is uniformly distributed between 20
seconds and 2 minutes 20 seconds. The waiting queue before burnishing is limited to 4 wid-
gets. Loads cannot leave the welding process until there is room in the burnishing queue.

The burnishing machine requires an operator to load and unload the widget. The loading and
unloading times are each a constant 20 seconds.

There are breaks and down times for the operator during each eight-hour shift. (Use one
operator to work all shifts, seven days a week.) At the end of every eight-hour shift, the oper-
ator needs to sweep the floor, and is therefore unavailable for processing for the last 10 min-
utes of the shift. Every hour during the shift, the operator has two 5 minute breaks: one at
the beginning of each hour to do paperwork and one at 30 minutes into the hour.

Simulate this system for 100 days.

a) There are currently six queueing positions before welding and four before burnishing.
Record the time in system by adding up the average time that loads spent in each of the
three processes.
Now vary the 10 queuing positions between welding and burnishing, trying all the con-
figurations from 8 before welding and 2 before burnishing to 2 before welding and 8
before burnishing (use all 10 queues in each configuration). For each scenario, record
the cycle time (average time in system) and determine which configuration of queuing
positions produces the shortest cycle time.

Use a spreadsheet to track the data. Later in this textbook, you will learn how to use the
AutoStat software, which can automatically test each queue configuration and report
changes in cycle time.

b) Using the base configuration (six queuing positions before welding and four before
burnishing), what is the impact on the average number of loads in the initial waiting
queue if the operator takes a single 10-minute break at the beginning of each hour
instead of two separate 5-minute breaks?

Step Minimum Most-likely Maximum

1 20 seconds 40 seconds 65 seconds

2 30 seconds 45 seconds 70 seconds

3 15 seconds 45 seconds 60 seconds

Step Mean

1 90 seconds

2 40 seconds

ote
Tip

☞

rev 1.0 5.55

Process System Basics Getting Started with AutoMod
5.56 rev 1.0

Getting Started with AutoMod Introduction to Conveyors
Chapter 6

Introduction to Conveyors

Conveyor systems .. 6.4

Measuring distances in the Work Area window .. 6.4
Using the drawing grid.. 6.4
Using the Measurement window... 6.6

Conveyor drawing tools .. 6.8

Example 6.1: Drawing a conveyor system .. 6.9

Creating example model 6.1 ... 6.10
Creating the conveyor system ... 6.10
Drawing conveyor sections ... 6.10

Drawing to scale .. 6.11
Filleting two paths.. 6.13
Connecting sections using Snap to End ... 6.14
Copying conveyor sections .. 6.15
Changing section direction .. 6.16
Editing section length .. 6.17

Moving sections.. 6.17
Creating ramped sections ... 6.18

Placing stations.. 6.19
Moving loads through the conveyor system ... 6.21

Alternately selecting stations ... 6.22
Defining the example model logic ... 6.23

Placing queue and resource graphics .. 6.24
Placing load graphics .. 6.25

Running the model .. 6.26

Displaying section statistics .. 6.27

Summary .. 6.28

Exercises... 6.29
Exercise 6.1 ... 6.29
Exercise 6.2 ... 6.30
Exercise 6.3 ... 6.31
Exercise 6.4 ... 6.32
rev 1.0 6.1

Introduction to Conveyors Getting Started with AutoMod
6.2 rev 1.0

Getting Started with AutoMod Introduction to Conveyors

, you
loca-

ysi-
chap-

ther
over

e sys-
Chapter 6

Introduction to Conveyors

Until now, loads have “beamed” between queues in models. Beginning in this chapter
will learn how to model different types of movement systems to transport loads from
tion to location. This chapter discusses how to create a basic conveyor system.

You will learn that conveyors, like queues, are territories in which loads can reside ph
cally in a model. See “Territories and space” on page 3.10 of the “AutoMod Concepts”
ter for a discussion of territories.

The concepts and tools needed to model conveyors are transferable to many of the o
types of material handling systems available in the AutoMod software, such as path m
systems (discussed in chapter 11, “Introduction to Path Mover Systems,”) power & fre
tems, and forklift trucks.
rev 1.0 6.3

Introduction to Conveyors Getting Started with AutoMod

-

 to pro-

in the
stems
 soft-

 align
n a
 in the

rease
Conveyor systems
In the AutoMod software, models can contain one or more systems. You must define a pro-
cess system in every model, and you can define one or more movement systems as needed.
A conveyor system has three required components:

sections Sections are the individual segments of a conveyor on which loads travel. Sections are one-
directional and can differ in length, width, and speed.

transfers Transfers are connections between two conveyor sections. For loads to move from one sec-
tion to another, the two sections must be connected by a transfer. Transfers are automatically
created as you draw sections in the conveyor system. Transfers determine the speed at which
loads move from one section to another, as well as the orientation of loads on a section. (You
will learn more about load orientation in chapter 9, “Modeling Complex Conveyor Sys
tems.”)

stations Stations are locations at which loads get on or off a section, and where loads can stop
cess on a section. Stations can be located anywhere on a section.

Measuring distances in the Work Area window
Before you begin drawing a conveyor, you must first learn how to measure distances
Work Area window. Measuring distances is necessary to draw a model’s movement sy
to scale; otherwise, the model will be inaccurate. There are two tools in the AutoMod
ware to help you draw movement systems to scale:

• The drawing grid
• The Measurement window

Using the drawing grid

The drawing grid is similar to a piece of graph paper that allows you to easily draw and
graphics in a model. All graphics are drawn or placed on the grid. Each time you ope
model, the size of the drawing grid is automatically resized to encompass the graphics
model.

By default, lines in the drawing grid are spaced five feet apart. You can increase or dec
the spacing of the drawing grid.
6.4 rev 1.0

Getting Started with AutoMod Introduction to Conveyors

ed in

 next

inor

nged,

 5
ge the
lue or

tenth

y 10

es in
To change the grid spacing, do the following:

Step 1 Open the AutoMod software and create a temporary model. The Work Area window opens.

Step 2 Click Grid Control. The Grid Control window opens, as shown below:

Grid Control window

The controls for changing the grid’s origin, orientation, and alignment are not discuss
this textbook.

Options for changing the grid spacing are defined as follows:

Display Select and clear the Display check box to toggle the grid display on and off.

Measure The Measure option opens the Measurement window; this window is discussed in the
section.

Grid Spacing The value on which you want grid spacing to be based. This value, along with the “M
line every” multiplier, determines the spacing of the grid. The Grid Spacing value is in
model distance units, which by default are feet. (The default distance unit can be cha
but doing so is not discussed in this textbook.)

Minor line
every

A multiplier that, in conjunction with the Grid Spacing value, determines the distance
between each grid line. The default Grid Spacing is 1.00 (foot) with a minor line every
(feet). Therefore, the distance between minor lines is 1.00 x 5 = 5 feet. You can chan
distance that each pair of minor lines represents by editing either the Grid Spacing va
the “Minor line every” value (or both).

Major line
every

A value that determines the frequency of the thicker black grid lines. By default, every
line in the grid is a major line, while the nine intervening lines are minor lines.

Step 3 To increase the space between grid lines, type “2.00” in the Grid Spacing text box and press
Enter. The distance between minor lines changes to 10 feet (2.00 x 5).

Step 4 By default, there is a major line every 10 lines. In the Major line text box, type “15” and
press Enter. There are fewer heavier lines in the drawing grid.

Step 5 Reset the drawing grid to the default values (Grid Spacing is 1.00 with a major line ever
lines).

You are now ready to learn how to use the Measurement window to measure distanc
the Work Area window.

The base distance
of measurement
(in model units)

A multiplier that
determines the
distance between
minor lines
rev 1.0 6.5

Introduction to Conveyors Getting Started with AutoMod

on.

t coor-
Using the Measurement window

The Measurement window can be used to measure distances by tracking the movement of
the mouse when drawing or placing graphics in the Work Area window. To open the Mea-
surement window:

Step 1 Click Measurement. The Measurement window opens.

Step 2 Move the Measurement window below the Work Area window, then select Track Mouse.

Measurement window

Options in the Measurement window are defined as follows:

Track Mouse The Track Mouse option allows you to measure distances by clicking (to set the starting
point of a measurement) and moving the mouse to measure a distance in any direction.

Snap The Snap option causes the graphics you are placing to move in increments determined by
the grid spacing (by default, graphics move in 1-foot increments). Clear Snap before draw-
ing or placing objects that require positioning between grid spacing intervals.

When tracking the mouse, the measurement values in the window can be interpreted as fol-
lows:

Last The Last column displays the X, Y, and Z coordinates of the most recent mouse click.

Current The Current column displays the X, Y, and Z coordinates of the arrow’s current locati

Delta The Delta column displays the difference between the last coordinates and the curren
dinates on the X, Y, and Z axes.

Length Displays the distance between the last coordinates and the current coordinates.
6.6 rev 1.0

Getting Started with AutoMod Introduction to Conveyors
Suppose you wanted to know the diagonal distance when you move from the center of the
drawing grid to the intersection of the next major lines in the positive X and Y directions, as
shown below:

Measuring distances in the Work Area window

To determine the distance between two points:

Step 3 Watch the Current X, Y, and Z values in the Measurement window as you move the arrow
to the point (0, 0, 0) in the center of the drawing grid. Click the left mouse button. Every
value in the Measurement Window reads 0.000.

Step 4 Move the arrow to the intersection of the two major lines in the positive X and Y directions
(the Current values are 50, 50, and 0). Notice the Length value is 70.711 feet.

You can verify that this distance is correct using the Pythagorean theorem:

With A = 50 and B = 50, we find

Now you are ready to learn about the tools available to draw conveyor systems.

A
2

B
2

+ C
2

=

5000 70.711.=
rev 1.0 6.7

Introduction to Conveyors Getting Started with AutoMod
Conveyor drawing tools

The tools for drawing and placing conveyor entities are located on a palette in the conveyor
system, as shown below:

Conveyor palette

The tools are defined as follows:

Select The Select tool selects one or more entities in the conveyor system.

Single Line The Single Line tool draws a straight conveyor section.

Single Arc The Single Arc tool draws a curved conveyor section.

Continuous The Continuous tool draws a single section that consists of multiple straight or curved seg-
ments. All segments are part of one section; that is, no transfers are created. By default, the
Continuous tool alternates between straight and curved segments.

Connected The Connected tool draws multiple sections connected by transfers. Unlike the Continuous
tool, the Connected tool draws only straight sections by default.

Fillet The Fillet tool draws a curved section to automatically connect two non-parallel sections.

Station The Station tool places a station on a section.

Photoeye The Photoeye tool draws an infrared beam across a conveyor to regulate load movement
(photoeyes are not discussed in this textbook).

Motor The Motor tool defines a device that drives both conveyor sections and transfers; motors can
be taken down to stop conveyor movement.

This chapter discusses the Select, Single Line, Fillet, and Station tools. Motors are discussed
in chapter 9, “Modeling Complex Conveyor Systems.”
6.8 rev 1.0

Getting Started with AutoMod Introduction to Conveyors

 the

into

 for pro-
an of
e

 con-
 be
ibuted
spec-
n the

cends
m.
Example 6.1: Drawing a conveyor system
Consider the layout of the conveyor system shown below:

Layout of example model 6.1

Loads are created with an interarrival time that is exponentially distributed with a mean of
11 minutes. Loads move into the infinite-capacity queue “Q_geton” before getting on
conveyor at station “sta_in.”

Loads first travel to station “sta_proc_in,” where they get off the conveyor and move
the infinite-capacity waiting queue “Q_process_in.” Loads wait to be processed by a
resource that can process two loads at the same time; the resource has its own queue
cessing. Each load is processed for a time that is exponentially distributed with a me
20 minutes. When processing is complete, loads move into the infinite-capacity queu
“Q_process_out” before getting back on the conveyor at station “sta_proc_out.”

Loads then travel on the conveyor to station “sta_insp_in,” where they again get off the
veyor by moving into the infinite-capacity waiting queue “Q_inspect_in.” Loads wait to
inspected by an inspector, who inspects each load for a time that is exponentially distr
with a mean of 20 minutes. The inspector can inspect only one load at a time. After in
tion, loads move into the infinite-capacity queue “Q_inspect_out” before getting back o
conveyor at station “sta_insp_out.”

Loads then travel to station “sta_out,” which is located on a ramped conveyor that des
20 feet in 69 feet. After arriving at station “sta_out,” loads are removed from the syste

Loads are blue and their dimensions are two feet by three feet by two feet.

You will simulate the system for one day.

Q_geton

Q_process_in

Q_process_out

Q_resource

R_resource

R_insp

sta_in

sta_proc_in

sta_proc_out

sta_insp_in

sta_out

80 feet

108 feet

69 feet

6 feet
sta_insp_out

Q_inspect_in Q_inspect_out

Q_inspect
rev 1.0 6.9

Introduction to Conveyors Getting Started with AutoMod

nd

 the

ec-

3, and
t box
 sec-

ontal
lines.
Creating example model 6.1
To create the example model:

Step 1 Create a new model named “examp61.”

Step 2 Open the View Control and select Child Windows on Top. This keeps the Measurement a
other windows from moving behind the Work Area window.

Step 3 Close the View Control window.

You are now ready to create the conveyor system.

Creating the conveyor system

To create the conveyor system:

Step 1 From the System menu in the Work Area window, select New. The Create A New System
window opens.

Step 2 In the System Name text box, type “conv” and in the System Type drop-down list, select
Conveyor.

Step 3 Click Create to create the conveyor system. The Conveyor palette appears.

Drawing conveyor sections

You will begin drawing the system starting with the 80-foot vertical conveyor section on
left (see “Layout of example model 6.1” on page 6.9).

To draw the first section:

Step 1 On the Conveyor palette, click Single Line. The Single Line window opens. The default s
tion name is “sec1.”

The section number increments every time you add another section (that is, sec2, sec
so on). If you want to edit the name of the section, type a new name in the Name tex
and press Enter before you place the section. For this textbook, you can use the default
tion names.

Step 2 Select the Orthogonal check box to restrict the section you are drawing to either a horiz
or vertical section. The orthogonal option forces sections to be drawn parallel to grid

ote
Note
✎

6.10 rev 1.0

Getting Started with AutoMod Introduction to Conveyors

r-
 grid

unless
 you

ette,
Delete

el on
from
of the
Drawing to scale
It is important to draw the conveyor section using the correct scale. You can use both the
grid and the Measurement window to help you draw an 80-foot section. By default, the grid
lines are 5 feet apart, with major lines every 50 feet.

Step 1 Click Measurement to open the Measurement window.

Step 2 Move the Measurement window below the Work Area window and select Track Mouse.

Step 3 In the Work Area window, click once in the upper-left corner of the grid to place the starting
point of the conveyor where two major lines intersect (refer to the illustration below).

If the first point of the section is not correctly aligned with the drawing grid, you can press
Esc to quit drawing the section and place the first point again.

Step 4 Move the arrow down the screen. Watch the Measurement window’s Length value to dete
mine how long the conveyor section is. When the Length value is close to 80, use the
to position the end of the section at the 80-foot mark and click the mouse again.

The Measurement window tracks the mouse’s movement, not the section length; so,
you drag the mouse in exactly a straight line, the Length is not exactly 80. That is why
should also use the grid lines as a guide for determining section length.

If you want to delete a section that you have drawn, click Select on the Conveyor pal
then click the conveyor section to select it (the section color changes to green). Select
from the Edit menu in the Work Area window.

You have now drawn the first section of conveyor in the model, as shown below:

Drawing the vertical conveyor section

The direction marker in the center of the section indicates the direction that loads trav
the section. The direction of travel is determined when you draw the section (that is,
the first mouse click to the second mouse click). In this case, loads travel from the top
section to the bottom.

ote
Tip

☞

ote
Note
✎

ote
Tip

☞

sec1

direction marker
rev 1.0 6.11

Introduction to Conveyors Getting Started with AutoMod
Step 5 Draw the horizontal section of conveyor, as shown in the illustration below.

Use the drawing grid and Measurement window to draw the section to scale. Place the sec-
tion’s left point first, so that the section’s direction is from left to right.

Drawing the horizontal conveyor section

ote
Tip

☞

110 feet

sec1

sec2
6.12 rev 1.0

Getting Started with AutoMod Introduction to Conveyors
Filleting two paths
The Fillet tool is used to automatically connect two sections of path with an arc of a given
radius.

To create an arc between the vertical and horizontal paths, do the following:

Step 1 On the Conveyor palette, click Fillet.

Step 2 Select the two sections you want to connect in the Work Area window.

You can select multiple sections at the same time by dragging a box in the Work Area win-
dow over parts of each section. You do not need to select the entire section.

In the Work Area window, a red outline of an arc appears that connects the two sections.
The Fillet window also opens, as shown below:

Fillet window

The Trim option in the Fillet window automatically adjusts the lengths of the conveyor sec-
tions so that they connect to the arc. In this case, the 110-foot horizontal section is trimmed
to 108 feet. It is possible to prevent sections from being resized by clearing the Trim check
box, but in the examples and exercises in this textbook, always trim conveyor sections to
connect to arcs.

Step 3 To use the default arc (with a radius of 10 feet), click OK to fillet the paths. The arc section
is drawn and transfers are automatically created to connect the three sections of conveyor,
as shown below:

Filleting sections creates an arc section and transfers

ote
Tip

☞

Transfers are automatically created
to connect the arc to the adjacent
sections

sec1

sec2
sec3
rev 1.0 6.13

Introduction to Conveyors Getting Started with AutoMod
Connecting sections using Snap to End
The next section of conveyor is a small six-foot vertical section that connects to the end of
the horizontal section. To draw the small section to scale, adjust the grid.

To adjust the grid to draw the section:

Step 1 Click Grid Control to open the Grid Control window.

Step 2 Change the Minor Line value to 2 spaces (a minor line every two feet will make it easy to
draw a section that is exactly six feet) and press Enter.

Step 3 Close the Grid Control window and zoom in on the end of the horizontal section in the Work
Area window.

Step 4 On the Conveyor palette, click Single Line. The Single Line window opens.

The Snap to End option makes it easy to draw two sections that are connected end-to-end.
You can also use the Snap to Section option to draw a new conveyor section that connects
to the side of an existing conveyor section.

Step 5 You want the new section to start at the end of the horizontal section, so click Snap to End.

Step 6 In the Work Area window, click the end of the horizontal section and drag to draw a six-
foot vertical section, as shown below. Use the grid lines to ensure that you draw a section
that is six feet long.

Step 7 Click where you want the section to end.

Drawing a section at the end of an existing section

The next section of conveyor is the 69-foot vertical section. To create the section, you will
copy the vertical section that is on the left side of the model.

After changing the spacing of the
drawing grid, minor lines are placed
every two feet, which makes it easy
to draw a six-foot vertical section

6 feet
6.14 rev 1.0

Getting Started with AutoMod Introduction to Conveyors

ments
c.).

n is
 the
Copying conveyor sections
Copying a section is a quick way to create sections. To copy the 80-foot vertical section, do
the following:

Step 1 On the Conveyor palette, click Select.

Step 2 Select the vertical conveyor section. The section turns green to indicate that it is selected.

Step 3 From the Edit menu, select Copy. A copy of the section is created on top of the original sec-
tion, and the Copy window opens.

The default name of the copied section is “sec1_1.” The last number in the name incre
every time you make another copy of the original section (that is, sec1_2, sec1_3, et

Step 4 To move the copied section, drag it to the correct location, as shown below:

Moving the copied section

Step 5 Click OK to close the Copy window.

The copied section is now in the correct location. However, the direction of the sectio
incorrect. (We want loads to travel from the bottom of the section to the top, not from
top to the bottom, as is currently indicated.)

ote
Note
✎

Drag the copied section to
connect to the end of the
small vertical section

sec2

sec3

sec1

sec1_1

sec4
rev 1.0 6.15

Introduction to Conveyors Getting Started with AutoMod

as
Changing section direction
To change the direction of the section, do the following:

Step 1 The section is already selected, so from the Edit menu, select Change Direction. The direc-
tion marker reverses, as shown below:

Changing section direction

The next step is to edit the copied section’s length to be 69 feet and make it ramped
described in “Example 6.1: Drawing a conveyor system” on page 6.9.

The direction marker now
indicates that loads
travel from the bottom of
the conveyor to the top

sec2

sec3

sec1

sec1_1

sec4
6.16 rev 1.0

Getting Started with AutoMod Introduction to Conveyors

rting
80 to

in the
hich

ted to
Editing section length
When drawing, you can use the grid spacing and Measurement window to determine a sec-
tion’s length. You can also edit a section’s length once it is drawn by adjusting the sta
or ending values of the section. For the copied section, you must edit its length from
69 feet.

Step 1 The section is already selected, so from the Edit menu, select Edit. The Section Edit window
opens.

The section currently starts at 36 feet in the negative Y direction and ends at 44 feet
positive Y direction for a total length of 80 feet. The section needs to be 69 feet long, w
is 11 feet shorter than its current length. The start of the section must remain connec
the other sections, so adjust the end of the section.

Step 2 Change the Y End value from “44” to “33” and press Enter, as shown below:

Changing a section’s length

When you press Enter, the length of the section is updated in the Work Area window.

Moving sections
If you need to move a section that you have already drawn, use the following procedure:

Step 1 On the Conveyor palette, click Select.

Step 2 In the Work Area window, select the section you want to move (the color of the section
changes to green).

Step 3 From the Edit menu, select Move.

Step 4 Drag the section to the desired location.

Step 5 Click OK.

Now that the section is the correct length, you need to adjust its slope to create a ramped
section.

Change the Y End
value to 33
(36 + 33 = 69)
rev 1.0 6.17

Introduction to Conveyors Getting Started with AutoMod

Start

ork
Creating ramped sections
Ramped sections are often used to model gravity feed conveyors that start on a mezzanine
and go down to the main floor.

To make a ramped section, do the following:

The Section Edit window should still be open. If you closed the window, you can reopen it
by selecting the copied section and selecting Edit from the Edit menu.

Step 1 The section’s Z axis values determine its slope. Currently, the conveyor is flat (the Z
and Z End values are both zero). To make the conveyor descend 20 feet, change the Z End
value to –20 and press Enter, as shown below:

Changing a section’s slope

When you press Enter, the slope of the section is updated in the Work Area window.

Step 2 Click OK to close the Section Edit window.

Step 3 When you select a section, any transfers for that section are also highlighted, so the Transfer
Edit window opens. We do not want to edit the transfer, so select “OK, Quit Edit Each” to
stop editing.

To verify that the section is now ramped, use the View Control to rotate the view in the W
Area window. When you are finished, click Top to return to the top view.

ote
Note
✎

Changing the Z End value to –20
causes the section to descend 20
feet

ote
Tip

☞

6.18 rev 1.0

Getting Started with AutoMod Introduction to Conveyors

ce

, as
and is
Placing stations

Stations are locations at which a load can get on or off a section, or can stop to process while
on a section. Stations can be located anywhere on a section. Your conveyor system must
contain at least two stations in order for loads to travel on the conveyor: one station at which
loads get on the conveyor, and one at which loads get off the conveyor. The system can have
as many stations as the system design requires.

In this model, you need to place stations where loads get on and off the conveyor, as well as
where work is performed (see “Example 6.1: Drawing a conveyor system” on page 6.9).

To place stations, do the following:

Step 1 On the Conveyor palette, click Station. The Station window opens.

The default station name is “sta1.” The station number increments every time you pla
another station (that is, sta2, sta3, etc.).

Step 2 Change the station name to “sta_in,” as shown below:

Station window

Step 3 Drag the station to the correct location at the beginning of the 80-foot vertical section
shown below. (The graphic for the station appears when you click the mouse button
placed when you release the mouse button).

Adding station “sta_in”

You have now placed station “sta_in,” which is where loads will enter the system.

ote
Note
✎

sta_in
rev 1.0 6.19

Introduction to Conveyors Getting Started with AutoMod
Step 4 Name and place the remaining stations as shown in the illustration below.

To edit, delete, or move a station, select the station (using the Select tool) and then select the
desired option from the Edit menu.

Placing the remaining stations

The conveyor system is drawn according to the initial layout. Now you need to write logic
to move loads through the system.

ote
Tip

☞

sta_in

sta_proc_in

sta_proc_out

sta_insp_in

sta_out

sta_insp_out
6.20 rev 1.0

Getting Started with AutoMod Introduction to Conveyors

-

stem

s,
Moving loads through the conveyor system

Loads get on and off the conveyor and travel through the system by executing the move and
travel actions in an arriving procedure.

The move action causes loads to get on a conveyor by moving into a station. Loads can get
on the conveyor from any other location in a simulation, such as a queue (including directly
from Space). Similarly, to get off the conveyor, loads can move into any other location in a
simulation, such as into a queue or another movement system, or the loads can be sent to die.

The travel action causes loads to travel between stations on the conveyor.

For example, the logic for moving loads through the conveyor system in example model 6.1
is shown below:

begin P_geton arriving

move into Q_geton /*infinite capacity*/

move into conv:sta_in

travel to conv:sta_proc_in

send to P_process

end

The first action that loads execute is the move action to move into the infinite-capacity wait-
ing queue “Q_geton.” Loads then execute another move action to get on the conveyor at sta
tion “sta_in.”

When referring to movement system entities in logic, you must type the movement sy
name and entity name separated by a colon, such as conv:sta_in, where the system name
is “conv” and the station name is “sta_in”.

Loads then execute the travel action to travel from station “sta_in” to station
“sta_proc_in.” After arriving at station “sta_proc_in,” loads are sent to another proces
P_process, and begin executing that process’ arriving procedure.

ote
Note
✎

rev 1.0 6.21

Introduction to Conveyors Getting Started with AutoMod

tities
ut of

o exit
own

vel to
Alternately selecting stations
You can use the nextof distribution with the move or travel actions to alternately select the
stations where loads get on or off the conveyor (for more information, see “Selecting en
alternately using the nextof distribution” on page 5.47). For example, consider the layo
the conveyor system shown below:

Selecting sequential load destinations

Loads get on the conveyor station at station “sta_in” and travel alternately to one of tw
stations (“sta_out1” or “sta_out2”). The logic for selecting a destination alternately is sh
below:

begin P_start arriving procedure

move into conv:sta_in

travel to nextof(conv:sta_out1, conv:sta_out2)

send to P_next

end

The move action causes loads to get on the conveyor at station “sta_in.” Loads then tra
one of the two exit stations, which are selected alternately using the nextof distribution.

sta_in sta_out1

sta_out2
6.22 rev 1.0

Getting Started with AutoMod Introduction to Conveyors

cting
ant to

r an
sys-
Defining the example model logic
To move loads through the conveyor system in example model 6.1, do the following:

Step 1 Create a new process system named “proc.”

You can toggle between editing the process system and the conveyor system by sele
Open from the System menu in the Work Area window and opening the system you w
edit.

Step 2 Create a new source file named “logic.m”.

Step 3 Edit the source file and type the following logic:

begin P_geton arriving

move into Q_geton /*infinite capacity*/

move into conv:sta_in

travel to conv:sta_proc_in

send to P_process

end

begin P_process arriving

move into Q_process_in /*infinite capacity*/

move into Q_resource /*capacity of 2*/

use R_resource for e 20 min /*capacity of 2*/

move into Q_process_out /*infinite capacity*/

move into conv:sta_proc_out

travel to conv:sta_insp_in

send to P_inspect

end

begin P_inspect arriving

move into Q_inspect_in /*infinite capacity*/

move into Q_inspect /*capacity of 1*/

use R_insp for e 8 min /*capacity of 1*/

move into Q_inspect_out /*infinite capacity*/

move into conv:sta_insp_out

travel to conv:sta_out

send to die

end

Take a moment to review the model logic. Refer to the example model description fo
explanation of load activity in the simulation (see “Example 6.1: Drawing a conveyor
tem” on page 6.9).

Step 4 Save and quit the source file. When prompted, define the following entities:

P_geton – A single process.
Q_geton – A single queue with infinite capacity.
P_process – A single process.
Q_process_in – A single queue with infinite capacity.
Q_resource – A single queue with a capacity of 2.
R_resource – A single resource with a capacity of 2.
Q_process_out – A single queue with infinite capacity.
P_inspect – A single process.
Q_inspect_in – A single queue with infinite capacity.
Q_inspect – A single queue with a capacity of 1.
R_insp – A single resource with a capacity of 1.
Q_inspect_out – A single queue with infinite capacity.

ote
Tip

☞

rev 1.0 6.23

Introduction to Conveyors Getting Started with AutoMod
Placing queue and resource graphics

When modeling a system, place queue and resource graphics so that you can watch the ani-
mation and verify that the system is being simulated correctly.

Step 1 Place the queue and resource graphics, as shown below:

Placing queue and resource graphics

Q_geton

Q_process_in

Q_process_out

Q_resourceR_resource

R_insp

Q_inspect_in Q_inspect_out

Q_inspect
6.24 rev 1.0

Getting Started with AutoMod Introduction to Conveyors

ival

n
Placing load graphics

Until now, you have always used the default graphic for loads, because load size did not
affect the accuracy of the model. Now that loads are traveling on a conveyor, load size is
important for accurate simulation, because the size of a load affects the amount of space it
requires on the conveyor.

In example model 6.1, you need to scale loads to 2 feet on the X axis, 3 feet on the Y axis,
and 2 feet on the Z axis. The loads should also be blue.

To define and place load graphics, do the following:

Step 1 Click Loads on the Process System palette. The Loads window opens.

Step 2 Define a new load type named “L_job”.

Step 3 Define a creation specification that sends loads to process “P_geton” with an interarr
time that is exponentially distributed with a mean of 11 minutes.

Step 4 In the Loads window, select L_job in the Load Types list and click Edit Graphic. The Edit
Load Type Graphics window opens.

Step 5 Click Place. In the Work Area window, click above the vertical section where loads get o
the conveyor; a small green box appears, representing a load of type L_job.

Step 6 To scale the load in the X direction, click the X Scale button then type “2” in the Scale text
box and press Enter, as shown below:

Scaling load graphics

Step 7 To scale the load in the Y direction, click the Y Scale button, type “3” in the Scale text box,
and press Enter.

Step 8 To scale the load in the Z direction, click the Z Scale button, type “2” in the Scale text box,
and press Enter.

Step 9 Click Color (Inherit). The Select a Color window opens.

Type “2” in the Scale text box and press Enter

Click the X Scale button
rev 1.0 6.25

Introduction to Conveyors Getting Started with AutoMod

 you
 and

ussed
Step 10 Click Blue and click OK. The Edit Load Type Graphics window opens, as shown below:

Defining load graphics for loads of type L_job

Step 11 Click Done to close the Edit Load Type Graphics window.

Running the model
To run the model, do the following:

Step 1 Define the run control to run the model for one day.

Step 2 Export and run the model.

Watch the simulation and refer to the example description for an explanation of load activity
in the simulation (see “Example 6.1: Drawing a conveyor system” on page 6.9). When
are familiar with how loads are processed in the system, press “g” to turn off graphics
run the simulation to completion so you can verify the conveyor system statistics, disc
next.

The load color is set to blue

The load size is 2 x 3 x 2
6.26 rev 1.0

Getting Started with AutoMod Introduction to Conveyors
Displaying section statistics
Section statistics provide information about loads that traveled on a conveyor section. These
statistics should be used in conjunction with process system statistics when analyzing a con-
veyor system simulation.

To display section statistics:

Step 1 From the Conveyor menu, select Section Statistics. The Section Statistics window opens, as
shown below:

Conveyor section statistics

Section statistics are defined as follows:

Section The name of the section.

Entries The total number of loads that traveled on the section.

Average
Time/Ent

The average time a load spent on the section.

Ave The average number of loads on the section.

Current
Contents

The current number of loads on the section.

Max The maximum number of loads that were on the section at the same time.
rev 1.0 6.27

Introduction to Conveyors Getting Started with AutoMod
Summary

In this chapter, you learned how to transport loads using a conveyor system. The basic steps
for creating a model containing a conveyor system are:

Step 1 Create a new model.

Step 2 Create the conveyor system.

Step 3 Draw the conveyor sections, using the drawing grid and Measurement window to draw the
sections to scale.

Step 4 Place stations where loads get on and off the conveyor and where processing is
performed.

Step 5 Define the process system, including:

• The model logic
• Processes
• Resources and queues
• Loads

Step 6 Place the graphics for resources, queues, and loads.

Step 7 Define the run control.

Step 8 Export and run the model.

Step 9 Analyze the simulation statistics.
6.28 rev 1.0

Getting Started with AutoMod Introduction to Conveyors

equen-

Exercises

Exercise 6.1

Create a new model, then draw the conveyor shown below:

Loads are created with an interarrival time that is exponentially distributed with a mean of
15 seconds. Loads enter the conveyor system at station “sta_in.” Loads then travel s
tially to one of the four exit stations (“sta_out1” through “sta_out4”). The load size is
defined as:

Run the model for one day.

What are the average number of loads on each of the four exit sections of conveyor?

sta_out4

sta_out3

sta_out2

sta_out1

sta_in

45 feet

15 feet

10 feet

X 2=
Y 3=
Z 1=
rev 1.0 6.29

Introduction to Conveyors Getting Started with AutoMod

they
Exercise 6.2

Create a new model, then draw the conveyor shown below:

Loads are created with an interarrival time that is exponentially distributed with a mean of
10 seconds. Loads first move into an infinite-capacity queue. They then get on the conveyor
at station “sta_in.” Loads travel to station “sta_out” at the end of the conveyor where
leave the system. The load size is defined as:

Run the model for five days, then answer the following:

a) What was the average time each load spent in the simulation?
b) What was the average number of loads in the simulation?
c) What was the maximum number of loads in the simulation?
d) What was the average number of loads in the queue?
e) What was the maximum number of loads in the queue?

100 feet

215 feet

sta_in sta_out

X 3=
Y 3=
Z 1=
6.30 rev 1.0

Getting Started with AutoMod Introduction to Conveyors
Exercise 6.3

A conveyor system consists of a ramped conveyor. The conveyor starts at floor level and
rises 20 feet in 100 feet. Then it drops back to the floor in 100 feet. A five-foot section stays
at floor level, after which the conveyor rises 20 feet in 45 feet. Finally, the conveyor drops
back to the floor.

Create a new model, then draw this conveyor, as shown below:

Loads are created with an interarrival time that is exponentially distributed with a mean of
6 seconds. Loads first move into an infinite-capacity queue. Loads then get on the conveyor
and travel to the end of the conveyor, where they leave the system. The load size is defined
as:

Run the model for five days then answer the following questions:

a) What was the maximum number of loads in the system?
b) What was the average number of loads in the system?
c) What was the maximum number of loads in the entry queue?

100 feet

100 feet

50 feet

5 feet

45 feet

X 2=
Y 2=
Z 2=
rev 1.0 6.31

Introduction to Conveyors Getting Started with AutoMod

he
Exercise 6.4

Create a new model, then draw the conveyor shown below:

Loads are created with an interarrival time that is exponentially distributed with a mean of
3 seconds. Loads sequentially get on the conveyor at one of four entry stations (station
“sta_in1” through “sta_in4”). Loads then travel to station “sta_out” where they leave t
system. The load size is defined as:

Run the model for five days, then answer the following:

a) What was the maximum number of loads on any of the entry conveyor sections?
b) What was the maximum number of loads on the horizontal section of conveyor?
c) What was the average number of loads on the horizontal section of conveyor?

18 feet

200 feet

sta_in1 sta_in3

sta_in2 sta_in4

sta_out

15 feet

X 2=
Y 2=
Z 1=
6.32 rev 1.0

Getting Started with AutoMod Advanced Process System Features

. 7.24
. 7.25
.. 7.25
... 7.25
Chapter 7

Advanced Process System Features

Storing information in variables and load attributes .. 7.4
Defining variables ... 7.4
Defining load attributes... 7.5
Determining when to use variables versus load attributes .. 7.5
Defining variable and load attribute types .. 7.6
Setting variable and load attribute values ... 7.7

Incrementing or decrementing the value of a variable or load attribute 7.8

Example 7.1: Processing widgets by part type ... 7.9

Defining variables and load attributes in example model 7.1 7.10

Defining the model initialization function... 7.12
Actions that are illegal in functions... 7.12
Returning a value from a function... 7.13
Creating new loads in the model logic .. 7.13

Writing repeating logic ... 7.14
Writing logic that repeats indefinitely... 7.14
Writing logic that repeats a limited number of times.. 7.15

Avoiding infinite loops .. 7.17
Infinite loops in continuously repeating loops.. 7.17
Infinite loops in finite loops.. 7.18
Ending a simulation using the Windows Task Manager 7.18

Cloning loads in the model logic .. 7.19
Assigning a new load type to cloned loads ... 7.20

Determining which method to use when generating new loads 7.20

Tracking custom statistics using variables and load attributes 7.21

Aligning entities using load attributes... 7.22

Understanding concurrent processing in a simulation .. 7.23

Reading data from files... 7.24
Defining a file’s location..
Determining the reading position in a file..
Reading to the end of a file ...
Converting data values...
rev 1.0 7.1

Advanced Process System Features Getting Started with AutoMod

7.30
..7.30

..7.31

.7.32
Terminating a simulation..7.26

Displaying variable values during a simulation..7.26

Selecting randomly using the oneof distribution ..7.27
Randomly selecting from a series of values ..7.27
Randomly selecting from a series of entities ...7.28

Example 7.2: Choosing a queue based on the fewest loads..7.29

Determining which queue contains the fewest loads ..7.29
Aligning arrayed entities using the “index” attribute ..

Using entity attributes...

Example 7.3: Generating loads from a data file ...7.31
Reading multiple-column data files...
Specifying a delimiter when reading from a file ..

Summary ..7.33

Exercises ...7.34
Exercise 7.1..7.34
Exercise 7.2..7.34
Exercise 7.3..7.34
Exercise 7.4..7.35
Exercise 7.5..7.36
7.2 rev 1.0

Getting Started with AutoMod Advanced Process System Features
Chapter 7

Advanced Process System Features

This chapter introduces new syntax that is useful for modeling complex systems. First, you
will learn how to use variables and load attributes to store and change data during a simula-
tion. You will also use variables and load attributes to track custom statistics and write logic
that repeats a specific number of times during a simulation.

This chapter discusses new actions that can give you greater control of a simulation. For
example, until now, you have always created loads by defining a load creation specification.
In this chapter you will learn how to create new loads and make copies of existing loads
using actions in an arriving procedure. You will also learn how to end the simulation using
an action in a procedure.

This chapter introduces a method for reading external data from a file and using it in a sim-
ulation. Reading data from a file allows easy use of data from other sources, such as a control
system. It also allows you to run models using different data sets.

Finally, the chapter introduces two new ways to select from a series of entities.
rev 1.0 7.3

Advanced Process System Features Getting Started with AutoMod

iable

 dis-
sent

cuted
 a

 enter-
 you
 con-
, you
onger

i-

sing a
ting
Storing information in variables and load attributes
Variables and load attributes are used to store information during a simulation. This section
discusses:

• Defining variables.
• Defining load attributes.
• Defining variable and load attribute types.
• Setting and changing variable and load attribute values.

Defining variables

A variable is a user-defined entity that stores information in a model. You can use a var
to store numbers, words, and other data, then reference it throughout the simulation.

For example, you could use a variable to store a processing time, as shown below:

use R_lathe for e V_proctime

A load executing this action uses the resource R_lathe for a time that is exponentially
tributed with a mean that is stored in the variable V_proctime. The variable can repre
any time value, such as 10 seconds or 20 minutes.

Any load in a model can reference the value of a variable. For example, if ten loads exe
the above action, all ten would process for a time that is exponentially distributed with
mean of V_proctime seconds.

Variables are important because they allow you to create flexible models. Rather than
ing data directly in the logic, you can use variables to represent the data. Then, when
run the model, the variables are replaced with specific values. Variables allow you to
duct experiments by running the same model with different data values. For example
could vary the value of the variable V_proctime in the syntax above to see what effect l
or shorter processing times have on the system.

In chapter 10, “Intermediate Statistical Analysis,” you will learn how to conduct exper
ments with the AutoStat software to vary the value of a variable.

Variable values can be changed during a simulation using the set action, which is discussed
in “Setting variable and load attribute values” on page 7.7.

Like other entities, variables can be defined from the Process System palette or by u
variable name in the model logic and then defining the variable when saving and quit
the source file.

ote
Tip

☞

7.4 rev 1.0

Getting Started with AutoMod Advanced Process System Features

n.

e was

 and

distrib-
time
conds

 using
d quit-

. Use
 a load

l for
riables
urces

f infor-
s rep-
e, load
arts in
hine or
Defining load attributes

Like a variable, a load attribute is a user-defined entity that stores data. Attributes, how-
ever, store a different piece of data for each load in the model, whereas a variable stores a
piece of data that is the same no matter which load is referencing it. For example, you might
create an attribute in which each load stores its part type. This attribute will contain different
data depending on which load references the attribute; a load of part type A could have
“PartA” as its attribute value, while a load of part type B could have “PartB,” and so o

The previous section showed how to use a variable to store a processing time. The tim
the same regardless of which load executed the use action. But what if the processing time
varied for each part in the system? You could store the time in an attribute of the load
use the following syntax:

use R_lathe for e A_proctime

This action causes loads to use the resource R_lathe for a time that is exponentially
uted with a mean that is stored in the load attribute A_proctime. The value of A_proc
can vary depending on which load executes the action (that is, the value may be 45 se
for some loads, 65 seconds for others, and so on).

Attribute values can be changed during a simulation using the set action, which is discussed
in “Setting variable and load attribute values” on page 7.7.

Like other entities, load attributes can be defined from the Process system palette or by
a load attribute name in the model logic and then defining the attribute when saving an
ting the source file.

Determining when to use variables versus load attributes

Variables and attributes are both user-defined ways to store data during a simulation
the following guidelines to decide when to store data using a variable and when to use
attribute:

Use variables to track information that applies to the entire model.

Because variable values can be referenced and changed by any load, they are usefu
tracking values that describe the system being simulated. For example, you can use va
to track the number of loads that are currently in the simulation or the number of reso
that are currently unavailable.

Use load attributes to track information that is specific to each load.

Load attributes are used to store or track information that describes a load. The type o
mation that you might want to store in load attributes will vary based on what the load
resent in the system. For example, if loads represent vehicles arriving at a warehous
attributes can be used to assign a parking location to each vehicle. If loads represent p
the warehouse, then load attributes can be used to assign each part to a specific mac
track the amount of time that each part spends in the system.
rev 1.0 7.5

Advanced Process System Features Getting Started with AutoMod

d load

mple,
n used
elow
e load

e load
 and
n of 5
bute is

hich
 or load
 on

utes is

 5
Defining variable and load attribute types

When you define a variable or a load attribute, you must specify what type of data the vari-
able or load attribute stores. Variables and load attributes can store numeric types, such as
those listed in the table below:

Variables and load attributes can also represent string values, which can be any combination
of alphanumeric characters enclosed in quotes. For example “PartA,” “the 5 loads,”
“135hd98” and “15” are all string values.

Variables and load attributes can also represent entities in the simulation. Variables an
attributes that represent entities are called pointers. Some commonly used pointers are
shown in the table below:

Pointer variables and attributes store the name of an entity in the simulation. For exa
a variable that points to the queue Q_enter has the value “Q_enter”. Pointers are ofte
to refer to a randomly selected entity in the model logic. For example, the procedure b
sets the value of the load attribute A_resource to a sequentially selected machine. Th
attribute A_resource is of type ResourcePtr.

begin P_select arriving

set A_resource to nextof(R_mach(1), R_mach(2), R_mach(3))

/* Set the value of A_resource to point to the next machine */

print “This load is using resource ” A_resource to message

/* Print the selected machine’s name to the Message window */

use A_resource for e 5 min

/* Use the selected machine */

send to P_next

end

After storing a pointer to the selected machine, the load is able to refer to the selected
resource later in the procedure using the load attribute A_resource. For example, the first
time a load executes the procedure, the value of A_resource is set to “R_mach(1)”. Th
prints the message “This load is using resource R_mach(1)” to the Message window
then uses resource R_mach(1) for a time that is exponentially distributed with a mea
minutes. When the next load executes the procedure, the value of its A_resource attri
set to “R_mach(2),” and so on.

Later in this chapter, you will learn how to select from a group of queues based on w
queue contains the fewest number of loads; the selected queue is saved in a variable
attribute of type QueuePtr (see “Determining which queue contains the fewest loads”
page 7.29).

The syntax that is used for setting and changing the value of variables and load attrib
discussed in more detail in the next section.

Type Description

Integer A whole number. For example 0, 1, –50, and 13256 are all integer values.

Real A number that can contain a fractional part. For example 1.0, 359.69 and
–50.56 are all real values.

Time A number that represents a time in seconds. For example the value 5 represents
seconds, the value 3.468 represents 3.468 seconds, and so on.

Type Description

QueuePtr A pointer to a queue in the model.

ResourcePtr A pointer to a resource in the model.

LoadTypePtr A pointer to a load type in the model.
7.6 rev 1.0

Getting Started with AutoMod Advanced Process System Features

al
eric

e vari-

using
 and
Setting variable and load attribute values

The value of a variable or load attribute at the beginning of a simulation is referred to as the
initial value. The initial value of numeric variables (type Integer, Real, or Time) is set when
you define the variables in the software. (For information about defining variables, see
“Defining variables and load attributes in example model 7.1” on page 7.10.) The initi
value of numeric load attributes is automatically set to zero. The initial value of non-num
variables and load attributes (for example, pointers) is automatically set to null. A null value
indicates that there is no value yet assigned to the variable or load attribute; that is, th
able or attribute is not currently referencing any data in the simulation.

During a simulation, you can set or change the value of any variable or load attribute
the set action. For example, the procedure below sets the values of several variables
load attributes:

begin P_init arriving procedure

set V_intval to 5 /*V_intval is of type Integer*/

set V_intval to 6 /*The value changes from 5 to 6 */

set A_realval to 5.3 /*A_realval is of type Real*/

set V_timeval to 5 /*V_timeval is of type Time*/

set A_stringval to “Simulation” /*A_stringval is of type String*/

set V_queueptr to “Q_enter” /*V_queueptr is of type QueuePtr*/

set A_loadtypeptr to “L_part” /*A_loadtypeptr is of type LoadPtr */

end

You can use the equal sign (=) in place of the to syntax. For example,

set V_intval = 5

is the same as

set V_intval to 5

You can also set the value of a variable or load attribute to the value of another variable or
load attribute, as shown below:

set A_intval to 5

set V_intval to A_intval /* V_intval is now 5 */

set V_realval to 3.32

set A_realval to V_realval /* A_realval is now 3.32 */

Some variable and load attribute types are inconsistent and their values cannot be set to one
another. For example, you cannot set a variable of type Real to the value of a variable of type
QueuePtr. If you try to mix inconsistent types in the model logic, an error appears when you
save and quit the source file.

ote
Tip

☞

Note
Important

▲!
rev 1.0 7.7

Advanced Process System Features Getting Started with AutoMod
Incrementing or decrementing the value of a variable or load attribute
You can also increase or decrease the value of any numeric variable or load attribute using
the increment or decrement actions, respectively, as shown below:

begin P_calc arriving procedure

set V_firstval to 5 /* V_firstval is now 5 */

increment V_firstval by 1 /* V_firstval is now 6 */

set V_secondval to 3 /* V_secondval is now 3 */

increment V_secondval by 2 /* V_secondval is now 5 */

decrement V_firstval by V_secondval /* V_firstval is now 1 */

decrement V_secondval by V_firstval /* V_secondval is now 4 */

end

You can use the abbreviated syntax inc in place of increment, and dec in place of
decrement. For example,

inc V_numval by 2

dec V_numval by 3

is the same as

increment V_numval by 2

decrement V_numval by 3

Example model 7.1 will demonstrate how to define variables and load attributes.

ote
Tip

☞

7.8 rev 1.0

Getting Started with AutoMod Advanced Process System Features
Example 7.1: Processing widgets by part type
Four types of widgets are processed in a plant; the widgets are color-coded by part type (red,
blue, green, or yellow). Widgets arrive in sets, with each set containing four widgets. The
interarrival time between each set is exponentially distributed with a mean of 7 minutes. The
number of each type of widget in a set is randomly determined. Data collected from the sys-
tem indicates that a widget has a 30 percent chance of being a red widget, a 20 percent
chance of being a blue widget, a 25 percent chance of being a green widget, and a 25 percent
chance of being a yellow widget.

Upon arrival, widgets are automatically sorted and placed into waiting queues to be pro-
cessed by one of four machines. Each machine has its own infinite-capacity waiting queue
and single-capacity processing queue. Each machine can process only one type of widget
(the first machine processes only red widgets, the second machine processes only blue wid-
gets, the third machine processes only green widgets, and the fourth machine processes only
yellow widgets). Each machine can only process one widget at a time.

The time required to process each widget has been collected in a text file by the control sys-
tem; this file can be used to determine the processing time of each load at a machine. The
processing times that have been collected in the file are recorded in minutes.

After processing, the widgets move into an infinite-capacity queue to await inspection. Wid-
gets are assigned to one of two inspectors in sequential (round-robin) order. Each inspector
has a separate, single-capacity queue where loads are inspected. Inspection takes a time that
is exponentially distributed with a mean of 2 minutes 30 seconds. Each widget has an 8 per-
cent chance of being rejected after inspection. Rejected widgets are sent back to the correct
waiting queue to be re-processed by a machine. (Reworked widgets have the same chance
of being rejected, and can be reworked as many times as necessary until they pass.) Widgets
that pass inspection are removed from the system.

The time between failures for each of the processing machines is exponentially distributed
with a mean of 220 minutes. The time required to repair each machine is exponentially dis-
tributed with a mean of 10 minutes.

You need to simulate the system until the data file is out of data for the widget processing
times. During simulation, track the number of loads that are currently in the system. Also,
when a widget completes processing, print the time that the widget spent in the system to
the Message window before it leaves the simulation.
rev 1.0 7.9

Advanced Process System Features Getting Started with AutoMod

ng
ach

 on

 num-
of

by

ussed
Defining variables and load attributes in example model 7.1
The logic that is used to simulate example 7.1 has already been defined in the base version
of the example model. However, the logic is currently commented because the variables and
load attributes in the logic have not yet been defined. Therefore, the first step is to open the
model and define the name and type of each variable and load attribute.

The initial value of a numeric variable is set when you define the variable. The value of load
attributes and non-numeric variables must be set using the set action in the model logic (see
“Setting variable and load attribute values” on page 7.7 for more information).

To define the variables and load attributes in the model:

Step 1 Import a copy of the base version of example model 7.1.

Step 2 Edit the model logic and delete the comment markers /* and */ at the beginning and end of
the source file.

Step 3 From the File menu, select Save and Quit. The Error Correction window opens, indicati
that V_set is undefined. The V_set variable is used to limit the number of widgets in e
set to 4 (an integer value).

Step 4 To define the variable, select Define. In the Define as drop-down list, select Variable.

Step 5 Click Define as. The Define a Variable window opens, as shown below:

Defining the V_set variable

Options in the Define a Variable window are defined as follows:

Name The name of the variable.

Initial value The value of a numeric variable at the beginning of the simulation.

Type The type of variable you are defining (see “Defining variable and load attribute types”
page 7.6).

Title A comment that describes the variable (optional).

Dimension The number of variables that you are creating. Changing the value of Dimension 1 to a
ber greater than one creates an array of variables. For example, if you set the value
Dimension 1 to “4,” then four different V_set variables would be created, each of type
Integer. As with other arrayed entities, you can refer to the arrayed variables in logic
using a parenthetical number after the variable name, for example:

set V_set(1) to 3

set V_set(2) to 2

and so on. Changing the value of a variable’s 2nd, 3rd, and 4th dimensions is not disc
in this textbook.

ote
Note
✎

The variable is set to store values of type Integer, with
an initial value of zero
7.10 rev 1.0

Getting Started with AutoMod Advanced Process System Features
Step 6 Because Integer is already selected as the variable type and the initial value is already set to
zero, click OK to define the variable.

Step 7 The Error Correction window opens, indicating that A_type is undefined. The A_type
attribute is used to assign an integer value to each load to represent its part type (1, 2, 3, or 4).

Step 8 In the Define as drop-down list, select Load Attribute and click Define as. The Load
Attributes window opens.

Step 9 Because Integer is already selected as the attribute type, click OK to define the load attribute.

Step 10 The Error Correction window opens, indicating that A_timestamp is undefined. The
A_timestamp attribute is used to track the time that each widget spent in the system.

Step 11 Click Define as. The Load Attributes window opens. To define the attribute type, select
Time in the Type drop-down list, as shown below:

Defining the A_timestamp attribute

Step 12 Click OK to define the load attribute. The Error Correction window opens, indicating that
V_insystem is undefined. The V_insystem variable is used to track the number of widgets
that are currently in the simulation (an integer value). Because there are no widgets in the
plant at the beginning of the simulation, the initial value of the variable should be zero.

Step 13 In the Define as drop-down list, select Variable and click Define as. The Define a Variable
window opens.

Step 14 By default, the variable is already set to store values of type Integer and the initial value is
set to zero, so click OK.

Step 15 Define the remaining load attributes, as shown in the table below:

If you incorrectly define the type of a variable or load attribute, you can edit it by clicking
Variables or Loads on the Process System palette after closing the source file. You may need
to comment the code before you can close the source file.

You have now defined the variables and load attributes that are used in the model logic.

Step 16 Export and run the model.

Step 17 Once you are familiar with the processing of loads in the system, edit the model.

You are now ready to look at the logic used to model this system.

Set the load attribute to store values of type Time

Load attribute name Type

A_time Time

A_insp Integer

A_index Integer

ote
Tip

☞

rev 1.0 7.11

Advanced Process System Features Getting Started with AutoMod

tion,

ed
indow
ion is
e

now

ot be
ing

 Help.
Defining the model initialization function
There are five load types in example model 7.1, but there are no load creation specifications;
all of the loads in the simulation are created in the model logic. The first action that creates
loads appears in a new piece of logic known as a function. Like arriving procedures, func-
tions are defined using the begin and end syntax. Functions are discussed in detail later in
this textbook (see “Performing calculations with functions” on page 14.19 of the “Addi-
tional Features” chapter). In this chapter, however, we introduce one predefined func
called the model initialization function.

The model initialization function is a section of model logic that is automatically execut
at the beginning of each simulation. The logic is executed as soon as the Simulation w
opens (even before you continue a paused simulation). The model initialization funct
useful for setting some of the initial conditions in a model. Example model 7.1 uses th
model initialization function to create loads to start the simulation, as shown below:

begin model initialization function

create 4 loads of type L_dummy to P_machdown /* Model down times */

create 1 load of type L_dummy to P_start /* Start production */

return true

end

Before learning how to create loads in the model initialization function, you need to k
two important characteristics of functions:

• Some actions are illegal in functions.
• Functions must return a value.

Actions that are illegal in functions

You cannot cause a time delay in a function. Therefore, several AutoMod actions cann
used in a function. Of the actions that have been discussed in this textbook, the follow
actions cannot be used in a function:

• free

• get

• move

• send

• travel

• use

• wait

For a complete list of the actions that are illegal in a function, see the AutoMod Syntax
ote
Help
8

7.12 rev 1.0

Getting Started with AutoMod Advanced Process System Features

14.20

hine
 using

 pro-

x for
 is set

f its
p
ibute
gs up

achine,

 the

 in the
Returning a value from a function

Functions must return a value using the return action. Often, functions are defined to per-
form one or more calculations and then return a value that is used in the simulation. For
example, a function might compare a sequence of numbers and then return the largest num-
ber in the sequence. The model initialization function is a special type of function that
returns a value that is not used. However, because all functions must return a value, the fol-
lowing syntax is used at the end of the model initialization function:

return true

The return action must be the last action in a function. Writing functions that use a return
value is discussed in greater detail later in this textbook (see “Return value” on page
of the “Additional Features” chapter).

Creating new loads in the model logic

The model initialization function in example model 7.1 creates new loads to model mac
down times and to model the arrival of widget sets in the plant. The loads are created
the create action, as shown below:

create 4 loads of type L_dummy to P_machdown /* Model down times */

create 1 load of type L_dummy to P_start /* Start production */

The first create action creates four dummy loads of type L_dummy that are sent to the
cess P_machdown, which defines the machine failures, as shown below:

begin P_machdown arriving
/* Model down time for each of the four machines */

set A_index to nextof(1,2,3,4)

while 1=1 do begin

wait for e 220 min

take down R_mach(A_index)

wait for e 10 min

bring up R_mach(A_index)

end

end

The nextof distribution assigns a sequential integer value to the load attribute A_inde
each of the four loads that execute the procedure (the value of the first load’s attribute
to 1, the value of the second load’s attribute is set to 2, and so on).

The four processing machines are modeled as an array. After a load sets the value o
A_index attribute, it executes the while...do loop that causes it to take down and bring u
one of the arrayed machines throughout the simulation. The value of the A_index attr
is used to align each load with an arrayed machine (the first load takes down and brin
the first machine in the array, the second load takes down and brings up the second m
and so on).

The second create action creates a single dummy load of type L_dummy that is sent to
process P_start. The arriving procedure for P_start contains two while...do loops that
make copies of the L_dummy load to create sets of widgets in the plant, as discussed
next section.
rev 1.0 7.13

Advanced Process System Features Getting Started with AutoMod
Writing repeating logic
At the beginning of the simulation, the model initialization function creates one load of type
L_dummy and sends it to the P_start arriving procedure, shown below:

The procedure makes clones, or copies, of the L_dummy load to simulate the arrival of the
widget sets in the simulation. The procedure contains new syntax: the oneof distribution and
the clone action. The procedure also contains two loops of logic controlled using
while...do actions. The outer loop repeats continuously throughout the simulation, and the
inner loop (nested within the outer loop) uses a variable to repeat a limited number of times.

Writing logic that repeats indefinitely

The outer loop in the P_start arriving procedure is a while...do loop that repeats continu-
ously throughout the simulation. The loop is used to model the delay between arrivals of
widget sets in the simulation. The loop is defined using the while...do syntax that you have
used to model down time procedures in previous chapters.

Look at the outer loop, as shown below:

begin P_start arriving
while 1=1 do begin

set V_set to 1
...
(Inner loop is defined here)
...
wait for e 7 min

end
end

The first action in the loop sets the value of the variable V_set to one. This means that each
time the outer loop is executed, the value of the V_set variable is reset to one so that the inner
loop can count from one to four. After setting the variable, the inner loop is executed (dis-
cussed in the next section).

When the inner loop is completed, a time delay, which is exponentially distributed with a
mean of seven minutes, is taken. The delay represents the interarrival time between sets of
widgets in the simulation. After the time delay, the outer loop repeats.

Whenever you write logic that repeats continuously throughout a simulation, the logic must
contain a time delay to avoid an infinite loop (see “Avoiding infinite loops” on page 7.17).

begin P_start arriving

while 1=1 do begin

set V_set to 1

while V_set <= 4 do begin

set A_type to oneof(30:1,20:2,25:3,25:4)

 if A_type = 1 then clone 1 load to P_timestamp nlt L_red

 else if A_type = 2 then clone 1 load to P_timestamp nlt L_blue

 else if A_type = 3 then clone 1 load to P_timestamp nlt L_green

 else if A_type = 4 then clone 1 load to P_timestamp nlt L_yellow

inc V_set by 1

end

wait for e 7 min

end

end

Outer loop Inner loop

Note
Important

▲!
7.14 rev 1.0

Getting Started with AutoMod Advanced Process System Features

 shown

num-
ave

 the
ber of
ition

_set
n four,
idget.

o.
he
 loop,
e).

 V_set
tion
 on to
p, the
es to

ting a

stanta-
Writing logic that repeats a limited number of times

The nested (inner) loop in the P_start procedure demonstrates how to limit the number of
times a loop is executed. The inner loop models the creation of widget sets in the simulation.
Each time the inner loop is executed, a copy of the L_dummy load is cloned to represent a
widget (cloning loads is discussed in “Cloning loads in the model logic” on page 7.19).
Because a widget set contains four widgets, the loop must be executed four times, as
below:

while V_set <= 4 do begin
...
(A copy of the L_dummy load is cloned here)
...
inc V_set by 1

end

The while...do loop uses the variable V_set to define a condition that determines the
ber of times the loop is executed. In the loops that you have defined previously, you h
always used the condition while 1=1 to make the loop repeat indefinitely. This example
uses the condition while V_set <= 4 to cause the loop to repeat as long as the value of
variable V_set is less than or equal to four. This condition generates the required num
widgets in a set. You can use any of the following relational operators to define a cond
in a while...do loop:

The first time that the L_dummy load executes the inner loop, the value of the variable V
is one (recall that the variable’s value is set in the outer loop). Because one is less tha
the inner loop is executed and a copy of the L_dummy load is made to represent a w
Before ending the inner loop, the value of the V_set variable is incremented by one.

The L_dummy load then attempts to execute the loop again. V_set is now equal to tw
Because two is less than four, the inner loop is executed again and another copy of t
L_dummy load is made to represent another widget in the set. Before ending the inner
the value of the V_set variable is incremented again (the variable is now equal to thre

The loop repeats until all four loads in the set have been created and the value of the
variable is equal to five. Because the value of the variable no longer meets the condi
required to execute the inner loop, the load stops executing the inner loop and moves
the next action in the outer loop (the time delay). When the load repeats the outer loo
value of the variable V_set is reset to one and the inner loop is executed four more tim
create the next set of widgets. This process repeats throughout the simulation.

Variable and load attribute values must be initialized to the correct value before execu
loop.

Because the inner loop does not include a time delay, the loop executes four times in
neously (the set of four widgets is created at the same instant in the simulation).

Relational
operator Description

= equal to
is equal to
> greater than
< less than
>= greater than or equal to
<= less than or equal to
<> not equal to

Note
Important

▲!
rev 1.0 7.15

Advanced Process System Features Getting Started with AutoMod
You can also write logic that decrements a variable to repeat a limited number of times. For
example, consider modeling a system in which parts are removed from boxes by a machine.
You would write a loop that tracks of the number of parts in each box (a variable number),
as shown below:

begin P_box arriving procedure

set A_parts to uniform 10, 2

/* A_parts is a load attribute of type Integer */

while A_parts > 0 do begin

use R_machine for uniform 15, 5 sec

dec A_parts by 1

end

send to P_next

end

The procedure is executed by loads that represent boxes in the system. A box first sets the
value of its load attribute A_parts to randomly determine the number of parts in the box.
Then, while the number of parts is greater than zero, the box uses R_machine to remove a
part and decrements the number of remaining parts in the box. When the box is empty
(A_boxes = 0), the loop stops repeating and the box is sent to the process P_next.

Loops that repeat a limited number of times are used frequently. However, special care must
be taken to avoid a common modeling error: accidentally creating an infinite loop, discussed
next.
7.16 rev 1.0

Getting Started with AutoMod Advanced Process System Features

s

 time
eat

ation

mula-
se the

hown

 model.
h as:
Avoiding infinite loops
You have learned that a loop is a series of actions that repeats until a condition is met or as
long as a condition remains true. An infinite loop is a loop in which the condition is always
true such that the loop repeats indefinitely without any delays between cycles of the loop.
There are several ways to accidentally create an infinite loop:

• Write a continuously repeating loop (while 1=1) that does not contain a time delay.
• Write a finite loop that does not contain a time delay and for which the condition i

always true.

An infinite loop does not contain a time delay between actions. Because there is not a
delay, the actions in the loop all occur at the same instant during a simulation and rep
indefinitely, which causes the simulation clock to stop advancing. As a result, the simul
environment “freezes up” and becomes unresponsive.

Infinite loops in continuously repeating loops
There are situations in which you want actions to repeat continuously throughout a si
tion, such as modeling resource down times. To model continuous behavior, you can u
condition while 1=1 as long as you include a time delay in the loop, such as a wait or use
action, so that other actions can be executed concurrently.

For example, if a down time loop did not contain a delay, such as a wait or use action, the
resource would go down and up endlessly at the same instant in the simulation, as s
below:

begin P_opershift arriving

while 1=1 do begin

take down R_oper

bring up R_oper

end

end

Because there are no delays, the clock cannot advance, so nothing else happens in the
To avoid an infinite loop, you must always include an action that causes a delay, suc

begin P_opershift arriving

while 1=1 do begin

wait for 55 min /* other events can occur during this time delay */

take down R_oper

wait for 5 min /* other events can occur during this time delay */

bring up R_oper

end

end
rev 1.0 7.17

Advanced Process System Features Getting Started with AutoMod

,
Infinite loops in finite loops
Often you use loops to repeat actions a fixed number of times, such as repeating a loop to
count the number of loads on a truck or for the number of parts in a bin. If you forget to
adjust the value of the variable or load attribute that you are using for the condition, and
there is no delay action, you will create an infinite loop.

For example, consider what would happen if you left out the increment action in the inner
loop of the P_start arriving procedure, as shown below:

while V_set <= 4 do begin

set A_type to oneof(30:1,20:2,25:3,25:4)

if A_type = 1 then clone 1 load to P_timestamp nlt L_red

else if A_type = 2 then clone 1 load to P_timestamp nlt L_blue

else if A_type = 3 then clone 1 load to P_timestamp nlt L_green

else if A_type = 4 then clone 1 load to P_timestamp nlt L_yellow

/* The increment action has been omitted */

end

V_set is initialized to 1 before the loop. Notice that there are no actions that cause delays in
the loop (no wait or use actions), and the increment action has also been omitted. There-
fore, the loop would repeat indefinitely, because 1 is always less than 4. The procedure
would continuously clone loads at a fixed instant in the simulation and no other events in
the simulation would occur. Your computer would rapidly run out of memory due to the
ever-increasing number of loads in the model.

Adding a delay to this loop would prevent an infinite loop, but the loop would still repeat
continuously because the condition is always true. The delay would simply allow other sim-
ulation events to occur, preventing the model from locking up. You need to add the incre-
ment action to get the expected results.

If you accidentally create an infinite loop during a simulation, you can end the simulation
using the Windows Task Manager, as shown below:

Ending a simulation using the Windows Task Manager
These steps were written for a computer that is running Windows NT 4.0. Refer to the help
for your operating system for information about ending a task using a different version of
the Windows operating system.

To end a simulation:

Step 1 Press Ctrl+Alt+Delete. The Windows NT Security window is displayed.

Step 2 Click Windows Task Manager. The Windows NT Task Manager opens.

Step 3 On the Applications tab, select the Task with the name of the model that you are currently
running.

Make sure that the task you select is the model executable (the name includes “Simulation”)
rather than the model editor (the name includes “Work Area”).

Step 4 Click End Task. The Simulation environment closes.

You can now edit your model to resolve the infinite loop.

ote
Note
✎

ote
Note
✎

Note
Important

▲!
7.18 rev 1.0

Getting Started with AutoMod Advanced Process System Features

eate
 case,
reen,

y
d
d set

ated

e cre-
. These

riginal
load
 of

type
ou can
” on
Cloning loads in the model logic
Now that you understand how loops are defined, you are ready to learn how to create copies
of the L_dummy load to represent widgets in the simulation. Each time the inner
while...do loop is executed in the P_start arriving procedure, a copy of the L_dummy load
is created, set to a new load type, and sent to the process P_timestamp.

Recall from the description of example model 7.1 that each widget arriving in the system
has a chance of being a red, blue, green, or yellow widget. This means that each time a copy
of the L_dummy load is created, it needs to be assigned a load type (either L_red, L_blue,
L_green, or L_yellow). The logic for making four copies of the L_dummy load and setting
each copy to a randomly selected load type is shown below:

while V_set <= 4 do begin

set A_type to oneof(30:1,20:2,25:3,25:4)

if A_type = 1 then clone 1 load to P_timestamp nlt L_red

else if A_type = 2 then clone 1 load to P_timestamp nlt L_blue

else if A_type = 3 then clone 1 load to P_timestamp nlt L_green

else if A_type = 4 then clone 1 load to P_timestamp nlt L_yellow

inc V_set by 1

end

The first set action in the loop uses the oneof distribution to set the value of the load
attribute A_type to 1, 2, 3, or 4, based on the probability defined in the oneof distribution
(the oneof distribution is discussed in detail later in this chapter; see “Randomly selecting
from a series of entities” on page 7.28 for more information).

The clone action allows you to specify the number of copies of the load you want to cr
(in this case, one load), the process to which you want to send the cloned load (in this
P_timestamp), and a new load type for the cloned load (in this case, L_red, L_blue, L_g
or L_yellow).

The syntax for assigning a new load type in the clone action is new load type, which can
be abbreviated as nlt. For example,

if A_type = 1 then clone 1 load to P_timestamp new load type L_red

is the same as

if A_type = 1 then clone 1 load to P_timestamp nlt L_red

In this procedure, there are four clone actions defined, but because of the
if...then...else condition, only one clone action is executed each time the L_dumm
load executes the loop. Which clone action is executed depends on the value of the loa
attribute A_type. If the value of A_type is equal to one, a copy of the load is created an
to the load type L_red, if the value of A_type is equal to two, a copy of the load is cre
and set to the load type L_blue, and so on.

Because the loop is executed four times, four different copies of the L_dummy load ar
ated and sent to the process P_timestamp, each with a randomly determined load type
four loads represent the four widgets that comprise a widget set.

When you clone a load, the copied loads retain the same load attribute values as the o
load. For example, when the value of L_dummy’s A_type attribute is one, the copied
(of type L_red) retains the value of one for its A_type attribute. Similarly, copied loads
type L_blue retain an A_type value of two, copied loads of type L_green retain an A_
value of three, and so on. This concept of retaining attribute values is useful because y
use the attribute values later in the model (see “Aligning entities using load attributes
page 7.22).

ote
Tip

☞

Note
Important

▲!
rev 1.0 7.19

Advanced Process System Features Getting Started with AutoMod

rs”
erify
anima-

ystem
 other,

e until

ide-

ly cre-
 val-
load

 using

ple,
to

ute
 value
or 4
ensure
 using
lue is
ue.
to rep-
Assigning a new load type to cloned loads

When using the clone action, cloned loads can either keep the same part type as the original
load or be assigned a new part type using the syntax new load type (or nlt). In example
model 7.1, cloned loads are assigned one of four load types L_red, L_blue, L_green, or
L_yellow. When you assign a new load type to a cloned load, the graphic of the cloned load
inherits the load size and color that have been defined for that load type. In example model
7.1, graphics have been placed for each of the four load types and they have been set to the
correct colors (see “Placing load graphics” on page 6.25 of the “Introduction to Conveyo
chapter for more information). Assigning a new load type to the loads allows you to v
that loads are using the correct queues and resources for their type by watching the
tion during a simulation.

Determining which method to use when generating new loads
To create new loads in a simulation, you can use any of the following methods:

• Define a creation specification for the load type
• Use the create action to create new loads in the model logic
• Use the clone action to make copies of an existing load in model logic

Regardless of which method you use, the load type must be defined from the Process S
palette. For a given load type, you generally use one load generation approach or the
that is, either use a creation specification or generate the loads in logic, but not both.

Regardless of which method you use, newly created loads are initially located in Spac
they execute an action to move into a different territory.

To determine which method to use when creating loads, use the following general gu
lines:

When new loads must be created continuously throughout the simulation, but the ini-
tial values of load attributes are not important, generate the loads using a creation
specification.

When you generate loads using a creation specification, the attribute values of the new
ated loads are initialized to either zero or null (see “Setting variable and load attribute
ues” on page 7.7). When the initial value of load attributes is unimportant, defining a
creation specification is the easiest way to generate loads throughout a simulation.

When a limited number of loads must be generated at a specific time during simula-
tion, but the initial values of load attributes are not important, generate the loads using
the create action.

As when defining a creation specification, the attribute values of loads that are created
the create action are initialized to either zero or null. The create action is often useful
when creating a limited number of loads at a specific time during a simulation. For exam
you can use the create action in the model initialization function to send dummy loads
processes that model resource down times.

When new loads must be generated with specific initial load attribute values, generate
the loads using the clone action.

Use the clone action when you want newly generated loads to have specific load attrib
values. In example model 7.1, the load attribute A_type is defined to assign an integer
to each load in the simulation. The initial value of this attribute must be set to 1, 2, 3,
for newly created loads in the system; these values are used later in the simulation to
that loads use the correct queues and resources in the system (see “Aligning entities
load attributes” on page 7.22). To create loads with the correct attribute value, the va
first set for a dummy load, which then clones a load with the correct load attribute val
This process, of setting the dummy load’s attribute value and then cloning a new load
resent a widget, repeats throughout the simulation.

ote
Note
✎

7.20 rev 1.0

Getting Started with AutoMod Advanced Process System Features

, is a
ribute.

ow:

 time
 sys-
ts the

ocess
sh pro-
ves
Tracking custom statistics using variables and load attributes
According to the description of example 7.1, you need to track the number of loads that are
currently in the system. Also, when a widget completes processing, you must print the time
that the widget spent in the system before removing it from the simulation.

Because the number of loads in the system is a value that applies to the simulation as a
whole, you can track the value using a variable. A load’s time in the system, however
value that is unique to each load in the simulation and must be tracked using a load att

In example model 7.1, cloned loads are sent to the P_timestamp process, shown bel

begin P_timestamp arriving

set A_timestamp to ac /* Set start time */

inc V_insystem by 1

send to P_process

end

Each cloned load sets the value of its A_timestamp attribute to the current simulation
(ac); this value will be used in the process P_finish to calculate each load’s total time in
tem. Each load then increments the value of the variable V_insystem, which represen
number of widgets in the system.

After leaving P_timestamp, loads are sent first to P_process, then to an inspection pr
(both are discussed later in this chapter). From inspection, loads are sent to the P_fini
cess. The P_finish arriving procedure updates the variable and timestamp, then remo
loads from the system, as shown below:

begin P_finish arriving

dec V_insystem by 1

set A_timestamp to (ac - A_timestamp) /* Calculate time in system */

print “Load of type ” A_type “ had time in system of ”,
(A_timestamp / 60) ,“ min” to message

send to die

end

The load first decrements the variable V_insystem (to indicate that the load is leaving the
system). The load then calculates its total time in system by subtracting the time at which it
entered the system (stored in the load attribute A_timestamp) from the current simulation
time. The difference is stored in the attribute A_timestamp (the new value replaces the old
value).

After calculating its time in system, the load prints its load type and time in system (in min-
utes) to the Message window and is sent to die.
rev 1.0 7.21

Advanced Process System Features Getting Started with AutoMod

pter).

, a pro-
pe. The
 correct

ys. The
d pro-

s an
it(1),
1). Sim-
to the
hen

loned
Aligning entities using load attributes
You have already learned how to align arrayed entities using procindex (see “Using
procindex to align arrayed entities” on page 5.40 of the “Process System Basics” cha
As an alternative to using procindex, you can also align arrayed entities using load
attributes.

In example model 7.1, there are four work areas that each consist of a waiting queue
cessing queue, and a machine. Widgets are sent to the correct area based on part ty
procedure that ensures that each widget moves into the correct queues and uses the
machine for its type is shown below:

begin P_process arriving

move into Q_mach_wait(A_type)

move into Q_mach(A_type)

read A_time from “arc/data.dat”

at end

begin

print “Ran out of data in file data.dat” to message

terminate

end

use R_mach(A_type) for (A_time * 60)
/* Convert time values from minutes to seconds*/

send to P_inspect

end

The procedure includes new syntax that is used to read processing time data from a text file;
the syntax is discussed later in this chapter (see “Reading data from files” on page 7.24).

The waiting queues, the processing queues, and the machines are all modeled as arra
attribute A_type is used to guarantee that each load moves into the correct waiting an
cessing queues and uses the correct machine. For example, a load of type L_red ha
A_type value of 1. Consequently the load moves into the waiting queue Q_mach_wa
then moves into the processing queue Q_mach(1), and then uses machine R_mach(
ilarly, a load of type L_blue has an A_type value of 2. Consequently the load moves in
waiting queue Q_mach_wait(2), followed by the processing queue Q_mach(2), and t
uses machine R_mach(2), and so on.

In this model, aligning entities using the load attribute A_type is possible because the c
loads retain the value of A_type that was set for the original load of type L_dummy.

ote
Note
✎

7.22 rev 1.0

Getting Started with AutoMod Advanced Process System Features
Understanding concurrent processing in a simulation
When you use syntax to create new loads in a model, it is important to understand which
loads are executing the procedures in the model. In example model 7.1, a single load of type
L_dummy is sent to the process P_start. The L_dummy load executes the P_start arriving
procedure and generates all the loads that represent widgets in the system. Notice, however,
that the L_dummy load stays in the process P_start throughout the simulation, because the
P_start arriving procedure is a continuous loop that causes the L_dummy load to clone four
loads, wait for a time delay, clone four more loads, wait for another time delay, and so on.
The cloned loads, however, are sent to the process P_timestamp at the same instant during
the simulation. This means that all four loads execute the P_timestamp arriving procedure
at the same moment during the simulation. Because the P_timestamp arriving procedure
does not include any time delays, loads are then sent to the process P_process, again at the
same instant during simulation.

Until they are sent to P_process, the four cloned loads have been synchronously executing
the same procedures in the simulation. In the P_process arriving procedure, each load moves
into the correct waiting queue for its type and waits to be processed by a machine. Because
the amount of time that each load processes at a machine is random, the loads become stag-
gered (some loads process at a machine longer than others) and the four loads execute the
remaining procedures in the model at different times throughout the simulation.
rev 1.0 7.23

Advanced Process System Features Getting Started with AutoMod

 the

 time
ine.

r-
cify

w lines
n

g and

-
th to
 rela-
read

re por-

ath
Reading data from files
You are now ready to learn how to read data from a file during a simulation. In example
model 7.1, the time required to process each widget at a machine has been collected in a data
file by the control system. The data file is a text file that includes 2000 lines of data; the file
is saved in the model archive directory and is named “data.dat.” The first few lines of
data file are shown below:

4.25

4.99

8.57

0.04

6.52

3.74

6.10

...

The time values in the file are recorded in minutes. The simulation needs to read the
values from the file to determine how long each load should be processed by a mach

You read values from a file using the read action in the model logic. Files that are read du
ing a simulation must be delimited ASCII text. When reading from a file, you can spe
any delimiter to separate values based on how the file is formatted; by default, the read
action uses the whitespace delimiter which treats consecutive spaces, tabs, and/or ne
as a single delimiter. You will learn more about reading files with different delimiters i
“Specifying a delimiter when reading from a file” on page 7.32.

In example model 7.1, the P_process arriving procedure includes the syntax for readin
using the time values from the data.dat file, as shown below:

read A_time from “arc/data.dat”

at end

begin

print “Ran out of data in file data.dat” to message

terminate

end

use R_mach(A_type) for (A_time * 60)
/* Convert time values from minutes to seconds*/

This syntax is described in the following sections.

Defining a file’s location

In example model 7.1, each load reads a time value from the data file and stores it in the load
attribute A_time. As with printing to a file (see “The print action” on page 4.12 of the “Intro
duction to AutoMod Syntax” chapter), when reading from a file, you can specify the pa
the data file’s location as either an absolute path (for example, “C:/files/data.txt”) or a
tive path from the model directory. In example model 7.1, the “arc/” syntax is used to
from the model’s archive directory.

Reading from the archive directory is advantageous because it makes your model mo
table (you do not need to change the file location if you move the model).

Use forward slashes “/” when specifying a path to the file you want to read. The file p
and name must be enclosed in quotes.

ote
Tip

☞
Note

Important

▲!
7.24 rev 1.0

Getting Started with AutoMod Advanced Process System Features

s in the
m the
Vari-

alue of
red in
alues

ata.

nce in
k.
Determining the reading position in a file

When a load reads from a file, the simulation keeps track of the current reading position
within the file. After one action stops reading values, the next action that reads from the
same file starts at the point where the last read action stopped.

In example model 7.1, each load reads only one value from the file. The action reads a time
value, then stops reading when a new line is reached (when using the whitespace delimiter,
new lines are treated as delimiters). The load stores the value in the load attribute A_time.
When the next load executes the arriving procedure, it reads the next time value and stops
at the delimiter, and so on.

Reading to the end of a file

By default, when all of the values have been read from a data file, the simulation continues
by reading values from the beginning of the file. In example 7.1, you want the simulation to
stop when the end of the file is reached.

You can use the at end syntax after the read action to define one or more actions that occur
when the end of the file is reached. In example model 7.1, two actions are defined within the
begin and end syntax, as shown below:

read A_time from “arc/data.dat”

at end

begin

print “Ran out of data in file data.dat” to message

terminate

end

When a load tries to read a value from the data file, but encounters the end of the file instead,
the load executes the actions defined after the at end syntax. First, the load prints a message
to the Message window to indicate that there are no more values in the data file. Second, the
load executes the terminate action. The terminate action immediately stops the simula-
tion (see “Terminating a simulation” on page 7.26 for more information).

Converting data values

The description of example 7.1 states that the control system records processing time
data file in minutes. However, in example model 7.1, the time values that are read fro
file are stored in the attribute A_time, which is defined as a load attribute of type Time.
ables and load attributes of type Time always represent a time value in seconds. The syntax:

use R_mach(A_type) for A_time

causes loads to use an arrayed resource for the number of seconds defined by the v
the attribute A_time, not minutes. Consequently it is necessary to convert the time sto
the load attribute A_time from minutes to seconds. Example model 7.1 converts the v
by multiplying them by 60 in the use action, as shown below:

use R_mach(A_type) for (A_time * 60)

Thus, the values are converted for use in the simulation without editing the original d

It is also possible to change the default units of measurement for both time and dista
the model; however, changing the default model units is not discussed in this textboo

ote
Note
✎

rev 1.0 7.25

Advanced Process System Features Getting Started with AutoMod

sage
 statis-

in the
 can

till
nu.

tant
ation,
s has
tting
ion).

e
Terminating a simulation
In example model 7.1, the terminate action is used to stop the simulation when all the val-
ues in the data.dat file have been read, as shown below:

read A_time from “arc/data.dat”

at end

begin

print “Ran out of data in file data.dat” to message

terminate

end

You can use the terminate action in model logic to immediately stop a simulation. The
action forces a simulation to quit before the time specified in the run control. When the ter-
minate action is executed, the message “Simulation terminating” is printed to the Mes
window, and the simulation ends. The model reports are generated and variables and
tics can be viewed from the menus in the Simulation window.

Displaying variable values during a simulation
During a simulation, you can display the current value of all variables that are defined
model. By displaying the value of the variable V_insystem in example model 7.1, you
display the number of loads that are in the system at any point during the simulation.

To display a variable’s value during a simulation:

Step 1 Run the example model.

If you have already run the model to completion (and the Simulation environment is s
open), you can restart the simulation by selecting Restart Model from the Control me

Step 2 While the model is running, from the Loads/Variables menu, select All Variable Values.
The Variable values window opens, as shown below:

Displaying variable values in example model 7.1

The variable values window displays the current value of all variables at a specific ins
during the simulation. In the window above, you can see that 32 minutes into the simul
there are 16 loads in the system. The value of V_set is 5, indicating that a set of load
been cloned and the L_dummy load is currently executing the time delay before rese
the value of the variable (see “Writing repeating logic” on page 7.14 for more informat

To refresh the value of the variables while the simulation is running, click Update in th
Variable values window.

ote
Tip

☞

Click Update to
update the display
to the current
simulation time

ote
Tip

☞

7.26 rev 1.0

Getting Started with AutoMod Advanced Process System Features
Selecting randomly using the oneof distribution
To simulate example 7.1, you must be able to model random selection. The oneof distribu-
tion allows you to randomly select from a series of values or entities based on the frequency
of each selection.

Randomly selecting from a series of values

Recall from the description of example model 7.1 that each widget that arrives in the system
has a 30 percent chance of being a red widget, a 20 percent chance of being a blue widget,
a 25 percent chance of being a green widget, and a 25 percent chance of being a yellow wid-
get. To model the random arrival of widgets, an integer value (1, 2, 3 or 4) is assigned to the
load attribute A_type in the P_start arriving procedure; the L_dummy load uses the load
attribute when copying loads to determine the type of the load that is created next (a red wid-
get is created when the value is 1, a blue widget is created when the value is 2, and so on).
The load attribute A_type is set to a new random value each time the nested loop is executed.

The syntax that is used to randomly select the integer value is shown below:

set A_type to oneof(30:1,20:2,25:3,25:4)

Each entry in the series is separated by a comma. The format for each entry is
frequency:value, where the frequency determines how often each value is selected, rela-
tive to the other values. In this case, the load attribute A_type has a 30 percent chance of
being set to 1 (representing a red widget), a 20 percent chance of being set to 2 (representing
a blue widget), and so on.

Because the frequencies in the oneof distribution are normalized, they do not need to add
up to 100. For example, consider the following syntax:

set V_numbox to oneof(1:3, 1:4, 2:6)

The value of the variable V_numbox is set to 3 one-quarter of the time, to 4 one-quarter of
the time, and to 6 one-half of the time.
rev 1.0 7.27

Advanced Process System Features Getting Started with AutoMod

nd an 8
_finish.
process
.
Randomly selecting from a series of entities

In addition to selecting random values, you can also use the oneof distribution to randomly
select from a series of entities, such as processes or queues. In example model 7.1, widgets
that have completed processing must travel through an inspection process. Each widget that
is inspected has an 8 percent chance of being rejected and sent back to the processing
machines to be reworked. The logic that is used to simulate the inspection process is shown
below:

begin P_inspect arriving

move into Q_insp_wait

set A_insp to nextof(1,2)

move into Q_insp(A_insp)

use R_insp(A_insp) for e 2.5 min

send to oneof(92:P_finish,8:P_process)
/* Each load has an 8 percent chance of repeating processing */

end

Each load moves into a queue, where it awaits inspection. The nextof distribution is used
to move loads alternately into one of two inspection queues, where the loads are inspected
by an inspector. After the inspection is complete, the oneof distribution simulates each
load’s chance of passing inspection. Each load has a 92 percent chance of passing a
percent chance of being rejected. Loads that pass inspection are sent to the process P
Rejected loads are sent to the process P_process; the rejected loads execute the P_
arriving procedure and move back into a waiting queue to be reworked by a machine
7.28 rev 1.0

Getting Started with AutoMod Advanced Process System Features
Example 7.2: Choosing a queue based on the fewest loads
Like the oneof distribution, the choose action allows you to select from a series of entities.
Example model 7.2 demonstrates how to choose from a series of queues based on the num-
ber of loads currently in each queue.

Loads arrive at an infinite-capacity queue in a factory. The interarrival time between loads
is exponentially distributed with a mean of 20 seconds. The factory consists of three produc-
tion lines, each with an infinite-capacity processing queue and a single-capacity machine.
Loads are assigned to a production line by moving into whichever of the three infinite-
capacity processing queues contains the fewest number of loads. Loads are then processed
by a machine for a time that is uniformly distributed between 50 and 60 seconds, after which
the loads are removed from the system.

The system must be simulated for 100 days.

Determining which queue contains the fewest loads
You can select the queue that contains the fewest loads from a series of queues by using the
choose action. Loads in example model 7.2 use the choose action to select a processing
queue and store the name of the queue in an attribute of type QueuePtr, as shown below:

begin P_choose arriving

move into Q_arrive

choose a queue from among Q_mach(1), Q_mach(2), Q_mach(3)
whose current loads is minimum

save choice as A_qpointer

move into A_qpointer

if A_qpointer = Q_mach(1)

then use R_mach(1) for u 55, 5 sec

else if A_qpointer = Q_mach(2)

then use R_mach(2) for u 55, 5 sec

else if A_qpointer=Q_mach(3)

then use R_mach(3) for u 55, 5 sec

send to die

end

After moving into the infinite-capacity arrival queue, loads use the choose action to select
from among three processing queues (Q_mach(1), Q_mach(2), and Q_mach(3)). The selec-
tion is based on the queue that contains the fewest loads at the instant that the load makes
the selection. This selection criteria is represented by the syntax whose current loads is
minimum.

If more than one queue contains the fewest number of loads (for example, if two queues are
empty), the choose action randomly selects from the queues that satisfy the selection crite-
ria; each qualifying queue has an equal probability of being selected.

After choosing a queue, the load saves a pointer to the queue in the load attribute
A_qpointer. The load then uses this pointer in the if...then...else syntax to ensure that
the load uses the correct machine in its production line. After using the machine, the load is
sent to die.

You can see the results of the queue selection by running example model 7.2 to completion
and displaying the queue and resource statistics. The average number of loads in each pro-
cessing queue is 2.73 and the average time that loads spent in each queue is approximately
163 seconds. The queuing statistics are similar for the three machines because the choose
action maintains an even distribution of work.

ote
Note
✎

rev 1.0 7.29

Advanced Process System Features Getting Started with AutoMod

d

list

e of

 2;

low:
Aligning arrayed entities using the “index” attribute

Notice that although the logic in example model 7.2 evenly distributes loads in each of the
three production lines, the logic does not take advantage of the fact that the queues and
resources are arrayed. Resource selection is based on a lengthy if...then...else condi-
tion that checks the value of the load attribute A_qpointer and then assigns the load to the
correct machine, as shown below:

if A_qpointer = Q_mach(1)

then use R_mach(1) for u 55, 5 sec

if A_qpointer = Q_mach(2)

then use R_mach(2) for u 55, 5 sec

else if A_qpointer = Q_mach(3)

then use R_mach(3) for u 55, 5 sec

If 20 machines were added to the simulation, this logic would become even more redundant.

You have already learned how to align arrayed entities using either procindex or a load
attribute. In this section you will learn how to align the arrayed entities using a pre-defined
attribute of arrayed entities called index.

Using entity attributes
Loads are not the only entities in a model that have attributes. Other entities, such as queues
and resources, have pre-defined attributes that provide information about the entity. For
example, resources have an attribute named capacity that you can use to determine and
change a resource’s capacity. Arrayed queues and resources have an attribute nameindex
containing the entity’s integer number in the array. For example, the value of the index
attribute for Q_mach(1) is 1, for Q_mach(2) index is 2, and so on.

This chapter only discusses the index attribute for queues and resources; for a complete
of attributes available for each entity, see the AutoMod Syntax Help.

To use an entity attribute in the model logic, use an entity pointer followed by the nam
the attribute. Example model 7.2 uses the following syntax to align entities:

begin P_choose arriving

move into Q_arrive

choose a queue from among Q_mach(1), Q_mach(2), Q_mach(3)
whose current loads is minimum

save choice as A_qpointer

move into A_qpointer

set A_index = A_qpointer index
/* Set the load’s attribute to the value of the queue’s “index”

attribute */

use R_mach(A_index) for u 55, 5 sec

send to die

end

When a load chooses a queue, it saves a pointer to the chosen queue in the load attribute
A_qpointer. This pointer is then used with the index attribute in the following syntax:

set A_index = A_qpointer index

The syntax sets the attribute A_index of the load executing the procedure to the value of the
pre-defined index attribute for the chosen queue. For example, when A_qpointer is
“Q_mach(1),” A_index is set to 1; when A_qpointer is “Q_mach(2),” A_index is set to
and so on.

The load attribute is then used to align the arrayed resource and queue, as shown be

use R_mach(A_index) for u 55, 5 sec

For more information, see “Aligning entities using load attributes” on page 7.22.

ote
Help
8

7.30 rev 1.0

Getting Started with AutoMod Advanced Process System Features

data
files
 will
n file

d its
r part

: one

 vari-
bles

 pro-

 from
Example 7.3: Generating loads from a data file
Example model 7.3 reads a data file to generate 30 loads of varying part types and process-
ing times. The loads are generated with an interarrival time that is exponentially distributed
with a mean of one minute. When the last load has been processed, the simulation ends.

Reading multiple-column data files
In example model 7.1, you learned how to read data from a file (see “Reading data from
files” on page 7.24). The data file contained processing times for equipment, but the
was all in one column and did not contain any heading information. More commonly,
will contain multiple columns of data, often with headings above each column that you
need to ignore. Example model 7.3 shows how to read a tab-delimited, multiple-colum
and how to handle headings.

In example model 7.3, a tab-delimited data file is used to define a load’s part type an
processing time. The file contains 30 lines of data like those shown below, with the fou
types listed randomly:

To store this data for each load as it is read from the file, you need two load attributes
for the part type and one for the processing time. You also need a dummy variable to store
the values from the file that you are not going to use during the simulation; the dummy
able will store the first line of the file (the headings). The model uses the following varia
and load attributes to store data from the file:

There are 30 loads listed in the file. The model must stop after the last load has been
cessed, so the model uses a variable to count the loads that have been processed.

A dummy load executes the logic in the P_read arriving procedure to read the values
the data file and clone loads to P_process based on the data in the file:
begin P_read arriving

read V_headers from “arc/proctime.txt” with delimiter “\n”

while 1=1 do begin

read A_parttype, A_proctime from “arc/proctime.txt” with delimiter “\t”

set load type to A_parttype

/* sets the current load type to the value read from the file */

clone 1 load to P_process /* cloned load has correct part type */

wait for e 1 min /* interarrival of parts */

end

end

Part Type Processing Time (in seconds)

L_one 45

L_two 35

L_three 60

L_four 50

...

Name Type Description

V_headers string A dummy variable to store the headings
A_parttype string An attribute to store a load’s part type
A_proctime time An attribute to store a load’s processing time
rev 1.0 7.31

Advanced Process System Features Getting Started with AutoMod

 must

:

ab
my

 val-
 the

, then
lly dis-

le by
 read
essed,
er of

n its

ast 30
e
begin P_process arriving

move into Q_machine_wait /* infinite-capacity waiting queue */

move into Q_machine /* processing queue */

use R_machine for A_proctime /* processing time varies by load type */

inc V_total by 1

if V_total = 30 then terminate

send to die

end

The syntax is discussed in more detail in the next section.

Specifying a delimiter when reading from a file
By default, the read action uses the white space delimiter (see “Reading data from files” on
page 7.24). If you want to read from a file using a delimiter other than white space, you
specify the delimiter for the read action using the syntax with delimiter. Use the back-
slash “\” character to define special characters (such as tab or new line) as delimiters
“\t” Tab
“\n” New line

The file in example model 7.3 is tab-delimited, so most of the data is read using the t
delimiter. However, all of the headings in the first line of the file are read into one dum
variable using the new line delimiter (“\n”):
read V_headers from “arc/proctime.txt” with delimiter “\n”

Next, an indefinite loop is created to read the file line by line and store each value in a row
in one of two load attributes; the first value is stored in A_parttype, and the second value is
stored in A_proctime. The values are read using a tab delimiter (“\t”). To read multiple
ues in the same read action, separate the variables or attributes in which you are storing
data with a comma, as shown below:
read A_parttype, A_proctime from “arc/proctime.txt” with delimiter “\t”

You can read any number of values in the same action by separating each load attribute or
variable with a comma. However, to read a file one row at a time, the number of values read
in each action must equal the number of columns in the data file. Otherwise, you will read
less or more than one row in the same action and may use the wrong values during the sim-
ulation.

After each line is read, the dummy load’s part type is set to the type read from the file
it clones a load to the process P_process. The dummy load delays for an exponentia
tributed interarrival time with a mean of 1 minute, then reads from the file again.

The cloned load’s A_parttype attribute is set to the part type that was read from the fi
the dummy load. The cloned load’s A_proctime attribute is set to the processing time
from the file. In P_process, the load is processed for A_proctime seconds. Once proc
the load increments the variable V_total. When the total reaches 30 loads (the numb
loads in the data file), the simulation is terminated.

You cannot have a delay between when the V_total variable is incremented and whe
value is checked, as shown below:
inc V_total by 1

if V_total = 30 then terminate

If there is any delay between the two statements, the variable could be incremented p
by another load before the if...then syntax is executed and the equality would never b
true, causing the simulation to continue indefinitely.

ote
Note
✎

Note
Important

▲!
7.32 rev 1.0

Getting Started with AutoMod Advanced Process System Features

ems.
Summary

This chapter introduces new syntax that you can use to create flexible models. You will reg-
ularly use the techniques that are discussed in this chapter, including:

• Representing values in a simulation using variables and load attributes.
• Writing repeating loops.
• Creating new loads in a simulation using the create and clone actions.
• Reading data from external data files.
• Randomly selecting from a series of entities using the oneof distribution or the choose

action.

These concepts are necessary to build accurate models that simulate real-world syst
rev 1.0 7.33

Advanced Process System Features Getting Started with AutoMod

good”
 back
ss qual-

 that

uted

gle-
esses

 leave

ssage
d

ssage
e
Exercises

Exercise 7.1

Copy your solution model for exercise 5.9 to a new directory.

Run the simulation for 100 days with each of the following configurations:

a) The three machine queues are selected in a round-robin manner (as they were in exer-
cise 5.9).

b) The three machine queues are selected in a random manner, each with an equal chance
of being selected.

c) Waiting loads select the machine queue containing the fewest number of loads.

Record the average number of loads and the average time in the waiting queue for each con-
figuration (a, b, and c). Is choosing the processing queue with the fewest number of loads
the most efficient option in this model? Why or why not?

Exercise 7.2

Create a new model in which jobs are generated at a time that is exponentially distributed
with a mean of 60 seconds.

Use the clone action to create these jobs.

Jobs are processed in an area containing three single-capacity lathes and three infinite-
capacity queues (one for each lathe). Newly created jobs move into the queue that currently
contains the fewest number of loads. After moving into a queue, a job waits to use the lathe
associated with that queue. Each lathe processes a job for a time that is normally distributed
with a mean of 150 seconds and a standard deviation of 20 seconds.

After using the lathe, the jobs move into an infinite-capacity queue to wait for inspection.
There is one inspector who can inspect one job at a time; inspection takes a time that is uni-
formly distributed between 20 and 40 seconds. Of the inspected jobs, 95 percent are “
jobs that pass quality inspection, the remaining 5 percent are “bad” jobs that are sent
to the lathe queues to be reworked; the bad jobs repeat the same process until they pa
ity inspection.

Stop the simulation after 1000 good jobs are completed. Determine the average time
each good job (not all jobs) spent in the system.

Exercise 7.3

Create a new model in which jobs are generated at a time that is exponentially distrib
with a mean of 60 seconds.

Newly created jobs move into an infinite-capacity queue where they wait to use a sin
capacity machine. The machine has its own queue for processing. The machine proc
jobs for a time that is exponentially distributed with a mean of 55 seconds. Jobs then
the system.

When there are 10 or more jobs in the system and a new job is generated, print a me
that indicates the current clock time in minutes and the number of jobs in the system. Roun
the time value to two decimal places.

When there are 20 or more jobs in the system and a new job is generated, print a me
that indicates the current clock time in hours and then terminate the simulation. Round th
time value to two decimal places.

ote
Tip

☞

7.34 rev 1.0

Getting Started with AutoMod Advanced Process System Features

s.
es.
es.

n.
spect
 and

time

n:

?

hat
ute
Exercise 7.4

Apex Corporation wants to simulate its new widget-making facility. The raw materials
needed to construct the widgets arrive on trucks that form a waiting line before parking at
one of three loading docks. The trucks arrive at a time that is exponentially distributed with
a mean of 20 minutes. Trucks are sequentially assigned to a dock based on the order of their
arrival (the first truck parks at dock1, the second parks at dock2, etc.).

One unloader works at the docks and unloads one truck at a time. Each truck contains 20
boxes of widget parts. It takes the unloader a time that is exponentially distributed with a
mean of 50 seconds to unload each box. There are three types of boxes on each truck; the
boxes are color coded (red, blue, and green) according to the type of parts they contain. The
number of boxes of each color on a truck is randomly determined. Data collected from the
system indicates that an unloaded box has a 30 percent chance of being a red box, a 30 per-
cent chance of being a blue box, and a 40 percent chance of being a green box.

Assign a numeric attribute to each load to determine its type.

Each box that is unloaded is placed in an infinite-capacity queue to wait for one of three
assembly machines. Each machine has its own assembly queue and can assemble only one
type of parts, one box at a time (the first machine assembles only red boxes, the second
machine assembles only blue boxes, and the third machine assembles only green boxes).

The time required to assemble each box is defined as follows:

• Red boxes require a time that is exponentially distributed with mean of 1.5 minute
• Blue boxes require a time that is exponentially distributed with mean of 1.5 minut
• Green boxes require a time that is exponentially distributed with mean of 2 minut

After assembly, the widgets move into an infinite-capacity queue to wait for inspectio
There is one inspector, who inspects loads in a separate queue. The inspector can in
only one widget at a time. Inspection takes a uniformly distributed time between 0.25
1.25 minutes per widget. After inspection, completed widgets leave the system.

The inspector always takes a 5-minute break after working for a uniformly distributed
between 40 and 60 minutes.

Apex would like to know the following from a seven-day (24 hours-per-day) simulatio

a) How many boxes of each type were assembled?
b) What was the average time a truck spent at each dock (including unloading time)
c) What was the maximum and average number of trucks waiting in line to park at a

dock?
d) What was the maximum and average number of widgets waiting to be inspected?
e) Record the maximum and average number of widgets waiting to be inspected. W

happens to these values if the inspector takes 20-minute breaks instead of 5-min
breaks?

ote
Tip

☞

rev 1.0 7.35

Advanced Process System Features Getting Started with AutoMod
Exercise 7.5

Trucks arrive at a dock for unloading. Each truck can contain red, blue, yellow, and/or green
pallets. The time between truck arrivals is exponentially distributed with a mean of one hour.
Trucks that are waiting to be unloaded form a waiting line before the dock (there is only
room for one truck to park at the dock at a time). A total of 100 trucks arrive. The number
of pallets on each truck is defined in a data file. Create the file in Excel using the following
spreadsheet functions:

The functions cause the number of red pallets to range between 1 and 2, the number of blue
pallets to range between 0 and 2, the number of yellow pallets to range between 1 and 3, and
the number of green pallets to range between 0 and 2. The file should contain 100 rows of
data, with each row defining the number of pallets of each color for one truck.

One worker is employed to unload trucks at the dock. The worker takes an exponentially
distributed time with a mean of 10 minutes to unload each pallet, one truck at a time. After
unloading, the trucks wait 2 minutes to complete paperwork before they leave the dock.

Create a model to simulate this system. The simulation should end after the paperwork is
completed for the last truck.

Do not create loads to represents palettes in the system; you only need to track the total num-
ber of pallets on each truck.

What was the average number of trucks waiting to park at the dock?

Number of red pallets 1 INT 2 RAND()×()+=

Number of blue pallets INT 3 RAND()×()=

Number of yellow pallets INT SQRT 1 9 RAND ()×()+()()=

Number of green pallets INT RAND() RAND() RAND()+ +()=

ote
Tip

☞

7.36 rev 1.0

Getting Started with AutoMod Basic Statistical Analysis Using AutoStat
Chapter 8

Basic Statistical Analysis Using AutoStat

Why use AutoStat?.. 8.3

Calculating confidence intervals .. 8.4
Example 8.1: Why confidence intervals are important ... 8.4
How AutoStat calculates confidence intervals.. 8.5

Performing statistical analysis with AutoStat .. 8.6

Opening a model in AutoStat ... 8.6
Using the AutoStat Setup wizard .. 8.6

Is the model random or deterministic?... 8.7
Do you want to stop runs that may be in an infinite loop? .. 8.7
Does the model require time to warm up? ... 8.7
What is the estimated warmup time? ... 8.8
Do you want to create the warmup analysis?... 8.8
What is the snap length for collecting statistics? ... 8.8

Editing model properties ... 8.9
The AutoStat file system... 8.9

Defining a single scenario analysis... 8.10

Making runs... 8.11

Defining responses... 8.12
Defining an AutoMod response .. 8.12

Displaying the results .. 8.13
Viewing confidence intervals.. 8.13

Narrowing the confidence interval... 8.14
Making more runs... 8.14
Making longer runs... 8.15

Viewing summary statistics .. 8.17

Defining a combination response ... 8.18
Weighting terms in a combination response ... 8.19

Summary .. 8.21
rev 1.0 8.1

Basic Statistical Analysis Using AutoStat Getting Started with AutoMod
Exercises ...8.22
Exercise 8.1..8.22
Exercise 8.2..8.22
Exercise 8.3..8.23
Exercise 8.4..8.23
Exercise 8.5..8.23
8.2 rev 1.0

Getting Started with AutoMod Basic Statistical Analysis Using AutoStat

ing
le sce-

ula-
 time
ne run

tically
d by
er dis-
Chapter 8

Basic Statistical Analysis Using AutoStat

When random samples are used as input for a model, a single simulation run may not be rep-
resentative of the true behavior of the real-world system. Therefore, you could make erro-
neous inferences about the system if you only make one run. The AutoStat software helps
you apply the proper statistical sampling techniques to your model in order to accurately
estimate performance under random conditions.

This chapter discusses how to perform basic statistical analysis on a model using the
AutoStat software, teaching you how to calculate confidence intervals for several perfor-
mance metrics.The AutoStat software is covered in two other chapters of this textbook:
chapter 10, “Intermediate Statistical Analysis,” and chapter 15, “Warmup Analysis Us
AutoStat.” These chapters discuss other types of analyses, such as comparing multip
narios and warmup determination.

Why use AutoStat?
The key to a successful simulation study is proper analysis. However, in too many sim
tion studies, analysts spend most of their time developing the model and not enough
analyzing the simulation results. Sometimes decisions are incorrectly based on just o
of the model.

The AutoStat software helps you to determine which results and alternatives are statis
significant, which means that with high probability the observed results are not cause
random fluctuations but are due to the change you are experimenting with. This chapt
cusses using AutoStat to calculate confidence intervals.
rev 1.0 8.3

Basic Statistical Analysis Using AutoStat Getting Started with AutoMod

l con-
ou

a ran-
ted
 pro-

each

ss each

 spent
ing the
 check-
ehaves
Calculating confidence intervals
In chapter 1, you learned how to calculate confidence intervals by hand (see “Statistica
fidence” on page 1.25 of the “Principles of Simulation” chapter). This chapter shows y
how to use AutoStat to calculate confidence intervals automatically.

Example 8.1: Why confidence intervals are important

Example model 8.1 illustrates why confidence intervals are important when analyzing
dom model. In this system, products have an interarrival time that is uniformly distribu
between zero and 10 minutes. The products go through two processes: checking and
cessing.

The checking process is modeled using a resource with a capacity of two. Checking
load takes a time that is uniformly distributed between six and 10 minutes.

The processing step uses a resource with a capacity of eight. The resource can proce
load in a time that is uniformly distributed between 25 and 35 minutes.

The source file for example 8.1 is shown below:

begin P_init arriving

while 1=1 do

begin

clone 1 load to P_checkers nlt L_job

wait for u 5,5 min

end

end

begin P_checkers arriving

move into Q_checkers /* capacity is infinite */

use R_checkers for u 8,2 min /* capacity of 2*/

send to P_processors

end

begin P_processors arriving

move into Q_processors /* capacity infinite */

use R_processors for u 30,5 min / *capacity of 8 */

send to die

end

Suppose you simulated this system for 12 hours and then looked at the average time
in the checking process. Because there is so much randomness in the model (includ
arrival times and the service time of each process), the average time reported for the
ing process for that run may or may not be an accurate estimate of how the system b
over a longer period of time.
8.4 rev 1.0

Getting Started with AutoMod Basic Statistical Analysis Using AutoStat

Sim-

tween
ow do

t esti-
 action

tion of
ished

tion”
each
um-
ean

 8-hour
 at
o),
tics
um-

he
Now suppose you ran the model 10 times, each time using different random numbers (such
runs are called replications). The following table shows the results of 10 such replications
(this table is also shown in “Statistical confidence” on page 1.25 of the “Principles of
ulation” chapter):

Average time in the checking process for 10 replications

Each of these times is a valid average time for the checking process. But the range be
the lowest and highest value is 200.96 seconds. So what is the “correct” value, and h
you make decisions based on these numbers?

Using the average value from a single replication can be misleading. It’s called a poin
mate, and it can be very different than the true mean of the process. The appropriate
in this case is to report a confidence interval, not just a single number.

How AutoStat calculates confidence intervals

The AutoStat software uses the replication/deletion technique for computing confidence
intervals. The replication/deletion method strives to use steady-state data in the forma
point estimates and confidence intervals for the various responses, which is accompl
by obtaining the average level of the response for each replication after a warmup period
(the deletion of warmup periods for non-terminating systems is also discussed in “Dele
on page 1.29 of the “Principles of Simulation” chapter). The averages obtained after
warmup period are independent and are approximately normally distributed random n
bers. Thus, they can be used to construct a confidence interval for the steady-state m
value of the response.

To generate the average times shown in the table above, the model was run using an
warmup followed by a 24-hour snap length. Thus, the simulation was run for 8 hours,
which time statistics were reset (all statistics, except for Cur(rent) values, were set to zer
to remove the warmup bias. The simulation was run for 24 hours, during which statis
were gathered. This procedure was followed 10 times, each using different random n
bers.

This chapter focuses on setting up AutoStat to determine the confidence interval for t
average time loads spent in the checking process (P_checkers).

Replication
Number (i)

Average Time in
the Checking Process

1 752.23

2 785.49

3 645.13

4 639.96

5 610.13

6 661.42

7 645.28

8 606.32

9 677.74

10 584.53
rev 1.0 8.5

Basic Statistical Analysis Using AutoStat Getting Started with AutoMod

rtic-

z-
Performing statistical analysis with AutoStat
The following steps outline the process for conducting an analysis with AutoStat:

Step 1 Open a model in AutoStat.

Step 2 Define an analysis (for example, a single scenario analysis to determine confidence
intervals).

Step 3 Make the runs.

Step 4 Define the responses (statistics that you want to measure).

Step 5 Display the results.

The rest of the chapter walks you through these steps to determine the confidence intervals
for example model 8.1.

Opening a model in AutoStat
To use the AutoStat software, you must open a model that has been compiled in AutoMod.

To open example model 8.1 for use in the AutoStat software:

Step 1 Copy the base version of example model 8.1 to a new directory.

Step 2 Import examp81.

Step 3 From the Model menu, select Build. The model compiles.

Step 4 From the Model menu, select Run AutoStat. AutoStat opens and the AutoStat Setup wizard
opens.

If you have already compiled a model, you can open AutoStat from the Start menu and
select Open from the File menu, then navigate to the <modelname>.mod file in the
<modelname>.dir directory to open the model.

The first time you open a model in AutoStat, you must use the AutoStat Setup wizard to set
several parameters for your analysis.

Using the AutoStat Setup wizard

Whenever you open a model for the first time in the AutoStat software, the AutoStat Setup
wizard asks you to:

• Indicate whether the model contains randomness.
• Determine a time limit to stop models that are potentially in an infinite loop.
• Estimate the model’s warmup length.
• Define how long to run the model to collect statistics.

The information in the wizard is used to define several model properties. The following sec-
tions explain the questions that the wizard is asking.

While using the AutoStat software, click Help if you want more information about a pa
ular screen.

Step 1 In the AutoStat Setup Wizard window, click Next to advance to the first question in the wi
ard.

ote
Tip

☞

ote
Help
8

8.6 rev 1.0

Getting Started with AutoMod Basic Statistical Analysis Using AutoStat

om

tion
age
 make
ou

y. If
 that

e sim-

 custom-
 center

 of
g man-
so it
 up a
Is the model random or deterministic?
As discussed earlier in this chapter, when a simulation model contains random input (such
as the random arrival and service times in example model 8.1), the statistics from one run
may not be representative of long-term average system output. Therefore, you need to per-
form multiple replications (runs using different random numbers) to get an accurate under-
standing of the system’s behavior, including meaningful confidence intervals.

A deterministic model contains no random input and therefore no variability in output fr
run to run, so only a single run of each scenario is necessary. Very few simulation models
are deterministic.

Step 1 Select Model is random.

Step 2 Click Next.

Do you want to stop runs that may be in an infinite loop?
An infinite loop causes a model to repeat the same section of logic so that the simula
never ends (for more information about infinite loops, see “Avoiding infinite loops” on p
7.17 of the “Advanced Process System Features” chapter). If you are using AutoStat to
runs, the software can automatically stop a run that seems to be taking longer than y
expected.

Example model 8.1 runs very quickly (in about 1 or 2 seconds) if it is working correctl
a run takes substantially longer than that (for example, 30 seconds), it might indicate
there is an infinite loop in the model and that the run should be cancelled.

To set an infinite loop time of 30 seconds:

Step 1 Select Yes to indicate that you want to set up an infinite loop time limit.

Step 2 Click Next.

Step 3 Type “30” in the Maximum run time text box and select seconds from the drop-down list.

Step 4 Click Next.

Does the model require time to warm up?
If a model does not reflect the state of the system being modeled at the beginning of th
ulation, it needs to warm up, or “reach steady state,” before you gather statistics.

Some systems start “empty,” such as service centers. In these systems, there are no
ers left over from the day before, and new customers cannot enter the system until the
opens in the morning.

Systems such as the factory being modeled in example 8.1, however, are usually full
products that are spread throughout the factory and that are in various stages of bein
ufactured. In the example model, loads do not get created until the simulation starts,
will take some time before the system is primed with jobs. Therefore, you want to set
warmup time and discard statistics gathered during that time.

Step 1 Select Yes to indicate that the model requires a warmup time.

Step 2 Click Next.

ote
Note
✎

rev 1.0 8.7

Basic Statistical Analysis Using AutoStat Getting Started with AutoMod

he

r this
nalysis.

e

n-ter-
 1.27
qual
at is

 repre-
is best

ngful

ting the
What is the estimated warmup time?
AutoStat can perform a warmup determination analysis, which you will learn about in chap-
ter 15, “Warmup Analysis Using AutoStat.” For now, make a rough estimate without t
help of AutoStat and say that the simulation takes 8 hours to warm up.

To define the warmup time:

Step 1 Type “8” in the warmup estimate text box and select hours from the drop-down list.

Step 2 Click Next.

Do you want to create the warmup analysis?
Warmup analyses are discussed in chapter 15, “Warmup Analysis Using AutoStat.” Fo
chapter, assume that you have estimated the warmup correctly and do not need the a

Step 1 Select Do not create analysis.

Step 2 Click Next.

What is the snap length for collecting statistics?
After the warmup time, the statistics are going to be reset and then collected for som
amount of time. The statistics-gathering time is called the snap length. The length of the
snap varies depending on whether the system being modeled is a terminating or a no
minating system (discussed in“Terminating versus non-terminating systems” on page
of the “Principles of Simulation” chapter). In a terminating system, the snap length is e
to the length of the system’s operation. For example, if you were simulating a bank th
open from 9:00 A.M. to 5:00 P.M., the snap length would be 8 hours.

In a non-terminating system, the snap needs to be long enough to collect meaningful,
sentative data from the system. The time required varies from system to system and
determined by someone familiar with the system’s operation.

Example model 8.1 currently completes about 300 loads in 24 hours, which is meani
enough to generate confidence intervals for this small model.

To define the snap length:

Step 1 Type “24” in the Snap length text box and select hours from the drop-down list.

The run control in AutoStat always overrides the run control defined in AutoMod.

Step 2 Click Next. The last screen of the wizard opens.

Step 3 Click Finish.

The information in the wizard is used to set up the model properties. You can change any of
these settings, such as the snap length, warmup length, and so on, at any time by edi
model properties (discussed next).

Step 4 From the File menu, select Save to save the properties.

ote
Note
✎

8.8 rev 1.0

Getting Started with AutoMod Basic Statistical Analysis Using AutoStat

Editing model properties

If you need to change a model property after you have run the Model Setup wizard, edit the
model properties.

To edit the model properties:

Step 1 From the Properties menu, select Edit Model Properties. The Model Properties window
opens.

When conducting your own analyses, you may want to change some of these values. For this
example model, however, do not change any of the properties.

Step 2 Click Cancel to close the Model Properties window.

The AutoStat file system

When you open a model and set it up in AutoStat, several directories and files are created.

AutoStat file system

The main AutoStat directory is the .sta directory. The .sta directory contains all the AutoStat
information for a model. The .sta directory contains a file called astat.sta.xml, which con-
tains all the information about the model properties you set using the wizard, as well as
information for analyses (which you will learn how to define in this chapter).

Once you have made runs for your analyses, numbered run directories are created, which
contain message files, reports, and information about each run. For a complete description
of the AutoMod file system, see “An AutoMod model’s file hierarchy” on page 3.4 of the
“AutoMod Concepts” chapter.
rev 1.0 8.9

Basic Statistical Analysis Using AutoStat Getting Started with AutoMod

s
Other
er 15,

del.

.

g the

Defining a single scenario analysis
As mentioned earlier, AutoStat can conduct several types of analyses. In this chapter, you
will learn how to conduct a single scenario analysis, in which you can run your model “a
is” (without any changes) in order to compute confidence intervals and other statistics.
analyses will be discussed in chapter 10, “Intermediate Statistical Analysis,” and chapt
“Warmup Analysis Using AutoStat.”

To define a single scenario analysis:

Step 1 From the Create New Analysis of Type drop-down list, select Single Scenario.

Step 2 Click New. The Single Scenario Analysis window opens.

Step 3 Name the analysis “Example 8.1 Single Scenario.”

Step 4 Type “10” in the Number of Replications text box and press Tab. AutoStat will make 10
runs, with each run using different random numbers for each random event in the mo

Single Scenario Analysis

For confidence intervals, you should use at least three to five replications. The greater the
number of replications or the longer the snaps, the narrower the confidence intervals

For example model 8.1, you want to use the default run control, which you set up usin
wizard, so do not make any other changes in this window.

You have defined the single scenario analysis. Now you are ready to make the runs.
8.10 rev 1.0

Getting Started with AutoMod Basic Statistical Analysis Using AutoStat
Making runs
There are several ways to make runs for an analysis in AutoStat. In example 8.1, you can
make the runs directly from the Single Scenario Analysis window.

Step 1 Click OK, Do These Runs. AutoStat makes 10 runs, recording the statistics.

You can also make runs using either the Execution menu or the Runs tab using the following
options:

Do All Runs Makes all runs that have been defined for all analyses.

Do Some Runs You can select the analysis for which you want to make runs.

Do Runs Until Defines a time to stop making runs. For example, make runs until tomorrow at 8:00 A.M.

Parallel
Execution

Makes runs on more than one computer (not discussed in this textbook).

While the runs are being made, or after they are finished, you can define responses, which
are the statistics you are interested in analyzing.
rev 1.0 8.11

Basic Statistical Analysis Using AutoStat Getting Started with AutoMod

om-

e that
k loads’

onse

e pro-
Defining responses
A response is a statistic in your model that you want to study in an analysis. For example,
you might be interested in the utilization of a resource, the average time spent waiting for a
tool, the time in system, and so on.

There are three types of responses:

AutoMod A standard statistic from the report file.

User A statistic from a user-defined report (not discussed in this textbook).

Combination The combination of two or more responses, such as the time spent in several processes, or
the average utilization of a group of equipment. An example is shown in “Defining a c
bination response” on page 8.18.

You can define responses at any time (either before or after making runs). You can also
define responses from most output windows.

Defining an AutoMod response
In the example model, you want to determine confidence intervals for the average tim
loads spend in the checker process. Therefore, you need to define a response to trac
average time in that process.

To define an AutoMod response:

Step 1 Click the Responses tab.

Step 2 Click New to create a new response of type AutoMod Response. The AutoMod Resp
window opens.

Step 3 Name the response “Checker Average Time”.

Step 4 Select the system, entity, and statistic you want to define as a response. By default, th
cess P_checkers and the statistic AV_Time are already selected.

AutoMod Response window

Step 5 Click OK. The response name appears in the Defined responses list.

ote
Tip

☞

8.12 rev 1.0

Getting Started with AutoMod Basic Statistical Analysis Using AutoStat

t, and

e

he
 many

s the
Displaying the results
Each analysis has several ways of displaying output. The output is calculated for all defined
responses.

For single scenarios, the types of output are:

Summary
Statistics

A table of statistics for each response, including the average, standard deviation, minimum
and maximum values, and other information.

Bar Graph A graph of a response’s values.

Confidence
Intervals

The confidence interval for each response by confidence level (90 percent, 95 percen
so on).

Runs Used A list of the runs that are being used for this analysis (useful if you have more than on
analysis defined).

Run Results A table of each response by run.

For example 8.1, you will look at confidence intervals and summary statistics.

Viewing confidence intervals

To view confidence intervals:

Step 1 From the Analysis tab, click the plus (+) sign to expand the list of output options.

Step 2 Double-click Confidence Intervals. The Confidence Intervals window opens.

90 percent confidence level for Checker Average Time

By default, the confidence intervals displayed are for a 90 percent confidence level. T
window displays the response name, the low and high values in the interval, and how
runs are being used to generate the interval.

You can adjust the confidence level using the drop-down list. The following table show
95 percent and 99 percent intervals for the Checker Average Time response:

Table of 95 and 99 percent confidence levels for Checker Average Time

Step 3 Close the Confidence Intervals window.

Measure 95% 99%

CI Low (seconds) 615.284 595.403

CI High (seconds) 706.356 726.237

of Runs 10 10

Change the
confidence level using
the Confidence Level
drop-down list

Response
name
rev 1.0 8.13

Basic Statistical Analysis Using AutoStat Getting Started with AutoMod

e
Narrowing the confidence interval
The narrower the range of a confidence interval, the more accurate the estimate. To decrease
the width of a confidence interval by approximately half, you must increase the sample size
by four. You can increase the sample size one of two ways:

• Making more runs (4 times the number of runs)
• Making longer runs (increasing the run length by a factor of 4)

Either of these methods provide more information to AutoStat, allowing it to narrow th
range of the interval.

Making more runs
It is possible to make additional runs for an analysis at any time.

To make additional runs for an analysis:

1. Edit the analysis.
2. Edit the number of replications.
3. Make the additional runs.

Editing the number of replications in the Single Scenario Analysis window

To make
additional runs,
increase the
number of
replications here
8.14 rev 1.0

Getting Started with AutoMod Basic Statistical Analysis Using AutoStat

e new

ult run
” on

efault
Making longer runs
You can increase the length of runs used for an analysis in two ways:

• Edit the model properties and change the default sample time.
• Edit the analysis and create a custom run control.

Both approaches require you to redo existing runs so that your analysis is based on th
information.

Changing the default sample time

Editing a model’s properties changes the sample time for all analyses that use the defa
control (for information about editing model properties, see “Editing model properties
page 8.9).

For example model 8.1, you are going to define a custom run control, not change the d
sample time, so do not edit the model’s properties.
rev 1.0 8.15

Basic Statistical Analysis Using AutoStat Getting Started with AutoMod

 has
Defining a custom run control

For example model 8.1, you want to make the runs for the analysis four times as long by
defining a custom run control.

To define a custom run control for an analysis:

Step 1 From the Analyses tab, select Example 8.1 Single Scenario Analysis and click Edit. The Sin-
gle Scenario Analysis window opens.

Step 2 From the Run Control drop-down list, select Custom... The Custom Run Control window
opens.

Step 3 You want to lengthen the snap length by a factor of 4, so change the Snap Length from 24
to 96 hours.

Custom run control

Step 4 Click OK to close the Custom Run Control window.

Step 5 Click OK, Do These Runs to make the new runs. Ten new runs are made using the new run
control (the 10 runs using a 24 hour snap length are still saved, as well).

Step 6 Click OK when the runs have finished.

Step 7 Double-click Confidence Intervals to display the confidence intervals.

Step 8 Change the confidence level to 99 percent.

The following table shows the 99 percent intervals for the Checker Average Time response
for 24 hour and 96 hour snap lengths:

Table of 99 percent confidence levels for 24-hour and 96-hour snap lengths

The original interval has a range of 130.834 seconds, half of which is 65.417. The new snap
length of 96 hours has an interval of only 41.282, so the “four times as long” guideline
been successful for this analysis.

Measure 99% 99%

CI Low (seconds) 595.403 600.169

CI High (seconds) 726.237 641.451

Snap Length 24 hours 96 hours
8.16 rev 1.0

Getting Started with AutoMod Basic Statistical Analysis Using AutoStat
Viewing summary statistics

To view summary statistics for the single scenario analysis:

Step 1 From the Analysis tab, expand the Example 8.1 Single Scenario analysis and
double-click Summary Statistics.

Summary statistics

This table shows you the average, standard deviation, minimum, maximum, and median
values of the average time response for the 10 runs.
rev 1.0 8.17

Basic Statistical Analysis Using AutoStat Getting Started with AutoMod

sum-

 spend
or pro-
onse is

e,”

e.

e for-

e two
in addi-
Defining a combination response
You can combine two or more responses together into a single response using a combination
response. Combination responses are useful when you want to combine statistics, such as
averaging several machines’ utilizations into one statistic for an equipment group, or
ming several different WIP levels.

In example model 8.1, you have already defined a response for the average time loads
in the checking process. If you create a response for the average time in the process
cess and then add the two together in a combination response, the combination resp
the average time that loads spend in the whole system.

To define a combination response for the time in system:

Step 1 From the Responses tab, define an AutoMod response, named “Processor Average Tim
for the average time loads spend in P_processors. Click OK.

Step 2 From the New Response of Type drop-down list, select Combination Response and click
New. The Combination Response window opens.

Step 3 Name the combined response “Time in System.”

Step 4 Click Append Term to add a duplicate row below the Checker Average Time respons

Step 5 Double-click the Name in the new row.

Step 6 Select Processor Average Time.

The combination response is now a sum of the two AutoMod factors, as shown by th
mula in the window.

Viewing the relationship between terms in a combination response

Step 7 Click OK to close the Combination Response window.

Step 8 Display the confidence intervals and summary statistics for the analysis. Notice that th
new responses, Processor Average Time and Time in System, are now being shown
tion to the original response, Checker Average Time.

The relationship
of the terms is
shown in the
formula
8.18 rev 1.0

Getting Started with AutoMod Basic Statistical Analysis Using AutoStat

ent
 mon-

ted in
s are
sed in

 min-
Weighting terms in a combination response

When using a combination response, you can define a weight (or relative importance) for
each of the terms being used to calculate the combined response. This is often useful when
analyzing cost versus payback situations, such as whether the cost of a new piece of equip-
ment is paid for by an increase in throughput. (Using weights in this context is discussed in
detail in chapter 10, “Intermediate Statistical Analysis.”)

You can also use the weight value to convert the statistics being measured into differ
units. For example, you can convert time units from seconds to minutes, or convert one
etary unit to another.

In example model 8.1, the terms in the Time in System response are currently calcula
seconds (all standard AutoMod statistics are reported in seconds). By default, the term
each given a weight of one, which means the terms have equal value and are being u
their default units.

Weighting terms in a combination response

Suppose you wanted to report the Time in System in minutes instead of seconds.

To report the Time in System in minutes:

Step 1 From the Responses tab, select Time in System in the Defined Responses list and click Edit.
The Combination Response window opens.

Step 2 Double-click the Weight for Checker Average Time.

Step 3 Enter a Weight of 0.0167 (1 minute/60 seconds) as a multiplier to convert seconds to
utes.

The weight of a
term determines
its relative
importance in
the formula
rev 1.0 8.19

Basic Statistical Analysis Using AutoStat Getting Started with AutoMod

put
Step 4 Enter 0.0167 as the weight for Processor Average Time, as shown below:

Converting seconds to minutes using the Weight column

Step 5 Click OK to close the Combination Response window.

Step 6 View the confidence intervals and summary statistics for the analysis. Notice that the values
for the Time in System are now in minutes instead of seconds.

You could rename the analysis to show the units being displayed. For example, you could
call this analysis “Time in System (minutes).” Then you would know when viewing out
that this response’s units are different from the other responses being displayed.

ote
Tip

☞

8.20 rev 1.0

Getting Started with AutoMod Basic Statistical Analysis Using AutoStat
Summary
This chapter introduces how to conduct statistical analysis using the AutoStat software.
AutoStat is a powerful statistical analysis tool, and should be used on every project to ensure
you draw sound conclusions from your simulation efforts.

In this chapter, you learned how to use a single scenario analysis to determine confidence
intervals for several responses. You learned how to view various types of output, including
summary statistics and confidence intervals. You learned how to make a confidence interval
range narrower by making more runs or making longer runs.

Finally, you learned how to combine several responses together into a combination
response, using the example Time in System. You learned how to convert the units of
responses using the Weight value in the Combination Response window.
rev 1.0 8.21

Basic Statistical Analysis Using AutoStat Getting Started with AutoMod

0 per-
nds

rage

s
How

ds

e num-

el in

rage

Exercises
In the following exercises, round your answers to the nearest hundredth.

Exercise 8.1

Before beginning work on the problems in this exercise, complete the following steps:

Step 1 Copy the base version of example model 8.1 to a new directory.

Step 2 Open the copied model in AutoMod and change the amount of time that loads use resource
R_checkers to “e 8 min”.

Step 3 Export and build the model.

Step 4 Open the model in AutoStat and use the Setup wizard to define the following properties:

• Model is random
• Check for infinite loops and stop runs that are longer than 2 minutes
• Define an 8 hour warmup
• Define a snap length of 40 hours

Use the model to complete the following problems:

a) Create a single-scenario analysis and run the model for 20 replications. Find the 9
cent, 95 percent, and 99 percent confidence intervals for the average time in seco
that loads spend in process P_checkers.

b) Use a combination response to find the 95 percent confidence interval for the ave
time in minutes that loads spend in the processes P_checkers and P_processors.

c) Find the 95 percent confidence interval for the average time in seconds that load
spend in process P_checkers when the number of replications is 20, 40, and 80.
do you explain the difference?

d) Find the difference between the minimum and maximum time in seconds that loa
spend in process P_checkers when the number of replications is 100.

e) Find the median time in seconds that loads spend in process P_checkers when th
ber of replications in 100.

Exercise 8.2

Copy the final version of example model 7.1 to a new directory. Open the copied mod
AutoStat and use the Setup wizard to define the following model properties:

• Model is random
• Check for infinite loops and stop runs that are longer than 2 minutes
• Define a 4 hour warmup
• Define a snap length of 24 hours

Record the summary statistics and find the 95 percent confidence interval for the ave
time in seconds that loads spend processing, not including the time that loads spend in the
inspection and finishing processes. Perform the analysis with 10 replications.

ote
Note
✎

8.22 rev 1.0

Getting Started with AutoMod Basic Statistical Analysis Using AutoStat

rage
wing

se the

wing

onen-
ueue
r pro-

 sec-

e aver-
rmup,
Exercise 8.3

Copy example model 6.1 to a new directory. Open the copied model in AutoStat and use the
Setup wizard to define the following model properties:

• Model is random
• Check for infinite loops and stop runs that are longer than 2 minutes
• Define a 4 hour warmup
• Define a snap length of 1 day

Record the summary statistics and find the 95 percent confidence interval for the ave
number of loads in P_process. Perform the analyses with 10 replications and the follo
snap lengths:

a) Each replication is based on a 1-day simulation.
b) Each replication is based on a 10-day simulation.

Exercise 8.4

Copy example model 6.1 to a new directory. Open the copied model in AutoStat and u
Setup wizard to define the following model properties:

• Model is random
• Check for infinite loops and stop runs that are longer than 2 minutes
• Define a 4 hour warmup
• Define a snap length of 10 days

Find the confidence interval for the average number of loads in P_process for the follo
levels of confidence:

a) 90 percent
b) 95 percent
c) 99 percent

Perform the analysis with 5 replications.

Exercise 8.5

Create a new model in which loads are generated with an interarrival time that is exp
tially distributed with a mean of 12 seconds. Loads first move into an infinite-capacity q
where they wait to use a single-capacity resource. The resource has its own queue fo
cessing. The resource’s processing time is exponentially distributed with a mean of 8
onds. After processing, loads leave the system.

Find the mean (average), standard deviation, and 95 percent confidence interval for th
age time in seconds that loads spend in the system. Perform the analysis with no wa
no infinite loop checks, 5 replications, and the following snap lengths:

a) 1 hour
b) 4 hours
c) 16 hours

How do you explain the difference in the confidence intervals when the snap length
changes?
rev 1.0 8.23

Basic Statistical Analysis Using AutoStat Getting Started with AutoMod
8.24 rev 1.0

Getting Started with AutoMod Modeling Complex Conveyor Systems

.. 9.26

. 9.27

.. 9.27
.. 9.28
.. 9.28

. 9.31

. 9.33
Chapter 9

Modeling Complex Conveyor Systems

Example 9.1: Transporting multiple load types on a conveyor 9.4

Assigning load creation frequency using load attributes... 9.6

Aligning conveyor and process system entities using load attributes......................... 9.7

Example 9.2: Sorting load types in a conveyor system .. 9.9

Modeling the arrival and unloading of trucks.. 9.11
Reading load quantities from a data file.. 9.12
Creating loads for each truck .. 9.13

Sorting loads by type... 9.14

Modeling different types of conveyors .. 9.14
Example 9.3: Accumulating and non-accumulating sections ... 9.15

Changing conveyor attributes .. 9.16

Example 9.4: Customizing a conveyor system.. 9.17
Editing attributes in section templates (types) .. 9.18
Editing individual section attributes.. 9.19

Defining section width ... 9.20
Defining section accumulation .. 9.21
Defining section velocity ... 9.21
Defining section moving space .. 9.22
Defining section stopping space .. 9.24

Modeling transfers .. 9.26
How a transfer’s angle determines its type ...
Determining load orientation on a conveyor..

Load orientation after an ahead transfer ..
Load orientation after a side transfer ...
Load orientation after a reverse transfer ..

Preparing example model 9.4... 9.29

Editing transfer attributes.. 9.30
Defining transfer induction space ...
Defining transfer times ...
rev 1.0 9.1

Modeling Complex Conveyor Systems Getting Started with AutoMod
Modeling motors ..9.34

Example 9.5: Modeling slugging and indexing conveyors ...9.35
Defining motors ...9.36

Assigning motors to conveyor sections ..9.37
Modeling motor failures ..9.38
Modeling slugging conveyors..9.39
Modeling indexing conveyors ...9.41

Summary ..9.42

Exercises ...9.43
Exercise 9.1..9.43
Exercise 9.2..9.44
Exercise 9.3..9.45
Exercise 9.4..9.46
9.2 rev 1.0

Getting Started with AutoMod Modeling Complex Conveyor Systems

ems.
yor
ent

apter
l
tions.
Chapter 9

Modeling Complex Conveyor Systems

In chapter 6, “Introduction to Conveyors,” you learned how to draw basic conveyor syst
In this chapter, you will learn how to transport and sort multiple load types in a conve
system. You will also learn how to edit conveyor system entities to model many differ
types of conveyors, such as belt, chain, and roller conveyors.

This chapter discusses transfers and the effect they have on load orientation. The ch
also introduces motors, which drive conveyor movement. You will learn how to mode
motor failures, as well as use motors to simulate slugging and indexing conveyor sec
rev 1.0 9.3

Modeling Complex Conveyor Systems Getting Started with AutoMod

nd
Example 9.1: Transporting multiple load types on a conveyor
Example model 9.1 is an example system that transports multiple load types. Consider the
conveyor layout shown below:

Layout of example model 9.1

Red, blue, and green loads are transported in the conveyor system. Loads arrive in sets con-
sisting of between one and three loads that are all of the same type. The quantity of loads in
each set is randomly determined as shown in the table below:

The interarrival times for sets of loads of a given type are exponentially distributed with a
mean that is shown in the table below:

Upon arrival, loads in a set are immediately sorted by type into one of three infinite-capacity
entrance queues (Q_geton(1), Q_geton(2), or Q_geton(3)). The loads get on the conveyor at
the entrance lane in front of their assigned queue. The loads then travel on the conveyor to
one of the three ramped exit lanes, which are alternately selected based on the order in which
loads arrive at station “sel_pt” (the first load to arrive exits at station “exit_3,” the seco
load to arrive exits at station “exit_2,” and so on.).

enter_1 enter_2 enter_3

exit_1 exit_2 exit_3

Q_geton(1) Q_geton(2) Q_geton(3)

Red loads start here Blue loads start here Green loads start here

R_worker

sel_pt

Load type
Chance of one
load in set

Chance of two
loads in set

Chance of three
loads in set

L_red 35 percent 40 percent 25 percent

L_blue 45 percent 40 percent 15 percent

L_green 40 percent 40 percent 20 percent

Load type Mean

L_red 10 minutes

L_blue 8 minutes

L_green 10 minutes
9.4 rev 1.0

Getting Started with AutoMod Modeling Complex Conveyor Systems
After arriving at an exit station, each load is processed by a worker for an amount of time
that is exponentially distributed with a mean of 1.6 minutes. The completed loads then leave
the system.

To become familiar with the movement of loads in the system:

Step 1 Import and run a copy of example model 9.1.

Step 2 When you are ready to continue, select Edit Model from the Control menu to return to the
build environment.

You are now ready to look at the example model logic to see how the system is simulated.
rev 1.0 9.5

Modeling Complex Conveyor Systems Getting Started with AutoMod

on-
to the
to the
ed and

 were
 load

cuted,

y is
re).
which
Assigning load creation frequency using load attributes
In example model 9.1, the model initialization function creates one load of type L_dummy
and sends the load to the process P_init. The P_init arriving procedure creates three loads
that generate sets of red, blue, and green loads throughout the simulation.

The P_init arriving procedure is shown below:

begin P_init arriving

set V_index to 1

while V_index <= 3 do begin

set A_type to V_index

set A_freq1 to nextof(35,45,40)

set A_freq2 to nextof(40,40,40)

set A_freq3 to nextof(25,15,20)

set A_time to nextof(10,8,10) /*time between arrivals*/

clone 1 load to P_create nlt nextof(L_red, L_blue, L_green)

inc V_index by 1

end

end

The P_init arriving procedure includes a while...do loop that executes three times at the
beginning of the simulation. Each time the loop executes, load attribute values are initialized
and a load is cloned to the P_create process. The load attribute values define a number to
represent each load type, three frequency values that determine how often multiple loads are
created in a set, and a time value that represents the time between set arrivals in minutes.

The first time the loop is executed, the value of the attribute A_type is set to 1. The values
of the three frequency attributes (A_freq1, A_freq2, and A_freq3) are set to 35, 40, and 25,
respectively. These values correspond to the frequency with which multiple loads of type
L_red are created in a set (see “Example 9.1: Transporting multiple load types on a c
veyor” on page 9.4). The value of the attribute A_time is set to 10, which corresponds
time between arrivals of each set of L_red loads. A load of type L_red is then cloned
process P_create. The second and third times the loop is executed, values are initializ
loads of type L_blue and L_green are cloned, respectively.

Recall that cloned loads retain the attribute values of the original load; the values that
initialized in the P_init arriving procedure are used by the three cloned loads to create
sets in the P_create process, as shown below:

begin P_create arriving

while 1=1 do begin

clone oneof(A_freq1:1,A_freq2:2,A_freq3:3) loads to P_process

wait for e (A_time * 60) /*time is converted to seconds*/

end

end

The three cloned loads simultaneously execute the while...do loop in the P_create arriving
procedure to clone sets of loads throughout the simulation. Each time the loop is exe
a new set of loads is cloned and sent to the process P_process.

The number of loads that are cloned in each set is determined using the oneof distribution
and the frequency values that were set in the P_init arriving procedure. The time dela
defined using the value of the attribute A_time (also set in the P_Init arriving procedu
Because the time value represents minutes, but is stored in an attribute of type Time (
expresses values in seconds) each value is multiplied by 60 in the wait action to convert the
value from minutes to seconds.
9.6 rev 1.0

Getting Started with AutoMod Modeling Complex Conveyor Systems
Aligning conveyor and process system entities using load attributes
According to the description of example 9.1, loads are sorted by type into one of three
queues. Loads then get on the conveyor at the entrance lane in front of each queue and travel
to one of three alternately selected exit stations. In example model 9.1, the logic that sorts
and moves loads through the conveyor system is defined in the P_process arriving proce-
dure. The procedure aligns the process system queues with the conveyor entrance stations
using the value of the load attribute A_type, which is 1 for loads of type L_red, 2 for loads
of type L_blue, and 3 for loads of type L_green. The value of the attribute A_type is then
used to align queues and conveyor stations in the simulation, as shown below:

begin P_process arriving

move into Q_geton(A_type)

move into conv:enter_(A_type)

travel to conv:sel_pt

set A_index to nextof(3,2,1)

travel to conv:exit_(A_index)

use R_worker for e 1.6 min

send to die

end

The entrance queues at the beginning of each conveyor section are modeled as an array.
Each load that executes the P_process arriving procedure uses the value of the attribute
A_type to determine which queue to move into, as shown below:

move into Q_geton(A_type)

Loads of type L_red move into Q_geton(1), loads of type L_blue move into Q_geton(2), and
loads of type L_green move into Q_geton(3).

When referring to movement system locations in the model logic, you can replace the
numeric portion of the location name with a numeric variable or load attribute, similar to the
way that you can point to arrayed queues. For example, notice that each of the entrance con-
veyor stations are defined using the same alphabetic name but with a different number
(enter_1, enter_2, and enter_3). In the model logic, the numbers can be replaced with the
value of the load attribute A_type, as shown below:

move into conv:enter_(A_type)

Consequently, loads of type L_red move into station enter_1, loads of type L_blue move
into station enter_2, and loads of type L_green move into station enter_3.
rev 1.0 9.7

Modeling Complex Conveyor Systems Getting Started with AutoMod

e 9.4
need
ds on
of type
r all
d until

 any-
exam-

tely
n.
con-
tes

of three
ample
Now, look at the logic that sends loads to their destinations:

travel to conv:sel_pt

set A_index to nextof(3,2,1)

travel to conv:exit_(A_index)

All loads travel to a selection station before determining their final destination. Can you see
why? (Refer to “Example 9.1: Transporting multiple load types on a conveyor” on pag
for an illustration of the conveyor layout.) According to the example description, loads
to travel to each of the exit stations in alternating order. However, the sequence of loa
the conveyor is not determined until all loads have passed the entrance lane for loads
L_green (green loads can get on before, or in the middle of loads of other types). Afte
loads have passed the entrance lane for loads of type L_green, their sequence is fixe
they reach the exit lanes. Consequently, the selection station (sel_pt) can be located
where after the entrance lane for loads of type L_green but before the first exit lane. In
ple model 9.1, the station is located immediately before the first exit lane.

After traveling to the selection point, the value of the load attribute A_index is alterna
set to 3, 2, or 1, which is used in the travel action to send loads to the correct destinatio
Once loads arrive at their destination, they use the resource R_worker (while on the
veyor) for an amount of time that is exponentially distributed with a mean of 1.6 minu
and are removed from the simulation.

In example model 9.1, loads are sorted in queues and then sent on a conveyor to one
alternately-selected destinations. Now, close the model and take a look at another ex
model that determines the destination of loads based on the load’s type.
9.8 rev 1.0

Getting Started with AutoMod Modeling Complex Conveyor Systems

nd
en 7
ueue)

 each
Example 9.2: Sorting load types in a conveyor system
In this example of a warehouse sortation system, loads on a conveyor are routed to one of
three destinations, depending on load type. Consider the conveyor layout shown below:

Layout of example model 9.2

Trucks arrive at the warehouse every 15 minutes. Each truck carries a random number of
light, medium, and heavy loads; the number and type of loads on each truck are defined in
a data file.

Upon arrival, each truck’s contents are verified at an entrance location. Verification a
completion of the required paperwork takes a time that is uniformly distributed betwe
and 13 minutes. The trucks then move into the yard (modeled as an infinite-capacity q
where they wait to park at one of four alternately-selected unloading docks.

A worker at the docks unloads each truck, one truck at a time. The unloading time for
load varies by type, as shown in the table below:

Load type Unloading time per load

Light Uniformly distributed time between 23 and 27 seconds.

Medium Normally distributed time with a mean of 30 seconds and a standard
deviation of 3 seconds.

Heavy Triangularly distributed time with a minimum value of 32 seconds, a
most-likely value of 35 seconds, and a maximum value of 42 seconds.

in_1 in_2 in_3 in_4

Q_dock(1) Q_dock(2) Q_dock(3) Q_dock(4)

Q_yard

Q_paperwork

R_worker

out_1 out_2 out_3
rev 1.0 9.9

Modeling Complex Conveyor Systems Getting Started with AutoMod
The worker places loads on a lane of conveyor in front of the current dock. The loads travel
to one of three destinations depending on type, as shown in the table below:

After arriving at their destination, loads are removed from the system.

To become familiar with the movement of loads in the system:

Step 1 Import and run a copy of example model 9.2.

Step 2 When you are ready to continue, select Edit Model from the Control menu to return to the
build environment.

You are now ready to look at the example model logic to see how the system is simulated.

Load type Destination location

Light out_1

Medium out_2

Heavy out_3
9.10 rev 1.0

Getting Started with AutoMod Modeling Complex Conveyor Systems

ation
 to the
hown
Modeling the arrival and unloading of trucks
In example model 9.2, trucks are modeled as a load type named “L_truck.” A load cre
specification creates a new load of type L_truck every 15 minutes and sends the load
process P_arrive. The P_arrive arriving procedure models the unloading of trucks, as s
below:

begin P_arrive arriving

move into Q_paperwork

wait for u 10,3 min

set A_dock to nextof(1,2,3,4)

read A_light,A_medium,A_heavy from “arc/data2.txt”

at end

begin

print “Ran out of data in file data2” to message

terminate

end

move into Q_yard

move into Q_dock(A_dock)

get R_worker

set A_type to 1

while A_light > 0 do begin /* Unload light loads first */

wait for uniform 25,2 sec

clone 1 loads to P_conveyor new load type L_light

dec A_light by 1

end

set A_type to 2

while A_medium > 0 do begin/* Unload medium loads second */

wait for normal 30,3 sec

clone 1 loads to P_conveyor new load type L_medium

dec A_medium by 1

end

set A_type to 3

while A_heavy > 0 do begin /* Unload heavy loads last */

wait for t 32,35,42 sec

clone 1 loads to P_conveyor new load type L_heavy

dec A_heavy by 1

end

free R_worker

send to die

end

Trucks that execute the procedure first move into the infinite-capacity queue Q_paperwork
and then delay for the time required for verification and paperwork. The value of the load
attribute A_dock is then alternately set for each truck. The attribute is used later, not only to
move trucks into the correct dock but also to place loads on the correct entrance station on
the conveyor.

The number of loads in each truck is read from a data file, as explained in the following sec-
tion.
rev 1.0 9.11

Modeling Complex Conveyor Systems Getting Started with AutoMod

 saved

Reading load quantities from a data file

The data file that defines the number of loads on each truck is named “data2.txt” and is
in the model’s archive directory. The first few lines of the file are shown below:

The file headers are read in the model initialization function, as shown below:

begin model initialization function

read V_headers from “arc/data2.txt” with delimiter “\n”

return true

end

Three load attributes (one for each type) are used to keep track of the number of loads
onboard each truck.The P_arrive arriving procedure reads the number of loads from the data
file into the attributes, as shown below:

read A_light,A_medium,A_heavy from “arc/data2.txt”

at end

begin

print “Ran out of data in file data2” to message

terminate

end

At this point, a truck executing the arriving procedure has four attribute values defined. The
first, A_dock, defines the truck’s parking location at the docks. The remaining three
attributes define the number of light, medium, and heavy loads that are on the truck.

After reading from the data file, the truck moves into the yard and then moves into its
assigned dock, as shown below:

move into Q_yard

move into Q_dock(A_dock)

The logic for unloading each truck is described in the next section.

Light Medium Heavy

5 3 4

2 3 7

4 7 1

...
9.12 rev 1.0

Getting Started with AutoMod Modeling Complex Conveyor Systems
Creating loads for each truck

The P_arrive arriving procedure defines three loops to unload each truck (one loop for each
load type). The worker unloads the light loads first, then the medium loads, then the heavy
loads, as shown below:

get R_worker

set A_type to 1

while A_light > 0 do begin

wait for uniform 25,2 sec

clone 1 loads to P_conveyor new load type L_light

dec A_light by 1

end

set A_type to 2

while A_medium > 0 do begin

wait for normal 30,3 sec

clone 1 loads to P_conveyor new load type L_medium

dec A_medium by 1

end

set A_type to 3

while A_heavy > 0 do begin

wait for t 32,35,42 sec

clone 1 loads to P_conveyor new load type L_heavy

dec A_heavy by 1

end

free R_worker

send to die

The truck first claims the resource R_worker. The worker remains claimed throughout the
unloading process, until the truck is empty.

Each of the three loops in the procedure is preceded by an action that sets the value of the
load attribute A_type. The value of the attribute indicates the type of load that will be
unloaded next (a value of one indicates light loads, a value of two indicates medium loads,
and a value of three indicates heavy loads). The value of this attribute is used later to route
loads to the correct destination.

Each loop begins by delaying for the required amount of unloading time. After each delay,
the clone action is used to create a new load of the correct type and send it to the P_conveyor
process (described in the next section). The load attributes that track the number of onboard
loads are decremented after each new load is cloned. When all of the loads of a specific type
have been unloaded (the attribute value is equal to zero), the next unloading loop is exe-
cuted.

When all of the loads have been unloaded, the resource R_worker is freed and the load that
represents the truck is sent to die.
rev 1.0 9.13

Modeling Complex Conveyor Systems Getting Started with AutoMod

d’s

oved
 page
stem
orld
ow a
 of the
ng or

s con-
odel

e.
tops,
el belt

sfers
d you
e tubes

es of
g sec-

ount
veyor.

r.

 at the
Sorting loads by type
Loads that are cloned by a truck are sent to the P_conveyor process. This process places
loads on the conveyor (at the correct station) and causes them travel to their destination,
which is determined by load type.

The P_conveyor arriving procedure is shown below:

begin P_conveyor arriving

 move into conv:in_(A_dock)

 travel to conv:out_(A_type)

 send to die

end

Both actions in the procedure use load attribute values that were defined in the P_arrive
arriving procedure. The move action that places loads on the conveyor uses the value of the
load attribute A_dock to align the conveyor entrance stations with the dock queue of the
parked truck. The travel action uses the value of the load attribute (A_Type) to send loads
to one of the three destination stations (out_1, out_2, or out_3), depending on the loa
type.

After arriving at the destination station, loads are sent to die.

Modeling different types of conveyors
Until now, loads in the conveyor systems that you have modeled have either been rem
from the conveyor for processing (see “Example 6.1: Drawing a conveyor system” on
6.9 of the “Introduction to Conveyors” chapter), or loads have traveled through the sy
from an entrance station to an exit station, without stopping. Often, however, a real-w
conveyor system requires loads to temporarily stop on the conveyor for processing. H
conveyor behaves when a load stops varies depending on the type of conveyor. One
primary distinctions between conveyor types is whether their sections are accumulati
non-accumulating.

An accumulating section is a section on which loads travel independently. Think of an
accumulating section as a series of rollers; when a preceding load stops, trailing load
tinue to move until they reach the stopped load. Accumulating sections are used to m
roller and queueing conveyors.

A non-accumulating section is a section on which loads stop and start at the same tim
Think of an accumulating section as a moving belt that carries loads; when the belt s
the loads traveling on the belt also stop. Non-accumulating sections are used to mod
and chain conveyors.

Assume that your company manufactures glass picture tubes for televisions and tran
them from one station to another on a conveyor. What kind of conveyor sections woul
use to transfer the tubes? You would use non-accumulating sections so that the pictur
do not bump into each other when one tube stops.

In contrast, suppose that you are the manager of a distribution facility that moves box
T-shirts. It probably does not matter if those boxes bump, so you can use accumulatin
tions.

When modeling non-accumulating sections, it is important to correctly simulate the am
of space between loads when they are moving and when they are stopped on the con
These measures are usually not important when modeling an accumulating conveyo

To understand different types of conveyor sections, close example model 9.2 and look
following example.

ote
Note
✎

9.14 rev 1.0

Getting Started with AutoMod Modeling Complex Conveyor Systems
Example 9.3: Accumulating and non-accumulating sections

Example model 9.3 contains three conveyor sections, as shown below:

Layout of example model 9.3

Loads are created at the same time for each section. Loads first move into a queue at the
beginning of the section and then travel across the section from left to right. Loads stop at a
station in the middle of the section, where they are inspected by an inspector for a constant
amount of time. When loads reach the end of a conveyor section, they are sent to die.

The topmost conveyor section is a non-accumulating section; when one load stops at the
inspection station, all loads on the conveyor stop. The section is defined to maintain a min-
imum of three feet of space between loads that are moving or that are stopped on the con-
veyor. As a result, loads that arrive at the same time are placed three feet apart on the section.

The middle conveyor section is also non-accumulating. However, unlike the topmost sec-
tion, this section is defined without any extra space requirements for loads that are traveling
on the conveyor. As a result, loads that arrive at the same time are placed back-to-back on
the conveyor.

The lowest conveyor section is an accumulating section; when one load stops at the inspec-
tion station, the remaining loads keep moving until they reach the loads in front of them. As
a result, loads back up at the inspection station.

To become familiar with the differences between the three sections:

Step 1 Import and run a copy of example model 9.3.

Step 2 When you are ready to continue, close the model.

R_insp_non_no

R_insp_non

R_insp_accum

Q_non

Q_non_no

Q_accum

Loads accumulate at
the inspection station

Loads that arrive at
the same time are
placed back-to-back
on the conveyor

Loads that arrive at
the same time are
spaced three feet
apart
rev 1.0 9.15

Modeling Complex Conveyor Systems Getting Started with AutoMod

veloc-

e

 for an
e for
tions

s for

s that
all of
s that
”
ot per

pe are

t are

e the
Changing conveyor attributes
The following entities in a conveyor system have attributes to define their characteristics:

• Sections
• Transfers
• Motors
• Stations
• Photoeyes (not discussed in this textbook)

For example, conveyor sections have attributes that define their width, accumulation,
ity, and so on. Until now, you have been drawing conveyor systems using the default
attribute values for entities in the system. In this chapter, you will learn how to chang
attribute values for two conveyor entities: sections and transfers.

There are two ways to change conveyor attribute values. You can change the values
individual conveyor entity (for example, a single section), or you can change the valu
a group of conveyor entities that are all of the same type (for example, a group of sec
that are all of type “Roller”). Think of conveyor types as templates that define attribute
more than one conveyor entity.

Each conveyor entity in a model belongs to a default type. For example, new section
you draw in a conveyor system are all of type “DefaultSection,” and new transfers are
type “DefaultTransfer.” These default templates are pre-defined using attribute value
are commonly used in conveyor systems. For example, the template “DefaultSection
defines section width as 4 feet, sections as accumulating, and section velocity as 1 fo
second. When you change attribute values in the template, all of the entities of that ty
automatically updated to use the new values. For example, you can edit the template
“DefaultSection” and change the section velocity to 3 feet per second; all sections tha
of type “DefaultSection” are automatically updated to a speed of 3 feet per second.

To gain some experience changing the attributes of entities in a conveyor system, us
following example model.
9.16 rev 1.0

Getting Started with AutoMod Modeling Complex Conveyor Systems

ide.”
of 10

e

ds

 and
 the
wing:

 the
Example 9.4: Customizing a conveyor system
Consider the conveyor layout for example model 9.4, shown below:

Layout of example model 9.4

Two types of loads are processed in this system: loads of type “L_top” and type “L_s
Both load types have an interarrival time that is exponentially distributed with a mean
minutes and 30 seconds. Loads of type “L_top” move into the infinite-capacity queue
“Q_top” and get on the conveyor at station “in_1.” Loads of type “L_side” move into th
infinite-capacity queue “Q_side” and get on the conveyor at station “in_2.”

Both load types travel to the inspection station “insp,” where they are inspected by an
inspector for a time that is exponentially distributed with a mean of 5 minutes. The loa
then travel to the station “exit,” where they are removed from the system.

You will use example model 9.4 to experiment with different conveyor entity attributes
see how to model virtually any conveyor system. Currently, all the conveyor entities in
model are using the default attribute values. Before changing any values, do the follo

Step 1 Import and run a copy of example model 9.4 to become familiar with load movement in
system.

Step 2 When you are ready to continue, edit the model.

Q_top

Q_side

in_1

R_insp

in_2

insp

exit
sec_1

sec_2
sec_3

sec_4

sec_5
rev 1.0 9.17

Modeling Complex Conveyor Systems Getting Started with AutoMod

the

se

 sec-

efore
.

Editing attributes in section templates (types)

Currently, all the sections in example model 9.4 are of type “DefaultSection.” To edit
attribute values for the “DefaultSection” template, do the following:

Step 1 Open the conveyor system (the system is named “conv”).

Step 2 From the System menu, select Show Defaults. The Conveyor Defaults window opens.

Step 3 Click Section Types. The Section Type window opens.

Step 4 The “DefaultSection” type is already selected, so click Edit to edit this template. The Edit
Conveyor Section Type window opens, as shown below:

The Edit Conveyor Section Type window

The window provides a list of all the section attributes and their values.

Several options in the Edit Conveyor Section Type window are disabled, because the
options are used only when editing individual sections (discussed on the next page.)

All the sections in example model 9.4 are of type “DefaultSection,” so each individual
tion inherits the attribute values that are displayed in this window; when you change
attribute values in the template, all sections in the model are automatically updated. B
changing any values, you will learn how to edit attribute values for individual sections

Step 5 Click OK to close the Edit Conveyor Section Type window.

Step 6 To close the Conveyor Defaults window, click OK.

ote
Note
✎

9.18 rev 1.0

Getting Started with AutoMod Modeling Complex Conveyor Systems

 or by
 that

 You
 by the

clear

dow.

top edit-

ging
Editing individual section attributes

You can edit the attribute values of an individual section to apply a new section type, or to
override attribute values that the section has inherited from its current section type. To edit
an individual section’s attributes:

Step 1 If the Select tool is not already selected on the Conveyor palette, click Select.

Step 2 Select a section to edit. (For this example, you can select any section in the model.)

You can select a section by dragging a selection box that includes part of the section
clicking the section in the Work Area window. The section color turns green to indicate
it is selected.

Step 3 From the Edit menu, select Edit. The Section Edit window opens.

Step 4 Click Attributes. The Edit Conveyor Section window opens.

The Edit Conveyor Section window allows you to change the section’s name or type.
can also select one or more attribute check boxes to override values that are defined
section’s type.

Edit Conveyor Section window

To restore the inherited value of an attribute that is currently overriding the template,
the check box for that attribute.

Take a few moments to become familiar with how to change attribute values in the win

Step 5 To accept your changes, you would click OK. In this case, however, click Cancel to cancel
your changes and close the Edit Conveyor Section window.

Step 6 When you select a section, the section’s stations and transfers are also selected. To s
ing all selected entities, click OK, Quit Edit Each in the Section Edit window.

Now you are ready to customize the conveyor system in example model 9.4 by chan
entity attribute values.

ote
Tip

☞

Selecting a check
box allows you to
override an
attribute’s inherited
values

Attribute values are
inherited from this
template

ote
Tip

☞

rev 1.0 9.19

Modeling Complex Conveyor Systems Getting Started with AutoMod

n

eyor

 sec-
Defining section width
The Width attribute defines how wide a conveyor section is. In example model 9.4, you
want to increase the width of the horizontal entrance lane by 2 feet.

Step 1 Select section “sec5.”

Step 2 Edit the attributes of section “sec5” and change the section width from 4 to 6 feet, as show
below:

Step 3 Click OK to close the Edit Conveyor Section window. The increased width of the conv
in the Work Area window is increased.

Step 4 Click OK, Quit Edit Each in the Section Edit window.

In general, you should change the width of a section before you draw it. To do this, edit the
section’s attributes by clicking Attributes in the window that opens when you select a
tion drawing tool.

The section’s width
is set to 6 feet

ote
Tip

☞

9.20 rev 1.0

Getting Started with AutoMod Modeling Complex Conveyor Systems

ction
ction

 as an
ore the
nce
pleted

 must
 is less

s

ibed

ccel-

rom
ane.
Defining section accumulation
Currently, all sections in example model 9.4 are accumulating sections. When you run the
model, each load stops at the inspection station, and trailing loads accumulate behind the
stopped load. You want to see the effect on traveling loads if the inspection lane is modeled
as a belt conveyor (a non-accumulating section).

Step 1 Select section “sec_2.”

Step 2 Edit the attributes of section “sec_2” and change the Accumulation value to “no.”

Step 3 Click OK to close the Edit Conveyor Section window, then click OK, Quit Edit Each to
close the Section Edit window.

Step 4 Export and run the model to observe the difference. Loads no longer accumulate on se
“sec_2.” When a load needs to be inspected, the belt stops and all loads on the inspe
lane stop moving.

Notice that section “sec_2” is less efficient as a non-accumulating section than it was
accumulating section. There is a greater amount of empty space on the conveyor bef
inspection station, because while the inspection lane is stopped, loads from the entra
lanes accumulate at the transfer to the inspection lane. In addition, loads that have com
the inspection process are not able to travel as quickly to the exit lane, because they
stop and wait each time another load on the section is inspected. Because the section
efficient, you should now set the inspection lane back to an accumulating section.

To restore the original Accumulation attribute value, do the following:

Step 5 Edit the attributes of section “sec_2” and clear the Accumulation check box. The section i
now an accumulating section.

Leave the Edit Conveyor Section window open to edit the section’s velocity, as descr
below.

Defining section velocity
The Velocity attribute defines the constant speed of a conveyor section when it is not a
erating or decelerating. You want to increase the velocity of the inspection lane.

Step 1 Edit the attributes of section “sec_2” and change the velocity of the section from 1 foot per
second to 3 feet per second.

Step 2 Click OK to close the Edit Conveyor Section window, then click OK, Quit Edit Each to
close the Section Edit window.

Step 3 Export and run the model, but do not change the display step.

Notice the difference in section velocity when the first load in the simulation transfers f
the arc section to the inspection lane; the load travels much faster on the inspection l

Step 4 From the Control menu, select Edit Model to return to the build environment.
rev 1.0 9.21

Modeling Complex Conveyor Systems Getting Started with AutoMod

wo

 extra
 dem-
quired

ring the

Defining section moving space
A load’s leading edge is the front edge in the load’s current direction of travel. The Moving
Space attribute defines the minimum amount of space between the leading edges of t
loads that are moving on a conveyor section, as shown below:

Moving space on a conveyor section

A section’s moving space is defined by the equation:

The default moving space defined for the “DefaultSection” type is:

That is, a moving load requires a space equal to its length on the conveyor.

If you increase a section’s moving space to a value greater than the load’s length, the
space is modeled as a “buffer” behind the load (as shown in the illustration above). To
onstrate the effect of increasing a section’s moving space, change the moving space re
by loads on the vertical entrance lane in example model 9.4.

Step 1 Select section “sec_1.”

Step 2 Edit the section’s attributes and set the moving space to:

Step 3 Click OK to close the Edit Conveyor Section window, then click OK, Quit Edit Each to
close the Section Edit window.

Step 4 To see the buffer between loads, you need to create several loads at the same time du
simulation. Open the Process system, then edit the load creation specification for loads of
type L_top to create 10 loads at time zero in the simulation, as shown below:

Editing the load creation specification for loads of type L_top

moving space

Because of the section’s moving space, the trailing load
cannot be any closer to the preceding load while moving
on the section

Moving Space ____ load length× ____ feet+=

Moving Space 1 load length× 0 feet+=

Moving Space 1 load length× 10 feet+=

Create 10 loads at time zero in
the simulation
9.22 rev 1.0

Getting Started with AutoMod Modeling Complex Conveyor Systems

 can
oving

 space
 each
Step 5 Export and run the model.

Notice the space between the loads of type L_top as they travel to the inspection lane.
Although all loads attempt to get on the conveyor at the same time, they are placed 10 feet
apart due to the section’s moving space.

Step 6 From the Control menu, select Edit Model to return to the build environment.

Because a load’s size is factored into a section’s moving space, different sized loads
have different moving space requirements on the section. You can define a constant m
space for all loads as follows:

In this case, the moving space for all loads on the section is 12 feet. Because moving
is measured from the load’s leading edge, the actual amount of “buffer” space behind
load varies depending on the length of loads in the system.

Moving Space 0 load length× 12 feet+=
rev 1.0 9.23

Modeling Complex Conveyor Systems Getting Started with AutoMod

closer

ot be

an the
e illus-
ange

loads
ted on
Defining section stopping space
The Stopping Space attribute defines the minimum amount of space between the leading
edges of two loads that are stopped on a conveyor section, as shown below:

Stopping space on a conveyor section

A section’s stopping space can be less than its moving space, allowing loads to stop
than they were able to travel on the section (as shown above). However, a section’s moving
space must be greater than or equal to its stopping space. If two moving loads on a section
are already closer together than the section’s defined stopping space, the loads cann
repositioned when they stop to create a greater distance between them.

A section’s stopping space is defined by the equation:

The default stopping space defined by the “DefaultSection” type is:

That is, a stopped load requires a space equal to its length on the conveyor.

As with moving space, if you increase a section’s stopping space to a value greater th
load’s length, the extra space is modeled as a “buffer” behind the load (as shown in th
tration above). To demonstrate the effect of increasing a section’s stopping space, ch
the stopping space required by loads on the inspection lane.

Step 1 Open the conveyor system and select section “sec_2.”

Step 2 Because the moving space must be greater than or equal to the stopping space, edit the sec-
tion’s attributes and set the moving space to:

and set the stopping space to:

Step 3 Click OK to close the Edit Conveyor Section window and click OK, Quit Edit Each to close
the Section Edit window.

Step 4 Export and run the model. Notice the effect that the increased stopping space has on
that accumulate at the inspection station. The loads stop 5 feet apart when accumula
the section, instead of right next to each other as they did before.

Step 5 From the Control menu, select Edit Model to return to the build environment.

moving space

stopping space

Because of the section’s stopping
space, the trailing load cannot stop any
closer to the preceding load

Note
Important

▲!

Stopping Space ____ load length× ____ feet+=

Stopping Space 1 load length× 0 feet+=

Moving Space 1 load length× 5 feet+=

Stopping Space 1 load length× 5 feet+=
9.24 rev 1.0

Getting Started with AutoMod Modeling Complex Conveyor Systems

 frac-

 con-

 more
When modeling non-accumulating conveyors, it is important to accurately simulate the
space between stopped loads on the conveyor.

Stopping space can also be important when modeling accumulating conveyors. For exam-
ple, live (powered) roller conveyors are an accumulating conveyor that can stop loads before
they collide. Another use for setting stopping space on an accumulating section is for simu-
lating the transportation of bulk material on a conveyor (for example, letters in a postal facil-
ity). In this case, the loads stack on top of each other when they stop on an accumulating
conveyor. You can model load overlap by defining a section’s stopping space using a
tion of the load length. For example,

This stopping space causes trailing loads to overlap half of the preceding load on the
veyor.

Now that you have some experience editing section attributes, you are ready to learn
about transfers and their attributes in a model.

Stopping Space 0.5 load length× 0 feet+=
rev 1.0 9.25

Modeling Complex Conveyor Systems Getting Started with AutoMod

r types
is-

r sys-
r a

rees.
ransfer,

 that

 type.
Modeling transfers
As previously mentioned, transfers are created automatically as you draw sections in a con-
veyor system. Transfers allow loads to move from one section to another. There are three
types of transfers in a simulation:

• Ahead transfers
• Side transfers
• Reverse transfers

The angle between two connected sections determines a transfer’s type. The transfe
differ based on how they affect load orientation in a simulation. These concepts are d
cussed in the following sections.

How a transfer’s angle determines its type

A transfer’s angle is determined when you draw two connected sections in a conveyo
tem. The transfer angle is the difference between the direction traveled prior to and afte
transfer, measured in degrees. Therefore, the transfer angle cannot exceed 180 deg
Depending on the transfer angle, a transfer’s type is either an ahead, side, or reverse t
as shown in the table below:

It is possible to define different ranges (in degrees) for each of the transfer types, but
concept is not discussed in this textbook.

The illustration below shows the relation between a transfer’s angle and the transfer’s

Relation between a left transfer angle and transfer type

If the transfer angle is... Then the transfer type is...

Less than 45 degrees Ahead transfer

Greater than or equal to 45 degrees,
and less than or equal to 135 degrees

Side transfer

Greater than 135 degrees Reverse transfer

ote
Note
✎

45 degrees135 degrees

0 degrees180 degrees

Ahead transfer

Side transfer

Reverse transfer
9.26 rev 1.0

Getting Started with AutoMod Modeling Complex Conveyor Systems

fer.

ction
eyor
ize of

d in the

ple, if
ff the
 main-
e

 an
Note that the relation also holds true for transfers in the opposite direction, as shown below:

Relation between a right transfer angle and transfer type

A transfer’s type affects how transferring loads are oriented on a section after a trans

Determining load orientation on a conveyor

When a load gets on a conveyor for the first time, the load is positioned so that the dire
of travel is along the load’s positive X axis (in other words, the load’s length on the conv
is determined by the size of the load on the X axis and its width is determined by the s
the load on the Y axis).

When a load transfers from one section to another, the load’s orientation may change
depending on whether the transfer is an ahead, side, or reverse transfer (as explaine
following sections).

Once changed, a load’s orientation is maintained throughout the simulation. For exam
a load’s orientation changes as a result of one or more transfers, and the load gets o
conveyor (for example, to move into a queue), and then back on the conveyor, the load
tains its last orientation. Therefore, the load’s X axis may no longer be aligned with th
direction of travel.

Load orientation after an ahead transfer
A load’s direction of travel remains the same during an ahead transfer (a transfer with
angle that is less than 45 degrees).

An illustration of an ahead transfer with an angle of 10 degrees is shown below:

A load’s direction of travel remains the same after an ahead transfer

The load, which is traveling in the positive X direction, continues traveling in the positive
X direction on the destination section after the transfer (the destination section refers to the
section to which the load is transferring).

45 degrees135 degrees

0 degrees180 degrees

Ahead transfer

Side transfer

Reverse transfer

ote
Note
✎

sec25 sec31

10 degree transfer angle
rev 1.0 9.27

Modeling Complex Conveyor Systems Getting Started with AutoMod

at is

n the

 that

n the
Load orientation after a side transfer
A load’s direction of travel changes during a side transfer (a transfer with an angle th
greater than or equal to 45 degrees and less than or equal to 135 degrees).

An illustration of a side transfer with an angle of 90 degrees is shown below:

A load’s direction of travel changes during a side transfer

The load’s direction of travel changes from the positive X axis to the negative Y axis o
destination section.

Load orientation after a reverse transfer
A load’s direction of travel reverses during a reverse transfer (a transfer with an angle
is greater than 135 degrees and less than or equal to 180 degrees).

An illustration of a reverse transfer with an angle of 150 degrees is shown below:

A load’s direction of travel reverses during a reverse transfer

The load’s direction of travel changes from the positive X axis to the negative X axis o
destination section.

sec25 sec31

90 degree transfer angle

sec25

sec31

150 degree transfer angle
9.28 rev 1.0

Getting Started with AutoMod Modeling Complex Conveyor Systems
Preparing example model 9.4
Now that you are more familiar with how transfers affect load movement during a simula-
tion, you are ready to edit some of the transfer attribute values in the example model. But
first, you need to speed up the load creation rate and prevent loads from stopping at the
inspection station; making these modifications to the model will make changes to transfer
attributes easily visible in the simulation.

To modify the example model (before editing any transfer attribute values), do the follow-
ing:

Step 1 Open the Process system and edit the load creation specification for loads of type L_top.

Step 2 Change the specification to create an infinite number of loads with an interarrival time that
is exponentially distributed with a mean of 30 seconds, as shown below:

Editing the load creation specification for loads of type L_top

Step 3 Edit the load creation specification for loads of type L_side so that it is the same as the cre-
ation specification for loads of type L_top (exponentially distributed with a mean of 30 sec-
onds).

Step 4 Edit the model logic and comment the two use actions that cause loads to stop at the inspec-
tion station, as shown below:

begin P_top arriving

move into Q_top

move into conv:in_1

travel to conv:insp

/* use R_insp for e 5 min */

travel to conv:exit

send to die

end

begin P_side arriving

move into Q_side

move into conv:in_2

travel to conv:insp

/* use R_insp for e 5 min */

travel to conv:exit

send to die

end

Step 5 Open the conveyor system and edit the attributes of section “sec_1.” Clear the Moving
Space check box to restore the values defined by the section’s type.

Step 6 Click OK, Quit Edit Each to close the Edit Conveyor Section window.

You are now ready to edit transfer attributes in the example model.

Create an infinite number of loads with
an interarrival time that is exponentially
distributed with a mean of 30 seconds
rev 1.0 9.29

Modeling Complex Conveyor Systems Getting Started with AutoMod

 sys-

ese

Editing transfer attributes
Like sections, transfer attributes can be edited either for an individual transfer or for a group
of transfers of the same type. In example model 9.4, all transfers belong to the type
“DefaultTransfer.” You will edit this template to change the values of all transfers in the
tem.

To edit the attribute values for the “DefaultSection” template, do the following:

Step 1 From the System menu, select Show Defaults. The Conveyor Defaults window opens.

Step 2 Click Transfer Types. The Transfer Type window opens.

Step 3 The “DefaultTransfer” type is already selected, so click Edit to edit the template. The Edit
Conveyor Transfer Type window opens, as shown below:

The Edit Conveyor Transfer Type window

The window provides a list of all the transfer attributes and their values.

Several options in the Edit Conveyor Transfer Type window are disabled, because th
options are used only when editing individual transfers.

Notice that attributes for “ahead” transfers are defined separately, whereas “side” and
“reverse” transfers share the attribute values under the heading “Other Transfers.”

ote
Note
✎

9.30 rev 1.0

Getting Started with AutoMod Modeling Complex Conveyor Systems

ion:

g load
mount
ction

, if you
d

 mov-
Defining transfer induction space
The Induction Space attribute defines the amount of space that must be present for a load
to transfer from one conveyor section to another. To understand induction space, think of
traveling on the entrance ramp of a busy highway; you look at what vehicle traffic is
approaching to determine whether there is enough space for you to accelerate and merge into
traffic. In a simulation, transfers determine whether or not loads can get on a new section by
requiring the destination section to have a specific amount of induction space available for
the transferring load.

Like moving and stopping space, a transfer’s induction space is defined by the equat

The default induction space defined for the “DefaultTransfer” type is:

That is, a destination section must have empty space equal to the length of a transferrin
in order for the load to transfer. If the destination section does not have the required a
of empty space, the load waits at the end of its current section until the destination se
has sufficient induction space available.

Induction space is measured starting at the leading edge of each load. Consequently
increase a transfer’s induction space to a value greater than the load’s length, the loa
requires extra space behind it in order to get on the destination section.

A transfer’s induction space must be greater than or equal to the destination section’s
ing space. Otherwise, the transfer would allow loads to violate the moving space of another
load on the destination section.

Induction Space ____ load length× ____ feet+=

Induction Space 1 load length× 0 feet+=

Note
Important

▲!
rev 1.0 9.31

Modeling Complex Conveyor Systems Getting Started with AutoMod

unt of

,” and

ollows:

-

are
To demonstrate the effect of changing a transfer’s induction space, increase the amo
space required for loads to make side transfers in example model 9.4.

There are two side transfers in the example model: one from section “sec_5” to “sec_1
the other from section “sec_2” to “sec_4.”

To increase the induction space for the side transfers, use an exaggerated value as f

Step 1 In the Edit Conveyor Transfer Type window, change the induction space for Other Trans
fers to:

Step 2 Click OK to close the Edit Conveyor Transfer Type window, then click OK to close the Con-
veyor Defaults window.

Step 3 Export and run the model.

Notice the effect that the increased induction space has on loads of type L_side that
merging on the conveyor.

Step 4 From the Control menu, select Edit Model to return to the build environment.

ote
Note
✎

Induction Space 1 load length× 40 feet+=

Loads on the destination section prevent the transfer Loads transfer when 40 feet of induction space is available

Loads of type L_side
accumulate at the transfer

Transferring loads
require 40 feet of
available induction
space behind the
transfer

After loads of type
L_top have passed,
the induction
space is freed so
loads can transfer

Loads of type L_side transfer to
the destination section
9.32 rev 1.0

Getting Started with AutoMod Modeling Complex Conveyor Systems

own

ansfer
s for

a con-
Defining transfer times
The Start Time, Finish Time, and Transfer Move Time attributes allow you to define how
long a load takes to transfer from one section to another. The attributes are defined as fol-
lows:

Start Time The amount of time that a load takes to start the transfer.

Finish Time The amount of time that a load takes to complete the transfer.

Transfer Move
Time

The amount of time that a load takes to move from one conveyor section to the next, exclu-
sive of the transfer start and finish times. The Transfer Move Time can be defined as a time
value or it can be calculated automatically by defining a transfer velocity and motor to drive
the transfer.

The sum of the start, finish, and move times of the transfer defines the total amount of time
that the load takes to transfer from one section to the next.

To understand why three separate times are modeled for the transfer, consider modeling a
pop-up side transfer. A load arrives, the mechanism moves up (start time), the load is pushed
to the next section (transfer move time), then the mechanism moves down (finish time).

To demonstrate the effect of changing transfer times, use exaggerated transfer times as fol-
lows:

Step 1 Edit the attributes of transfers of type “DefaultTransfer” and set the times for Other Trans-
fers to 30 seconds each, as shown below:

Changing the transfer times

To define the Transfer Move Time, select “use time” in the Transfer Move Time drop-d
list and define a Transfer Time of 30 seconds, as shown above.

Step 2 Click OK to close the Edit Conveyor Transfer Type window, then click OK to close the Con-
veyor Defaults window.

Step 3 Export and run the model.

Notice the effect that the new times have on transferring loads. Each load at a side tr
delays for 30 seconds, takes 30 seconds to move to the new section, and then delay
another 30 seconds to complete the transfer.

Step 4 Close the model.

Now you are ready to learn how to use motors for greater control of load movement in
veyor system.

ote
Note
✎

Set each of the transfer times
to 30 seconds

ote
Tip

☞

rev 1.0 9.33

Modeling Complex Conveyor Systems Getting Started with AutoMod

 sec-
te the

mber
group

the
other
 when
ation,
mount

e
Modeling motors
Motors drive conveyor sections and transfers. Motors, unlike other conveyor system enti-
ties, are not represented graphically in the simulation. When you draw the first conveyor
section in a model, a new motor is automatically created; by default, this motor is used by
all sections and transfers in the system. You can create additional motors and assign them to
any section or transfer.

This chapter demonstrates how to use motors to:

• Model motor failures
• Model slugging conveyors
• Model indexing conveyors

Motor failures are similar to resource failures. When a motor goes down, loads on the
tions and/or transfers that are powered by the motor also stop. After a delay (to simula
time to repair), motors can be brought up, at which time load movement resumes.

Slugging conveyors are sections where loads stop and accumulate into slugs. A slug is a
group of two or more loads that travel together on the conveyor. When the required nu
of loads stop and accumulate (forming a complete slug), the loads are released as a
and continue traveling to their next destination.

Indexing conveyors are sections that advance only when a new load is transferred to
section. Indexing conveyors are useful when one conveyor section is less-used than
sections in a system; instead of running the conveyor section continuously, it runs only
required. Indexing conveyors save electricity, conveyor wear and tear, motor deterior
and so on. An obvious disadvantage of indexing conveyors is that they increase the a
of WIP in a system.

To illustrate how motors are used in a simulation, take a look at the following exampl
model.
9.34 rev 1.0

Getting Started with AutoMod Modeling Complex Conveyor Systems

tially
 motor
tion.

ulate
tinues
onen-

 they
Example 9.5: Modeling slugging and indexing conveyors
Consider the conveyor system illustrated below:

Layout of example model 9.5

Loads get on the conveyor at station “get_on” with an interarrival time that is exponen
distributed with a mean of 20 seconds. The horizontal entrance section demonstrates
failures by operating for one minute, then failing for one minute, throughout the simula

Loads travel from station “get_on” to station “count_slug,” where they stop and accum
into slugs consisting of 10 loads. As soon as 10 loads have accumulated, the slug con
to station “inspect,” where the loads are inspected by an inspector for a time that is exp
tially distributed with a mean of 15 seconds.

Loads then get on an indexing conveyor section and travel to station “goodbye,” where
leave the system.

To become familiar with the movement of loads in the system:

Step 1 Import and run a copy of the final version of example model 9.5.

Step 2 When you are ready to continue, close the model.

You are now ready to learn how to create motors for use in a conveyor system.

Loads index on the section

Loads accumulate into slugs

Motor failures stop the section each minute

get_on

count_slugslug_form

inspect

goodbye
R_inspect
rev 1.0 9.35

Modeling Complex Conveyor Systems Getting Started with AutoMod

or
me

s own
m, you

sible
d in the
 so

.

odel
 you
Defining motors

When you draw the first section in a conveyor system, a motor is automatically created to
drive the section. The motor is named using the section’s name with an “M_” prefix. F
example, if the first section you draw is named “sec1,” a motor is created with the na
“M_sec1.” This motor drives all sections that you draw in the system.

If you want to stop a section independently during a simulation, the section must use it
motor. To learn how to create motors and assign them to sections in a conveyor syste
will create three motors for example model 9.5.

To define the motors, do the following:

Step 1 Import a copy of the base version of example model 9.5.

When you import the model, an Attention window opens indicating that there were pos
errors during the import. The warning appears because the motors that are reference
model logic are undefined. You will define the required motors in the following steps,
click OK to close the window.

Step 2 Open the conveyor system (named “conv”), then on the Conveyor palette, click Motor. The
Motor window opens.

Step 3 To create the motor that simulates failures on the entrance section, click New to create a new
motor. The New Conveyor Motor window opens.

Step 4 Name the motor “M_fail” and click OK to define the motor.

Step 5 To create the motor that forms slugs on the conveyor, click New to create another motor.
The New Conveyor Motor window opens.

Step 6 Name the motor “M_slug” and click OK to define the motor.

Step 7 To create the motor that indexes loads on the exit section, click New to create another motor
The New Conveyor Motor window opens.

Step 8 Name the motor “M_index” and click OK to define the motor.

You have now created three motors for use in the model. Currently, all sections in the m
are using the default motor “M_sec1.” To use the new motors that you have created,
must assign each motor to at least one section in the conveyor system.

ote
Note
✎

9.36 rev 1.0

Getting Started with AutoMod Modeling Complex Conveyor Systems

s.

ed

ec-

lect

ontrol

”)
Assigning motors to conveyor sections
When you define a new motor, you must assign it to a conveyor section. The motors that you
created in example model 9.5 need to be assigned to the sections listed in the table below:

To assign the motors that you created in example model 9.5, do the following:

Step 1 On the Conveyor palette, click Select.

Step 2 Select section “sec1” and select Edit from the Edit menu. The Section Edit window open

Step 3 Click Attributes. The Edit Conveyor Section window opens.

Step 4 Select Motor, then select M_fail in the drop-down list, as shown below:

Assigning motor M_fail to section sec1

Step 5 Click OK to close the Edit Conveyor Section window. The motor “M_fail” is now assign
to section “sec1.”

Step 6 Repeat steps 2–5 to assign motor “M_slug” to section “sec4” and motor “M_index” to s
tion “sec7.”

When assigning the motor “M_slug,” zoom in on section “sec4” to be sure that you se
only the small section.

Now that you know how to create and assign motors, you are ready to learn how to c
motors in the model logic.

Motor name Assign to section...

M_fail sec1 (the horizontal entrance section)

M_slug sec4 (the small section before the side transfer leading to station “form_slug

M_index sec7 (the indexing section on which station “goodbye” is located)

The section is
set to use the
motor M_fail

ote
Tip

☞

rev 1.0 9.37

Modeling Complex Conveyor Systems Getting Started with AutoMod

 start
ors is

ontal

rify
w:

ne
then
ore
Modeling motor failures

Like resources, motors can be taken down and brought up using the take down and bring
up actions in the model logic. In example model 9.5, the model initialization function takes
down two motors at the beginning of the simulation. The function also creates a dummy load
and sends it to the process P_fail to simulate motor failures on the entrance lane.

The model initialization function is shown below:

begin model initialization function

take down conv:M_slug

take down conv:M_index

create 1 load of type L_dummy to P_fail

return true

end

When referring to movement system entities in logic, you must type the movement system
name and entity name separated by a colon, for example, conv:M_slug where the system
name is “conv” and the motor name is “M_slug”.

The motors M_slug and M_index are taken down at the beginning of the simulation to
slugging and indexing loads on the conveyor; modeling slugging and indexing convey
discussed in the next two sections in this chapter.

The P_fail process simulates motor failures by taking down and bringing up the horiz
entrance section’s motor (M_fail) in one-minute intervals throughout the simulation.
Although not realistic, the one-minute cycles of up and down time allow you to easily ve
the motor’s failures during the simulation. The P_fail arriving procedure is shown belo

begin P_fail arriving

while 1=1 do begin

wait for 1 min

take down conv:M_fail

wait for 1 min

bring up conv:M_fail

end

end

The P_fail arriving procedure includes a continuously repeating loop that delays for o
minute (while the motor is up) and then takes down the motor “M_fail.” The procedure
delays for another minute (while the motor is down) to simulate the time to repair bef
bringing the motor back up; this loop repeats throughout the simulation.

ote
Note
✎

9.38 rev 1.0

Getting Started with AutoMod Modeling Complex Conveyor Systems

n on

 accu-
 sim-
a
5” and
t con-

aced
ansfer

ure is

n” and
y are
Modeling slugging conveyors
This approach for modeling slugging conveyors can only be used when forming a slug
immediately before a side transfer. When forming slugs elsewhere in a conveyor system (for
example, in the middle of a section or before an ahead transfer), you should use photoeyes
or order lists to create the slugs. You will learn how to create slugs using order lists in chap-
ter 13, “Indefinite Delays.” Photoeyes are not discussed in this textbook; for informatio
how to use photoeyes, refer to the “Conveyors” chapter in volume 2 of the AutoMod User’s
Manual, online.

In example model 9.5, slugs consisting of 10 loads each are formed by drawing a small sec-
tion of conveyor at the point where loads must accumulate, as shown below:

Creating slugs in example model 9.5

Slugs are formed by taking down the motor for section “sec_4,” which causes loads to
mulate before the side transfer (the motor is initially taken down at the beginning of the
ulation in the model initialization function). As soon as 10 loads accumulate (forming
complete slug), the section motor is brought up and the slug transfers to section “sec_
travels to the inspection station. When the slug has completed transferring to the nex
veyor section, the motor is taken down again to begin forming the next slug.

Two stations are placed to control the formation of slugs. One station, “form_slug,” is pl
immediately after the transfer to section “sec_5;” this station is placed as close to the tr
as possible to prevent extra loads from transferring with the slug. The other station,
“count_slug,” is placed so that it allows only 10 loads (a complete slug) to accumulate
between the station’s location and the transfer to section “sec_4.”

The logic that creates the slugs is defined in two arriving procedures. The first proced
shown below:

begin P_move arriving

move into conv:get_on

travel to conv:count_slug

send to P_slug

end

The P_move arriving procedure causes loads to get on the conveyor at station “get_o
travel to station “count_slug.” As soon as loads arrive at the station “count_slug,” the
sent to the P_slug process and begin executing that process’ arriving procedure.

ote
Note
✎

form_slug
count_slug

sec_4 sec_3

sec_5

Note
Important

▲!
rev 1.0 9.39

Modeling Complex Conveyor Systems Getting Started with AutoMod

 next
comes
cum

s in

he

ad in

re
alues

of the

r not
) for
 slug.

tation

ion
own
s accu-
The P_slug arriving procedure uses the integer variable V_accum to count the number of
loads that have accumulated in the current slug, as shown below:

begin P_slug arriving

inc V_accum by 1

if V_accum = 10 then

begin

bring up conv:M_slug

set V_accum to 0

set A_last = true

end

travel to conv:form_slug

if A_last = true then take down conv:M_slug

travel to conv:inspect

send to P_inspect

end

If fewer than 10 loads have accumulated (V_accum is not equal to 10), then the procedure
causes the current load to attempt to travel to the station “form_slug,” which is on the
section. Because the intervening section’s motor is down, the load accumulates and be
part of the currently forming slug. If the current load is the tenth load in the slug (V_ac
is equal to 10) then the following actions are performed:

• The load brings up the motor M_slug, which allows the slug to begin moving (load
the slug start transferring to the vertical conveyor section).

• The variable V_accum is reset to zero (to begin counting the number of loads in t
next slug).

• The load attribute A_last is set to true to indicate that the current load is the last lo
the slug.

The load attribute A_last is of type Integer. In the AutoMod software, integer values a
often used as a flag to indicate whether something is true or false (similar to Boolean v
in other programming languages). The syntax “true” and “false” can be used in place
values “1” and “0,” respectively. For example,

set A_last = true

is the same as

set A_last = 1

In example model 9.5, the load attribute A_last is used as a flag to indicate whether o
the current load is the last load in a slug. By default, the value is initialized to false (0
all loads in the model. The attribute value is set to true (1) only for the last load in each

As soon as the section motor is brought up, each of the accumulated loads travel to s
“form_slug” and then execute the travel action to travel to the inspection station.

Because there is no delay between the two travel actions in the arriving procedure, loads
do not stop at the station “form_slug” on their way to the inspection station.

The last load (identified by the value of the load attribute A_last) takes down the sect
motor when it arrives at the station “form_slug” (which is on the next section). Taking d
the motor causes the trailing loads to stop before transferring, so the next slug begin
mulating.

ote
Note
✎

ote
Note
✎

9.40 rev 1.0

Getting Started with AutoMod Modeling Complex Conveyor Systems

 they
 make
e load

 After
mmy
“good-

index
 of a
motor
Modeling indexing conveyors

In example 9.5, completed slugs travel on the conveyor to the station “inspect,” where
are inspected. After each inspection, the inspector advances the indexing conveyor to
just enough room for the inspected load. Loads on the indexing conveyor advance (on
at a time) until they reach the end of the conveyor and are removed from the system.

The logic used to model the inspection and indexing processes is shown below:

begin P_inspect arriving

use R_inspect for e 10 sec

clone 1 load to P_index nlt L_dummy

travel to conv:goodbye

send to die

end

begin P_index arriving

bring up conv:M_index

wait for 3 sec

take down conv:M_index

send to die

end

Loads that arrive at the station “inspect” are sent to the P_Inspect arriving procedure.
using the resource R_inspect for the required inspection time, each load clones a du
load to the P_index arriving procedure, then executes an action to travel to the station
bye.”

Each cloned load that executes the P_index arriving procedure brings up the motor M_
for 3 seconds, which is long enough to let the original load move up 3 feet (the length
single load) on the indexing section of conveyor. The cloned load then takes down the
M_index and is sent to die.
rev 1.0 9.41

Modeling Complex Conveyor Systems Getting Started with AutoMod

 sim-

king
 con-
Summary
This chapter introduced concepts that are extremely important to the simulation of real-
world material handling systems.

In this chapter, you learned how to sort multiple load types in a conveyor system. Sorting
load types is necessary for modeling virtually any type of distribution center. You also
learned how to customize section and transfer attributes to simulate many different types of
conveyors. By changing a section’s width, velocity, accumulation, and so on, you can
ulate almost any real-world conveyor system.

Finally, you learned how to use motors to control load movement on a conveyor. By ta
down and bringing up motors, you can model failures, as well as slugging and indexing
veyor sections.
9.42 rev 1.0

Getting Started with AutoMod Modeling Complex Conveyor Systems

ey
e size

wing

g edge
Exercises

Exercise 9.1

Consider the conveyor layout, shown below:

Assume the moving space of the continuous section is defined as:

Loads get on the conveyor at station “sta_in” and travel to station “sta_out,” where th
leave the system. There are two types of loads in the system, L_long and L_short. Th
of L_long loads is defined as:

The size of L_short loads is defined as:

Determine the minimum possible space between two moving loads in each of the follo
instances:

When answering these questions, measure the “space between loads” from the trailin
of the preceding load to the leading edge of the following load.

a) Two L_long loads
b) Two L_short loads
c) An L_long load followed by an L_short load
d) An L_short load followed by an L_long load

sta_in

sta_out

0 load length 10 feet+×

X 4=
Y 1=
Z 1=

X 2=
Y 3=
Z 1=

ote
Note
✎

rev 1.0 9.43

Modeling Complex Conveyor Systems Getting Started with AutoMod

pace

top

ide

tion
ion to
Exercise 9.2

Consider the layout of example model 9.4, shown below:

Layout of example model 9.4

Assume that the horizontal section, “sec2,” is an accumulating section with stopping s
defined as:

Loads of type “L_top” enter at station “in_1” and travel to station “exit.” The size of L_
loads is defined as:

Loads of type “L_side” enter at station “in_2” and travel to station “exit.” The size of L_s
loads is defined as:

There are three loads of type L_top and two loads of type L_side accumulated at sta
“insp.” Assuming that no loads leave the station, determine the distance from the stat
the leading edge of the next load that accumulates at the station.

in_1

in_2

exit

sec2

insp

1.5 load length 0 feet+×

X 4=
Y 1=
Z 1=

X 2=
Y 3=
Z 1=
9.44 rev 1.0

Getting Started with AutoMod Modeling Complex Conveyor Systems
Exercise 9.3

Given the conveyor layout shown below:

Loads enter at the beginning of the horizontal lane on the left-hand side and travel to the end
of the lane where they form slugs of size 10. When a complete slug has formed, the slug trav-
els on the conveyor to the exit at the end of the vertical lane on the right-hand side.

Loads are created every constant 20 seconds. The load size is defined as:

Model this system. You need to determine the number and placement of conveyor entities
in the model. Simulate the system for seven days.

Loads enter

Loads exit

Loads stop and form
slugs of size 10

100 ft

50 ft

150 ft

100 ft

X 2=
Y 3=
Z 1=
rev 1.0 9.45

Modeling Complex Conveyor Systems Getting Started with AutoMod

elow:
Exercise 9.4

Given the conveyor system shown below:

Loads arrive at each of the two entrance stations on the left-hand side according to an expo-
nential distribution with a mean of 20 seconds (loads are generated independently at each
entrance). There are four different types of loads in the model, each with a unique color. The
number of each type of load is randomly determined as follows: 30 percent are red, 30 per-
cent are blue, 25 percent are yellow, and 15 percent are green.

Each load’s size and destination station depends on its color, as shown in the table b

Model this system and simulate for seven days.

enter_1

enter_2 out_4

out_3 out_2

out_1

150 ft

80 ft

50 ft

100 ft

50 ft

50 ft

50 ft

50 ft

20 ft

Load color Load size Destination station

red out_1

blue out_2

yellow out_3

green out_4

X 4=

Y 2=

Z 1=

X 2=

Y 4=

Z 1=

X 2=

Y 3=

Z 1=

X 3=

Y 4=

Z 1=
9.46 rev 1.0

Getting Started with AutoMod Intermediate Statistical Analysis
Chapter 10

Intermediate Statistical Analysis

Experimenting with model scenarios .. 10.4
Example 10.1: Performing a financial analysis... 10.4
Compiling and setting up example model 10.1... 10.5

Defining factors in AutoStat... 10.6
Defining processing time as a factor ... 10.6

Varying one factor in an analysis .. 10.8
Defining average WIP as a response... 10.10
Viewing statistics for WIP levels .. 10.10
Viewing a line graph ... 10.12
Comparing all scenarios to one scenario... 10.13
Analyzing financial payback... 10.14

Defining a combination response to show total cost ... 10.15
Calculating equipment costs and scenario differences with an equation 10.15
Defining the cost equation in a combination response 10.16

Viewing the summary statistics for the Total Cost response 10.18

Varying multiple factors in an analysis... 10.19
Defining conveyor speed as a factor ... 10.19
Defining a vary multiple factors analysis.. 10.19
Defining a combination response to show the revised total cost 10.21
Viewing a bar graph for the Revised Total Cost response.. 10.23
Viewing the multiple factor graph .. 10.24

Determining which runs your analysis is using .. 10.27

Summary .. 10.28

Exercises... 10.29
Exercise 10.1 ... 10.29
Exercise 10.2 ... 10.29
Exercise 10.3 ... 10.30
Exercise 10.4 ... 10.30
Exercise 10.5 ... 10.31
Exercise 10.6 ... 10.32
rev 1.0 10.1

Intermediate Statistical Analysis Getting Started with AutoMod
10.2 rev 1.0

Getting Started with AutoMod Intermediate Statistical Analysis

gle
es, or
u to

hich
terms,
t build-
peri-

Chapter 10

Intermediate Statistical Analysis

In chapter 8, “Basic Statistical Analysis Using AutoStat,” you learned how to use a sin
scenario analysis in AutoStat to determine the confidence intervals of several respons
statistics. In this chapter, you will learn about two new types of analyses that allow yo
experiment with model input parameters, or factors, to perform “What if...” analyses.

Most simulation studies require the examination of multiple scenarios to determine w
scenario is the “best,” based on measures such as cost versus payback in monetary
the time and resources required, and so on. Therefore, it is important to remember tha
ing a model and validating it are only part of a simulation analyst’s job; performing ex
ments is another key part of the job. Make sure you allow enough time to conduct the
analysis thoroughly to make sound decisions.
rev 1.0 10.3

Intermediate Statistical Analysis Getting Started with AutoMod

s, in

ing
eed of
 of the

 same
or and

nal-

f 2.4
 There
pro-

f return
tem,
mber

The
pment
tem to
or are
Experimenting with model scenarios
An experiment involves changing one or more parameters in your model, such as a process-
ing time, the number of operators, the type of conveyor, and so on, to see its effect on the
system. To change any model parameter in AutoStat, you must define the parameter as a fac-
tor. A factor is a model parameter that you want to change in an experiment. Once you have
defined a model’s factors, you define an analysis and view the responses, or statistic
which you are interested.

The two types of analyses discussed in this chapter are:

Vary one
factor

Analyze how the model behaves when you change the value of one factor while keep
other factors constant. For example, you can determine the effect of changing the sp
a conveyor system to determine whether the improved throughput outweighs the cost
faster conveyor system.

Vary multiple
factors

Analyze how the model behaves when you change the value of several factors at the
time. For example, you can determine the effect of varying both the speed of a convey
the number of operators in the simulation.

This chapter explains how to define both “vary one factor” and “vary multiple factor” a
yses (including how to define factors) and discusses how to interpret the results.

Example 10.1: Performing a financial analysis

A company is currently using the following conveyor system:

Example model 10.1: Layout

Products arrive in the system at a rate that is exponentially distributed with a mean o
minutes. Loads travel down a continuous conveyor whose speed is 1 foot per second.
is a piece of processing equipment, called “work_area,” at the bottom of the “U” that
cesses loads on the conveyor in a constant 132 seconds.

The loads that are being processed have a cost of $1,000,000. The anticipated rate o
for the product is 14.4 percent. Therefore, each work in process (WIP) load in the sys
on the average, translates into an annual carrying cost of $144,000. If the average nu
of loads in the system during the year is 8, then the annual cost of carrying WIP is
$1,152,000.

The company wants to upgrade the system to reduce WIP and increase throughput.
company is evaluating whether to continue leasing the same type of processing equi
or whether to lease a faster model. The company could also upgrade the conveyor sys
a faster one. Your job is to analyze whether a faster machine and/or a quicker convey
cost-effective ways to reduce WIP costs and increase throughput.

get_on get_off

work_area
10.4 rev 1.0

Getting Started with AutoMod Intermediate Statistical Analysis

e

e con-
ow to
The equipment vendor has supplied specifications and operating costs for a one-year lease
on several pieces of equipment:

Equipment specifications

The slower the machine, the less expensive it is. Currently, the company is leasing the slow-
est model.

The conveyor vendor has provided the following annual quotes for three possible speeds of
the conveyor:

Conveyor specifications

The slower the conveyor, the less expensive it is. Currently, the company is leasing the slow-
est conveyor.

In this example, you will use the AutoStat software to recommend a piece of equipment to
lease and a speed of conveyor to lease, if any. You will base the analysis on five replications
of the model, each for 10 simulated days of operation.

Compiling and setting up example model 10.1

In order to set up analyses for a model in AutoStat, you must first compile the model in
AutoMod and use the AutoStat Setup wizard to define the warmup and snap information.

To compile example model 10.1:

Step 1 Import the base version of example model 10.1.

Step 2 From the Model menu, select Run AutoStat and click Yes to build the model. The AutoStat
Model Setup wizard opens.

Step 3 Set up the model as follows:

• Model is random.
• Check for infinite loops, and stop any runs that take longer than one minute.
• No warmup required.
• Define a snap length of 10 days.

You are now ready to define the model’s factors, as well as the analyses to vary thos
factors.

The problem statement requires you to vary both the equipment processing time and th
veyor speed. At first, focus on varying the processing time. Once you have learned h
vary one factor, you will conduct another analysis to vary both factors.

Processing Time
(Per Load) Annual Cost

72 seconds $2,000,000

84 seconds $1,700,000

96 seconds $1,400,000

108 seconds $1,100,000

120 seconds $ 800,000

132 seconds $ 500,000 (current speed)

Conveyor Speed Annual Cost

1 foot/second $800,000 (current speed)

1.5 feet/second $1,200,000

2.0 feet/second $1,600,000

ote
Note
✎

rev 1.0 10.5

Intermediate Statistical Analysis Getting Started with AutoMod

al-

hicles

dis-

d the

le so
les
the

onds,
ted in
Defining factors in AutoStat
Factors are model parameters that you want to vary in an analysis. Defining factors is similar
to defining responses (see “Defining responses” on page 8.12 of the “Basic Statistical An
ysis Using AutoStat” chapter).

There are four types of factors in AutoStat:

AutoMod A parameter of an entity that you want to vary in an analysis, such as the number of ve
in a movement system, a resource’s processing time, or a conveyor section’s speed.

Combination The combination of two or more factors that you want to change simultaneously (not
cussed in this textbook).

Data file cell A cell in an external data file (not discussed in this textbook).

Entire data file An entire data file being read by your model (not discussed in this textbook).

In this model, you are interested in looking at the processing time of the equipment an
speed of the conveyor, both of which you will define as AutoMod factors.

Defining processing time as a factor

In this model, the equipment’s processing time is defined in a source file using a variab
that it can be defined as a factor in AutoStat (for more information about using variab
instead of numbers for processing times, refer to “Defining variables” on page 7.4 of
“Advanced Process System Features” chapter). The source file is shown below:

begin P_process arriving

move into Q_geton

move into conv:get_on

travel to conv:work_area

use R_processor for V_proctime/* In seconds using the initial value */

travel to conv:get_off

send to die

end

The variable V_proctime, which is defined as type Time, has an initial value of 132 sec
the slowest configuration possible. In order to test the other possible configurations lis
the “Equipment specifications” on page 10.5, you must define V_proctime as a
factor in AutoStat.
10.6 rev 1.0

Getting Started with AutoMod Intermediate Statistical Analysis

 the
To define V_proctime as an AutoMod factor:

Step 1 From the Factors tab, click New to define a new factor of type AutoMod Factor, as shown
below:

Defining an AutoMod factor

The AutoMod Factors window opens.

Step 2 Name the factor “Machine Processing Time”.

Step 3 From the System list, select proc.

Step 4 Select Variable from the Entity drop-down list and select V_proctime, as shown below:

Defining V_proctime as a factor

Step 5 The attribute Initial Value is already selected, so click OK.

The next step is to define an analysis to vary the equipment’s processing time to see
effect on the system.

Define an AutoMod factor
using the drop-down list

Select the Factors tab
rev 1.0 10.7

Intermediate Statistical Analysis Getting Started with AutoMod

turns

ed to
chang-

p-

nap

0

alues
Varying one factor in an analysis
The longer that equipment takes to process loads, the longer that loads are in the system. The
more loads that are in the system and the longer that loads spend in the system, the greater
the inventory costs. The question you need to answer is, “Which piece of equipment re
enough of an inventory savings to be cost-effective?”

In order to vary the equipment’s processing speeds over the possible values, you ne
define a “vary one factor analysis,” then define responses to determine the effect that
ing the processing time has on WIP levels and inventory cost.

To define a vary one factor analysis:

Step 1 From the Analysis Tab, select Vary One Factor from the Create New Analysis of Type dro
down list and click New. The Vary One Factor Analysis window opens.

Step 2 Name the analysis “Vary Processing Time”.

Leave the number of replications as 5, and use the default run control (no warmup, s
length of 10 days).

Step 3 In the Factors to Vary tab, select Machine Processing Time.

The values in the Begin, End, and Increment fields are the model’s default value of 132.
seconds. These fields allow you to specify the range of values to use for the processing time
during the analysis.

You can define specific values rather than incremental values by selecting Individual V
from the “Set values using” drop-down list (not discussed in this textbook).

The time values you need to test are:

Equipment specifications

ote
Tip

☞

Processing Time
(Per Load) Annual Cost

72 seconds $2,000,000

84 seconds $1,700,000

96 seconds $1,400,000

108 seconds $1,100,000

120 seconds $ 800,000

132 seconds $ 500,000 (current speed)
10.8 rev 1.0

Getting Started with AutoMod Intermediate Statistical Analysis

factor,

u can
The model is currently using the largest value of 132. Therefore, that will be the End value
for the analysis. The smallest value in the specification is 72, which will be the Begin value.
The values are 12 seconds apart, so the increment will be 12.

Step 4 Type “72” as the Begin value.

Step 5 Type “12” as the Increment value. Your analysis should look like the following:

Vary one factor analysis

Because the number of replications is five, and there are six time values to test for the
this analysis is going to require 30 runs, as shown at the bottom of the window.

Step 6 Click OK, Do These Runs. The runs begin.

While the model is running, you are going to define average WIP as a response so yo
compare the different scenarios.
rev 1.0 10.9

Intermediate Statistical Analysis Getting Started with AutoMod

rt the
e aver-

es of

s and

, which
st time

y
 range
9.98
Defining average WIP as a response

To determine the effect of the various machine processing times, define the WIP level as an
AutoMod response. Later, you will learn how to calculate the cost and return of each sce-
nario using a combination response.

To define average WIP as a response:

Step 1 From the Responses tab, click New to define an AutoMod response. The AutoMod
Response window opens.

Step 2 Name the response “Average WIP”.

Step 3 Select the System proc, the Entity P_process, and the Statistic Ave (Average) to repo
average number of loads in the process. In this model, this statistic also represents th
age number of loads in the system, because there is only one process in the model.

Step 4 Click OK.

Viewing statistics for WIP levels

Once your response is defined and your runs have finished, you can view various typ
output. All output is calculated from the report files of each run made.

To see the effect that processing time has on average WIP, look at summary statistic
confidence intervals.

Step 1 From the Analysis tab, expand the Vary Processing Time analysis and double-click Sum-
mary Statistics.

Summary Statistics for Machine Processing Time

The average amount of WIP in the system increases as the processing time increases
is logical. At the fastest value of 72 seconds, WIP averages 6.526 loads. For the slowe
(132 seconds), WIP averages 19.284 loads.

The difference between the minimum and maximum loads in the system varies widel
depending on the processing time. For the fastest processing time of 72 seconds, the
is 6.37 to 6.66 loads, a very narrow range. But at 132 seconds, the range is 13.5 to 2
loads, with a standard deviation of 6.3007 loads.

Step 2 Close the Summary Statistics window.

Processing
times are
listed across
the top
10.10 rev 1.0

Getting Started with AutoMod Intermediate Statistical Analysis
Now view the confidence intervals for the Average WIP response:

Step 1 From the Analysis tab, double-click Confidence Intervals.

Step 2 Select 0.95 from the Confidence Level drop-down list to view the 95 percent intervals, as
shown below:

Confidence intervals for Machine Processing Time

The longer the processing times, the larger (wider) the confidence intervals, because the
standard deviation is greater (as shown in the summary statistics).

Step 3 Close the Confidence Intervals window.
rev 1.0 10.11

Intermediate Statistical Analysis Getting Started with AutoMod

 about
Viewing a line graph

In addition to the summary statistics and other types of tabular results, AutoStat provides
graphs for your responses.

To view a line graph for the Average WIP response:

Step 1 In the Analysis tab, double-click Line Graph. A blank graph opens.

Step 2 Select Average WIP in the Responses list.

Average WIP line graph

Notice that the graph is automatically scaled along the X axis to the processing time values
used in the analysis. The Y axis is scaled to the average number of WIP loads in the system.

To change many attributes of the graph, including its scale, color, and so on, right-click on
the graph and select Properties. Select Help from the graph’s Help menu to learn more
the properties of the graph and how to edit them.

Step 3 Close the line graph.

ote
Tip

☞

10.12 rev 1.0

Getting Started with AutoMod Intermediate Statistical Analysis

 How
e vary
 chap-

 differ-
nce
o sig-

nds.

).

2-
part of

ared
ct on
ative,

cenario

 finan-
Comparing all scenarios to one scenario

In this analysis, you are testing six different values for the machine’s processing time.
do you compare the different scenarios to tell whether one is better than another? Th
one factor analysis, as well as the vary multiple factor analysis (discussed later in this
ter), provide output that compares each scenario to the others.

The scenario comparison uses confidence intervals to determine whether the average
ence in response values for the two scenarios is statistically significant. If the confide
interval spans zero (for example, the low value is –6 and the high value is 4), there is n
nificant difference between the two response values. If the interval does not span zero,
there is a statistically significant difference between the two values (either positive or
negative) at the level of confidence selected.

In this example model, the base scenario uses equipment that processes in 132 seco
Therefore, it would be helpful to compare all the other scenarios to that one.

To compare scenarios:

Step 1 In the Analysis tab, double-click Compare All to One. The Compare All to One window
opens.

Step 2 From the Confidence Interval drop-down list, select a confidence level of 0.95 (95 percent

Step 3 In the lower half of the window, select the right-most scenario (column G), which is the 13
second processing time scenario. The comparison information appears in the upper
the window, as shown below:

Compare All to One

Notice that none of the intervals (CI Low and CI High) spans zero, indicating that comp
to the 132-second scenario, all the other scenarios have a statistically significant effe
average WIP levels. The average difference of the response for each scenario is neg
indicating that all other scenarios result in lower WIP levels than the base scenario.

To see a comparison with a confidence interval that spans zero, select 96 as the base s
and look at the interval for 84 seconds.

Step 4 Close the Compare All to One window.

The next section explains how to determine which of the scenarios is the most feasible
cially.

Select the base
scenario here to
display the
comparison data
for the response

None of the
intervals spans
zero

ote
Note
✎

rev 1.0 10.13

Intermediate Statistical Analysis Getting Started with AutoMod

load,
 piece
n use

wing

 time

 calcu-
Analyzing financial payback

As stated in “Example 10.1: Performing a financial analysis” on page 10.4, each WIP
on the average, translates into a carrying cost of $144,000 per year. In addition, each
of equipment has a cost, as shown in “Equipment specifications” on page 10.5. We ca
this information to calculate the cost of new equipment.

To calculate the cost manually, the formula is:

Using this formula, you can calculate the cost of each scenario, as shown in the follo
table:

Total cost of equipment

The machine with the lowest total cost ($2,221,280) is the machine with the processing
of 120 seconds.

Now use AutoStat to perform this calculation for you. Because several responses and
lations are involved, you will need to use a combination response.

Processing
Time
(Seconds)

Average
WIP
Level

Average WIP
Cost (WIP x
$144,000)

Equipment
Cost (From
Specification)

Total Cost
(Average WIP Cost
+ Equipment Cost)

72 6.526 $939,744 $2,000,000 $2,939,744

84 6.94 $999,360 $1,700,000 $2,699,360

96 7.16 $1,031,040 $1,400,000 $2,431,040

108 7.98 $1,149,120 $1,100,000 $2,249,120

120 9.87 $1,421,280 $800,000 $2,221,280

132 (base) 19.284 $2,776,896 $500,000 $3,276,896

Total Cost $144,000 Avg. WIP Equipment cost+×=
10.14 rev 1.0

Getting Started with AutoMod Intermediate Statistical Analysis

ore

t is:

P level
f

ust
rmine
arios.

rios to
g time

ime as
arios).

you can

se

e per
 cost
ach sce-
Defining a combination response to show total cost
A combination response adds together several factors and/or responses, which can each be
manipulated using weights, or multipliers (see “Weighting terms in a combination
response” on page 8.19 of the “Basic Statistical Analysis Using AutoStat” chapter for m
information).

As stated previously, the formula to determine the incremental cost of new equipmen

The first part of this equation is easy to represent in AutoStat, because the average WI
is already defined as a response for the model. Therefore, you can use a multiplier o
$144,000 in the response to calculate that part of the equation.

However, the equipment cost is not currently part of the model. Also, the response m
determine the difference between any two of the scenarios. Therefore, you must dete
how to include the equipment cost and calculate the incremental difference in the scen

Calculating equipment costs and scenario differences with an equation

In order to determine which scenario is better, you need to compare each of the scena
one of them (a base scenario) and determine what difference the change in processin
has on the total cost. To make the calculations easy, use the 72-second processing t
the base scenario (see “Total cost of equipment” on page 10.14 for a table of the scen

To describe the incremental cost between the base scenario and any other scenario,
use the following formula:

Where T equals the processing time of the scenario that you are comparing to the ba
scenario.

The last term of the equation, which involves the changes in cost and processing tim
scenario, can be represented by a constant value, because the change in equipment
between each scenario is $300,000, and the change in the processing time between e
nario is 12 seconds:

We also know that the cost of the base equipment is $2,000,000. So:

To simplify , multiply both T and 72 by $25,000, resulting in:

Further simplification results in:

To verify this equation, solve for seconds:

The resulting cost matches the vendor specification. So if:

Then:

Total Cost $144,000 Avg. WIP Equipment cost+×=

Equipment cost Cost of base equipment T 72–() Change in equipment cost per scenario
Change in processing time per scenario
--×–=

$300,000
12

---------------------- $25,000=

Equipment cost $2,000,000 T 72–() $25 000,×–=

T 72–() $25 000,×

Equipment cost $2,000,000 $25,000T $1,800,000–()–=

Equipment cost $3,800,000 $25,000T–=

T 84=

$3,800,00 $25,000(84)– $1,700,000=

Total Cost $144,000 Avg. WIP Equipment cost+×=

Total Cost $144,000 Avg. WIP (3,800,000 25,000T)–+×=
rev 1.0 10.15

Intermediate Statistical Analysis Getting Started with AutoMod

ady
f each

value
e can

 the

ght for
”

n
Defining the cost equation in a combination response
Now you must define a response to represent the formula:

To define the combination response:

Step 1 From the Responses tab, select Combination Response from the Create New Response of
Type drop-down list and click New. The Combination Response window opens.

Step 2 Name the response “Total Cost”.

Define the first half of the equation (the cost of average WIP) first. Average WIP is alre
defined as a response, so simply adjust the Weight value to represent the dollar cost o
WIP load.

Step 3 Double-click the Weight column and type “144000,” as shown below:

Defining the cost of WIP in the combination response

The second part of the equation must contain the formula for the relative difference in
for each scenario. The processing time of the scenario (T) is defined as a factor, so w
use a weight of –25,000 to represent that term. But the $3.8 million cost is not part of
model.

To use values that are not included in the model, you must define the values as a Wei
a factor or response that is included in the model. Therefore, the model uses a “dummy
variable, V_one, that you define as a factor and initialize to 1. Setting the weight to
3,800,000 and multiplying it by 1 results in 3,800,000 being added to the equation.

To define V_one’s initial value as a factor:

Step 1 Move the Combination Response window aside.

Step 2 From the Factor tab, select AutoMod Factor from the Create New Factor of Type drop-dow
list and click New.

Step 3 Name the factor “V_one initial value”.

Step 4 Select proc as the system.

Step 5 Select Variable from the Entity drop-down list and select V_one as the entity.

Step 6 Select Initial Value as the attribute.

Step 7 Click OK.

Total Cost $144,000 Average WIP×() $3,800,000 $25,000T–+=
10.16 rev 1.0

Getting Started with AutoMod Intermediate Statistical Analysis

of

y.
Now finish editing the combination response:

Step 1 In the Combination Response window, click Append Term to add a new line to the response.

Step 2 Double-click the new line’s Type cell and select Factor from the drop-down list.

Step 3 Double-click the Name cell and select “V_one initial value” from the drop-down list.

Step 4 Double-click the Weight column and type “3800000.” Press Tab.

Step 5 Append another term and define it as the factor Machine Processing Time with a weight
“–25000,” as shown below:

Defining the equipment cost in a combination response

The formula at the bottom of the window verifies that the response is defined correctl

Step 6 Click OK.
rev 1.0 10.17

Intermediate Statistical Analysis Getting Started with AutoMod

a cost

 time
 speed
Viewing the summary statistics for the Total Cost response
Now that the response is defined, you can view the Total Cost response using any of the
types of output, including summary statistics, confidence intervals, line graphs, and so on.

To view summary statistics for Total Cost:

Step 1 From the Analysis tab, expand the Vary Processing Time analysis and double-click
Summary Statistics. The Summary Statistics window opens.

Summary statistics for Total Cost

The average Total Cost for each scenario in the summary statistics matches the calculations
performed manually (see “Total cost of equipment” on page 10.14).

Results vary slightly due to rounding differences.

The summary statistics confirm that the lowest cost configuration is 120 seconds, with
of $2,221,280.

Step 2 Close the Summary Statistics window.

Now that you have analyzed the effect of varying the equipment processing times, it is
to evaluate the effect of varying both the equipment processing time and the conveyor
using a vary multiple factor analysis.

The average Total
Cost that AutoStat
calculates for each
scenario matches
the manual
calculations

ote
Note
✎

10.18 rev 1.0

Getting Started with AutoMod Intermediate Statistical Analysis

 must
 mea-

ot per
 page

e

u used

eed.

of 132

c-
Varying multiple factors in an analysis
In the last analysis, you varied one factor: the processing time. However, the problem state-
ment requires you to consider the effect of changing the conveyor speed, as well. To analyze
the interaction of both changes, you must define a new factor for the conveyor speed (you
can reuse the factor you have already defined for the machine’s processing time). You
also define a new analysis of type vary multiple factors and create a new response to
sure how the two factors influence WIP costs.

Defining conveyor speed as a factor

To define conveyor speed as a factor:

Step 1 From the Factors tab, select AutoMod Factor from the Create New Factor of Type drop-
down list and click New.

Step 2 Name the factor “Conveyor Velocity”.

Step 3 Select “conv” as the system.

Step 4 From the Entity drop-down list, select Section Type and select Default Section in the Entity
list.

Step 5 Select Velocity as the attribute.

Step 6 Click OK.

Now you are ready to define a “vary multiple factor” analysis.

Defining a vary multiple factors analysis

The conveyor vendor has supplied specifications for systems that have speeds of 1 fo
second, 1.5 feet per second, and 2 feet per second (see “Conveyor specifications” on
10.5 for more information). You want to vary the velocity and the processing time.

To define a multiple factor analysis:

Step 1 From the Analysis tab, select Vary Multiple Factors from the Create New Analysis of Typ
drop-down list and click New. The Vary Multiple Factors window opens.

Step 2 Name the analysis “Vary Speed and Processing Time”.

Leave the number of replications as 5, and use the default run control (the same one yo
for the single-factor analysis).

You need to set the possible values for both the processing time and the conveyor sp

Step 3 In the Factors to Vary tab, select Machine Processing Time and define the processing times
as you did in the last analysis, with a beginning value of 72 seconds, an ending value
seconds, and an increment of 12 seconds.

Step 4 In the Factors to Vary tab, select Conveyer Velocity. The default velocity of 1.0 foot per se
ond appears as the beginning, ending, and increment value.

You need to vary the speed to 1.5 feet per second and 2.0 feet per second.

Step 5 Type “2.0” in the End field.

Step 6 Type “.5” in the Increment field.
rev 1.0 10.19

Intermediate Statistical Analysis Getting Started with AutoMod
Your analysis should look like the following:

Vary multiple factors analysis

Notice that AutoStat is reporting that this analysis requires 60 runs. There are six processing
times and three conveyor speeds, which equal 18 possible scenarios. In addition, you want
five replications of each. Eighteen multiplied by 5 is 90. Why then does AutoStat need to
make only 60 runs? AutoStat can use the runs made for your previous analysis, because
those runs already use one full set of processing times with the base speed of one foot per
second. Therefore, only the scenarios that involve different conveyor speeds need to be run,
reducing the number of runs required to 60.

AutoStat estimates the time required to make runs based on the time it took to make previous
runs. The time required varies based on processor speed.

Step 7 Click OK, Do These Runs.

ote
Note
✎

10.20 rev 1.0

Getting Started with AutoMod Intermediate Statistical Analysis

hown

stant

bina-
 defin-
Defining a combination response to show the revised total cost

You need to define a new response for the combined incremental cost of the equipment and
the conveyor. The conveyor costs are shown below:

Conveyor specifications

The increased cost for each foot per second is $800,000. To calculate the cost of both equip-
ment and conveyors as compared to the base scenario, you need to add the cost of the con-
veyors to the response you defined for total cost of the equipment and adjust the formula to
calculate the difference from the base conveyor cost, as shown below:

The base conveyor cost is $800,000.

To define this formula as a combination response:

Step 1 From the Responses tab, select Combination Response from the Create New Response of
Type drop-down list and click New. The Combination Response window opens.

Step 2 Name the response “Revised Total Cost.”

Step 3 Define the equipment cost the same way that you did in the Total Cost response, as s
below:

Creating a revised total cost response

This gives us the first part of the equation (Total Cost). Now we need to subtract a con
800,000 for the base cost of the conveyor. Because the variable V_one initial value is
already acting as a constant in this formula (see “Defining the cost of WIP in the com
tion response” on page 10.16), we can edit its value and subtract 800,000 (rather than
ing another dummy variable for the second constant value).

Step 4 Double-click the Weight of V_one initial value and type “3000000.”

Conveyor Speed Cost

1 foot/second $800,000 (current speed)

1.5 feet/second $1,200,000

2.0 feet/second $1,600,000

Revised Total Cost Total Cost Base Conveyor Cost– Change in Conveyor Cost Conveyor Speed×()+=
rev 1.0 10.21

Intermediate Statistical Analysis Getting Started with AutoMod
Step 5 Append a term and define the factor Conveyor Velocity with a Weight of 800000 (the
change in conveyor cost). Press Tab.

The Revised Total Cost response

Step 6 Click OK.
10.22 rev 1.0

Getting Started with AutoMod Intermediate Statistical Analysis
Viewing a bar graph for the Revised Total Cost response

Once runs have finished, you can view the output for the newly created response using a new
type of output: a bar graph.

To view a bar graph:

Step 1 From the Analysis tab, expand the Vary Speed and Processing Time analysis and double-
click Bar Graph. A blank graph opens.

Step 2 Select Revised Total Cost in the Responses list. The response values are graphed.

Hold the mouse pointer over any bar to view its values.

Bar graph for Revised Total Cost

In this graph, the scenario values (equipment processing time and conveyor speed) are
graphed along the X axis, and the response (cost) is graphed along the Y axis. The shortest
bar, which indicates the lowest cost, is for the scenario of 120 seconds and 1.0 foot per sec-
ond, so the choice for best processing time has not changed.

Step 3 Close the graph.

When looking at multiple factors together, it can be useful to compare different combina-
tions of factor values. The multiple factor graph is useful for comparing responses against
different sets of factor values.

ote
Tip

☞

rev 1.0 10.23

Intermediate Statistical Analysis Getting Started with AutoMod

ding
l cost
nd and

ssing

ration.
when
g costs
.
Viewing the multiple factor graph

The multiple factor graph illustrates the effect that varying one factor’s value while hol
another factor’s value constant has on a response. For example, look at how the tota
changes when the conveyor speed is held constant at the base level of 1 foot per seco
the processing time changes.

To view the Multiple Factor graph:

Step 1 In the Analysis tab, expand the Vary Speed and Processing Time analysis and double-click
Multiple Factor Graph. A blank graph opens.

Step 2 Select Revised Total Cost in the Responses list.

The factor selected in the “Graph versus” list is the factor that is varied.

Step 3 From the “Graph versus” drop-down list, select Machine Processing Time.

Now select a value for the conveyor velocity against which to graph equipment proce
time.

Step 4 Select 1 ft/sec in the Conveyor Velocity list. The response values are graphed.

The Multiple Factors graph

Notice that for the base conveyor speed, the lowest cost is at the 120-second configu
If you select any other conveyor velocity, the same result occurs, which indicates that
the conveyor speed is held constant, varying the processing time results in decreasin
that eventually reach a lowest cost option (120 seconds) before costs increase again
10.24 rev 1.0

Getting Started with AutoMod Intermediate Statistical Analysis

se val-

veyor
Now look at the graph when processing time is held constant and the conveyor speed varies:

Step 1 From the “Graph versus” drop-down list, select Conveyor Velocity.

Step 2 Select 72 (the base equipment speed) in the Machine Processing Time list. The respon
ues are graphed.

Graphing processing time versus conveyor velocity

This graph illustrates that when the processing time is 72 seconds, increasing the con
speed results in increased costs.

Step 3 View the graph for each of the remaining processing times.
rev 1.0 10.25

Intermediate Statistical Analysis Getting Started with AutoMod
With the exception of a processing time of 132 seconds, each case of increased conveyor
speed results in increased costs. When the processing time is 132 seconds, the costs
decrease, as shown in the graph below:

The cost drops for a processing time of 132 seconds

Although the costs are decreasing at the fastest conveyor speed (2 ft/sec), the cost is still
$2,740,000; this cost is greater than the lowest cost we have discovered in our previous anal-
yses. The graph suggests that at a processing time of 132 seconds, increased conveyor
speeds (greater than 2 ft/sec) may eventually result in lower costs. However, faster convey-
ors are not available to the company at this time, so based on the analyses you have con-
ducted, you can conclude that the lowest cost option is a processing time of 120 seconds and
a conveyor speed of 1.0 ft/sec, which costs $2,221,280.
10.26 rev 1.0

Getting Started with AutoMod Intermediate Statistical Analysis

 you
anal-

being

s and
 runs.
 being
 and

 not
 delete
Determining which runs your analysis is using
In this chapter, you conducted two different analyses for one model. In the first analysis, you
analyzed the effect of varying the machine’s processing time. In the second analysis,
varied both machine processing time and conveyor velocity. You made runs for both
yses.

To see how many runs have been made for all analyses:

Step 1 Select the Runs tab.

Step 2 Scroll the Current Runs list. There are 90 runs listed.

How do you know which runs are being used for the first analysis, and which ones are
used for the second analysis?

To check which runs an analysis is currently using:

Step 1 Select the Analyses tab.

Step 2 Expand the Vary Processing Time analysis and double-click Runs Used. The Runs Used
window opens, listing each configuration of factor values used for the analysis.

Step 3 Expand the list of runs used for each configuration.

Notice that runs 1 through 30 are currently being used by the first analysis. All statistic
confidence intervals for this analysis are being generated from the output of these 30
(As discussed in “Vary multiple factors analysis” on page 10.20, these 30 runs are also
used by the second analysis. To verify this, look at the runs used for the Vary Speed
Processing Time analysis.)

If you edit the definition of an analysis, or if you delete it, you could have runs that are
being used anymore. Because runs take up space on your hard drive, you may want to
unused runs using the Delete Unused Runs button on the Runs tab.

ote
Tip

☞

rev 1.0 10.27

Intermediate Statistical Analysis Getting Started with AutoMod

by
 also
 the

multi-
e deci-
re

icular

rous
how to
Summary
In this chapter, you learned how to conduct “What if...” experiments with your model
defining factors and using the vary one factor and vary multiple factors analyses. You
learned how to define combination responses to include cost information that is not in
model, and to perform calculations in the response using the Weight field.

You viewed several new types of output, including bar graphs, line graphs, and vary
ple factor graphs. You learned how to compare all scenarios to a base scenario to mak
sions about whether changes have a positive or negative impact on the system you a
modeling. Finally, you learned how to determine which runs are being used by a part
analysis and how to delete any unused runs.

AutoStat is a powerful tool to help you perform “What if...” scenarios. There are nume
types of output to help you analyze your scenarios and make a sound decision about
improve a system.
10.28 rev 1.0

Getting Started with AutoMod Intermediate Statistical Analysis

 to 108

 is 96

in the

 in the
time
sed on
at

ge its

ge its

Stat

conds

ystem,
owest
your
Exercises
Round your answers to the nearest hundredth.

Exercise 10.1

Copy the base version of example model 10.1 to a new directory. Open the copied model in
AutoStat and use the Setup wizard to define the following model properties:

• Model is random
• Check for infinite loops and stop runs that are longer than 2 minutes
• Do not define a warmup
• Define a snap length of 10 days

Perform an analysis that varies the processing time of resource R_Processor from 84
seconds in 12 second increments. Make 5 replications, then complete the following:

a) What is the average time that loads spend in the system when the processor time
seconds?

b) What is the 95 percent confidence interval for the average time that loads spend
system when the processor time is 108 seconds?

c) Compare the 95 percent confidence interval for the average time that loads spend
system when the processing time is 84 seconds to the same interval for average
that loads spend in the system when the processing time is 96 or 108 seconds. Ba
the comparison, is there a statistically significant difference in the average time th
loads spend in the system?

d) Display a bar graph of the average time that loads spend in the system and chan
scheme to a black and white pattern. Print the graph.

e) Display a line graph of the average time that loads spend in the system and chan
scale so that the lowest value on the Y axis is 800. Print the graph.

Exercise 10.2

Copy the base version of model 10.1 to a new directory. Open the copied model in Auto
and use the Setup wizard to define the following model properties:

• Model is random
• Check for infinite loops and stop runs that are longer than 2 minutes
• Do not define a warmup
• Define a snap length of 10 days

Perform an analysis that varies the processing time of R_Processor from 72 to 132 se
in 12 second increments. Make 5 replications.

Given a $1,000 per second cost based on the average time that loads spend in the s
develop a combination response to determine which equipment model provides the l
cost. Use the equipment costs shown in “Equipment specifications” on page 10.5 for
analysis.

The cost for time in system replaces the AvgWIP cost in example 10.1.

Determine the processing time that results in the lowest total cost.

ote
Note
✎

ote
Tip

☞

rev 1.0 10.29

Intermediate Statistical Analysis Getting Started with AutoMod

g time
 costs

st.
Exercise 10.3

Copy the final version of example model 10.1 to a new directory. Open the copied model in
AutoStat. The factors, responses, and analyses used in this chapter are already defined.

Edit the second analysis, Vary Speed and Processing Time, that was conducted for example
10, changing the snap length from 10 days to 5 days.

Make the runs for that analysis and determine the processing time and conveyor speed that
result in the lowest total cost. Are the results the same as were found for a snap length of 10
days?

Exercise 10.4

Copy the base version of example model 10.1 to a new directory. Open the copied model in
AutoStat and use the Setup wizard to define the following model properties:

• Model is random
• Check for infinite loops and stop runs that are longer than 2 minutes
• Do not define a warmup
• Define a snap length of 10 days

Given the new conveyor speeds and costs provided below:

Perform an analysis that varies the conveyor speed from 1 to 3 ft/sec and the processin
from 72 to 132 seconds in 12 second increments. Use the same WIP and equipment
shown in “Example 10.1: Performing a financial analysis” on page 10.4.

Determine the conveyor speed and processing time that results in the lowest total co

Speed Cost

1 ft/sec $150,000
2 ft/sec $300,000
3 ft/sec $450,000
10.30 rev 1.0

Getting Started with AutoMod Intermediate Statistical Analysis

from
s in 6

bina-
time
e.
Exercise 10.5

Copy the base version of example model 10.1 to a new directory. Open the copied model in
AutoMod, and edit the P_process arriving procedure so that the delay time for the equipment
is divided into two times, a setup time and a processing time, that can be varied indepen-
dently. Edit the logic as shown below (changes are indicated in bold text):

begin P_process arriving

move into Q_geton

move into conv:get_on

travel to conv:work_area

get R_processor

wait for V_first_time /* variable of type Time */

wait for e V_second_time/* variable of type Time */

free R_processor

travel to conv:get_off

send to die

end

Export the model.

Open the model in AutoStat and use the Setup wizard to define the following model prop-
erties:

• Model is random
• Check for infinite loops and stop runs that are longer than 2 minutes
• Do not define a warmup
• Define a snap length of 7 days

Perform an analysis to vary both delays for the piece of equipment. Vary V_first_time
12 to 36 seconds in 12 second increments and V_second_time from 60 to 96 second
second increments. Make 5 replications.

Define a Total Cost response exactly as shown in “Defining the cost equation in a com
tion response” on page 10.16. View the results and determine which values of V_first_
and V_second_time result in the lowest total cost with a 95 percent level of confidenc
rev 1.0 10.31

Intermediate Statistical Analysis Getting Started with AutoMod

 of the
ach.

hour.

nveyor
Exercise 10.6

Copy example model 9.1 (from the previous chapter) to a new directory. Open the copied
model in AutoStat and use the Setup wizard to define the following model properties:

• Model is random
• Check for infinite loops and stop runs that are longer than 2 minutes
• Do not define a warmup
• Define a snap length of 100 hours

Additional information about the system is provided below:

The facility runs 24 hours a day, 7 days a week. WIP has an annual cost of 10 percent
total value of the loads in the system; loads in the system have a value of $200,000 e

You have the option of changing the following system components:

a) You can schedule one or two workers in the system. Workers are each paid $40/
b) You can increase the conveyor speed, with costs defined in the table below:

Use AutoStat to analyze the system and determine the number of workers and the co
speed that result in the lowest total cost. Make 5 replications.

Speed Cost

1 ft/sec $300,000 (Current speed)
1.5 ft/sec $400,000
2 ft/sec $500,000
10.32 rev 1.0

Getting Started with AutoMod Introduction to Path Mover Systems
Chapter 11

Introduction to Path Mover Systems

Path mover systems... 11.4

Path mover drawing tools... 11.5

Example 11.1: Drawing a path mover system .. 11.6

Creating example model 11.1 ... 11.8
Creating the path mover system.. 11.8
Drawing paths ... 11.8

Drawing straight paths ... 11.9
Filleting paths... 11.10
Drawing arcs .. 11.11

Copying arc paths ... 11.13
Modeling different types of paths ... 11.14

Setting the direction of travel on paths .. 11.16
Setting crab movement on paths .. 11.17
Setting the navigation factor of paths .. 11.18

Placing control points.. 11.19
Changing control point attributes.. 11.19

Setting control point capacity .. 11.20
Setting control point release values ... 11.21

Defining vehicles... 11.22
Specifying vehicle attributes by load type ... 11.23
Placing vehicle graphics .. 11.25

Determining vehicle orientation on a path.. 11.26
Determining vehicle orientation after a transfer to a normal path 11.26
Determining vehicle orientation after a transfer to a crab path..................................... 11.28

Summary .. 11.29

Exercises... 11.30
Exercise 11.1 ... 11.30
Exercise 11.2 ... 11.31
rev 1.0 11.1

Introduction to Path Mover Systems Getting Started with AutoMod
11.2 rev 1.0

Getting Started with AutoMod Introduction to Path Mover Systems

rite
.

Chapter 11

Introduction to Path Mover Systems

A path mover system in the AutoMod software is a material handling system in which vehi-
cles or people move along a guide path, carrying loads from pickup locations to delivery
locations. In this chapter, you will learn how to draw a path mover system and place vehicle
graphics to model an automated guided vehicle (AGV) system. Many of the concepts and
tools that are used to draw path mover systems are similar to those you have already used to
simulate conveyor systems.

In chapter 12, “Modeling Complex Material Handling Systems,” you will learn how to w
model logic to control load movement and vehicle scheduling in path mover systems
rev 1.0 11.3

Introduction to Path Mover Systems Getting Started with AutoMod
Path mover systems
Path mover systems can be used to simulate any type of vehicle system in which vehicles
follow a specific route or path, for example, manually operated lift trucks or automated
guided vehicles. Vehicles in path mover systems can also represent people who move along
a predetermined route in the system.

Path mover systems consist of the following components:

Guide paths Guide paths are segments of path on which vehicles travel. Guide paths represent routes that
are taken by people or vehicles in a system. Guide paths can be one- or two-directional.

Transfers Transfers are connections that join two segments of guide path. For vehicles to move from
one segment to another, the two segments must be connected by a transfer. Transfers are
automatically created as you draw paths in the path mover system.

Control points Control points are locations at which vehicles can pick up or set down loads in the system.
Control points can be located anywhere on a path.

Vehicles Vehicles transport loads from one location to another by following a path in the path mover
system. Vehicles can be defined and grouped by type and can differ in velocity, capacity,
and the time required to pick up and set down loads in the system. Vehicles can also be
defined with different attributes based on the type of loads they are carrying; for example,
empty vehicles or vehicles that are carrying heavier or lighter loads may have different rates
of acceleration or velocity.
11.4 rev 1.0

Getting Started with AutoMod Introduction to Path Mover Systems

ections

ght or

ke the

paral-

er sys-
Path mover drawing tools
The tools for drawing and placing path mover entities are located on a palette in the path
mover system, as shown below:

In addition to the drawing tools, the path mover palette contains vehicle scheduling list
options that are used to define scheduling lists in the path mover system. These options are
discussed in chapter 12, “Modeling Complex Material Handling Systems.”

Many of the drawing tools in path mover systems are the same as those used to draw s
in conveyor systems. The drawing tools are defined as follows:

Select The Select tool selects one or more entities in the path mover system.

Single Line The Single Line tool draws a straight path mover segment.

Single Arc The Single Arc tool draws a curved path mover segment.

Continuous The Continuous tool draws a single path mover segment that consists of multiple strai
curved pieces. All pieces are part of the same segment, that is, no transfers are created. By
default, the Continuous tool alternates between drawing straight and curved pieces.

Connected The Connected tool draws multiple path mover segments connected by transfers. Unli
Continuous tool, the Connected tool draws straight segments by default.

Fillet The Fillet tool draws a curved path mover segment to automatically connect two non-
lel segments.

Point The Point tool places a control point on a path.

Vehicles The Vehicles tool defines one or more vehicles to travel on the paths in the path mov
tem.

Drawing tools

Vehicle
scheduling list
options

ote
Note
✎

rev 1.0 11.5

Introduction to Path Mover Systems Getting Started with AutoMod

ean
p”

here
e_in.

hat is
 After
here
p,
the
Example 11.1: Drawing a path mover system
Consider the layout of the path mover system shown below:

Layout of example model 12.1

Two types of loads are processed in this system: red loads and blue loads. Both types of
loads have an interarrival time that is exponentially distributed with a mean of 5 minutes.
Loads first move into an infinite-capacity queue (Q_entry). Loads are then picked up by a
vehicle at one of two control points, depending on type: red loads are picked up at control
point “red_on” and blue loads are picked up at control point “blue_on.”

Red loads are carried to the control point “red_insp” where they are inspected (while
onboard the vehicle) by an inspector for a time that is exponentially distributed with a m
of 3 minutes. After being inspected, red loads are carried to the control point “red_dro
where they get off the vehicle and leave the system.

After getting onboard a vehicle, blue loads are carried to the control point “blue_in” w
they get off the vehicle and are placed in an infinite-capacity processing queue, Q_blu
Loads are processed in the queue by a single-capacity resource, R_blue, for a time t
normally distributed with a mean of 4 minutes and a standard deviation of 30 seconds.
completing processing, the loads move into an infinite-capacity queue, Q_blue_out, w
they wait to be picked up by a vehicle at control point “blue_out.” After being picked u
loads travel to the control point “blue_drop,” where they get off the vehicle and leave
system.

blue_drop

red_drop on_wait

red_on blue_on

swap_area

red_insp

blue_out blue_inoff_wait

park_place

Q_blue_out Q_blue_in

R_blue

Q_entry

R_insp
11.6 rev 1.0

Getting Started with AutoMod Introduction to Path Mover Systems

ill
ies,

.

tains

e
 yet
ears
 sim-

”
e on
e two

s on

hicle
ro-
ait for

e
n in
ckup

 path.
t pro-
u will
t” on
In this chapter, you will draw the path mover layout and define the vehicles to simulate
example 11.1. In chapter 12, “Modeling Complex Material Handling Systems,” you w
complete the example model by writing the model logic, placing process system entit
and defining the scheduling lists that control load and vehicle movement in the system

To become familiar with load and vehicle movement in the system:

Step 1 Import and run a copy of the final version of example model 12.1

Example model 12.1 is a working version of the system; example model 11.1 only con
the drawing of the path mover system.

While the model is running, notice the following:

• There are three vehicles in the system. At the beginning of the simulation, only on
vehicle is parked at the control point “park_place;” the remaining vehicles are not
displayed in the simulation. When the first vehicle leaves, the second vehicle app
parked at the control point, and so on, until all of the vehicles are displayed in the
ulation.

• Vehicles travel in two directions on the paths containing the control points “red_on
and “blue_on.” Vehicles enter the path to pick up a red or blue load and then leav
the same path to deliver the load. Notice that vehicles travel sideways while on th
paths.

• Vehicles also travel in two directions on the path containing the control point
“blue_drop.” However, unlike the two pickup paths, vehicles do not travel sideway
this path.

• Because only one vehicle can travel on the two-directional paths at a time (the ve
enters and leaves on the same path), the control points “off_wait” and “on_wait” p
vide a location where vehicles that need to enter an occupied path can stop and w
the path to become available.

• Idle vehicles (vehicles that are neither picking up nor delivering a load) travel to th
parking location “park_place” to wait for work. When a load requires transportatio
the system, an idle vehicle leaves the parking location and travels to the load’s pi
point.

• When a vehicle is obstructed by a preceding vehicle on a path, the trailing vehicle
accumulates behind the preceding vehicle.

The system layout contains a control point named “swap_area,” located on a vertical
Currently, vehicles in the system do not travel on this path. The path and control poin
vide an area where vehicles can have their batteries replaced during a simulation. Yo
simulate battery replacement later (see “Example 12.2: Modeling battery replacemen
page 12.16 of the “Modeling Complex Material Handling Systems” chapter).

Step 2 When you are ready to continue, quit the model.

ote
Note
✎

ote
Note
✎

rev 1.0 11.7

Introduction to Path Mover Systems Getting Started with AutoMod

Creating example model 11.1
Example model 11.1 consists only of a path mover layout. To create the example model, do
the following:

Step 1 Create a new model named “examp111.”

Step 2 Open the View Control, then select Child Windows on Top.

Step 3 Close the View Control window.

You are now ready to create the path mover system.

Creating the path mover system

To create the path mover system, do the following:

Step 1 From the System menu in the Work Area window, select New. The Create A New System
window opens.

Step 2 In the System Name text box, type “pm”, and in the System Type drop-down list, select Path
Mover.

Step 3 Click Create to create the path mover system. The Path Mover palette appears.

Drawing paths

To draw the path layout in example model 11.1, use the following methodology:

Step 1 Draw straight paths.

Step 2 Fillet the straight paths (to connect all of the paths in the system).

Step 3 Draw arc paths (to create the parking area).

Each of these steps is discussed in detail in the following sections.
11.8 rev 1.0

Getting Started with AutoMod Introduction to Path Mover Systems

ing

 Snap
path.

ance
Drawing straight paths
To draw the straight paths in the system, use the Single Line tool as you did in “Draw
conveyor sections” on page 6.10 of the “Introduction to Conveyors” chapter.

Step 1 Draw the straight paths, using the measurements shown below:

While drawing the paths, use the Orthogonal option to draw straight lines and use the
to Path option to force the two 20-foot entrance sections to connect to the horizontal

Drawing straight paths in example model 11.1

Be sure to draw the paths with the correct direction of travel (you will change the entr
and exit paths to be two-directional spur paths later in this chapter).

Now you are ready to connect the straight paths using the Fillet tool.

ote
Tip

☞

30 ft

55 ft

20 ft 20 ft

55 ft 55 ft 55 ft

190 ft

190 ft

ote
Note
✎

rev 1.0 11.9

Introduction to Path Mover Systems Getting Started with AutoMod

wo
Filleting paths
To connect the straight paths in the model, use the Fillet tool as you did in “Filleting t
paths” on page 6.13 of the “Introduction to Conveyors” chapter.

Step 1 Fillet the paths, as shown below:

Filleting paths in example model 11.1

Now you are ready to draw the parking area.
11.10 rev 1.0

Getting Started with AutoMod Introduction to Path Mover Systems
Drawing arcs
To draw the parking area in the model, use the Single Arc tool as described below:

Step 1 On the Path Mover palette, click Single Arc. The Single Arc window opens.

Step 2 Change the radius of the segment to 10 feet.

Step 3 Select Minor Arc to force the arc to be equal to or less than 180 degrees.

Step 4 Click Snap to Path.

Step 5 Drag an arc that begins below the transfer of the top of the left vertical segment, as shown
below:

Drawing the first arc in the parking area in example model 11.1

You have now drawn the first arc in the parking area.

Step 6 In the Single Arc window, select Clockwise.

Step 7 Click Snap to End.

Draw an arc that connects to the
vertical path
rev 1.0 11.11

Introduction to Path Mover Systems Getting Started with AutoMod
Step 8 Drag an arc that connects to the existing arc, as shown below:

Drawing the second arc in the parking area in example model 11.1

You have now drawn the first half of the parking area. To draw the second half of the park-
ing area, copy the two arc paths you just drew, as discussed in the next section.

Draw a second arc that
connects to the first arc
11.12 rev 1.0

Getting Started with AutoMod Introduction to Path Mover Systems
Copying arc paths
Step 1 On the Path Mover palette, click Select.

Step 2 Select the two arc paths.

You can select multiple paths at the same time by dragging a box in the Work Area window
over parts of each path. The paths turn green to indicate that they are selected.

Step 3 From the Edit menu, select Copy. The Copy window opens.

Step 4 In the Copy window, click Flip Vertical.

Step 5 Drag the copied arcs into position, as shown below:

Positioning the copied arcs in example model 11.1

Step 6 Using the Single Line tool, draw a vertical segment connecting the two arcs. Be sure to draw
from top to bottom so that the direction of vehicle travel is correct.

When drawing the vertical segment, use the Snap to End option to ensure that the path con-
nects to the arcs.

You have now drawn the parking area.

ote
Tip

☞

Drag the copied arcs into position

Leave space for a vertical segment
to connect the two arcs

ote
Tip

☞

rev 1.0 11.13

Introduction to Path Mover Systems Getting Started with AutoMod

rent
 path
tion in

d the

n
:

fined
pe”

on

fined
pe”

oint

ction
, see
g on
n by

s by
ime
Modeling different types of paths

In chapter 9, “Modeling Complex Conveyor Systems,” you learned how to model diffe
types of conveyor sections. Similarly, you can edit the attributes of individual paths in a
mover system to change path characteristics. For example, you can change the direc
which vehicles can travel or the orientation of vehicles that travel on a path.

Path attributes are edited in the Guide Path window, as shown below:

The Guide Path window

The Guide Path window lists three attributes that can be edited for paths:

Guide Path
Type

The Guide Path Type attribute determines the direction in which vehicles can travel an
velocity of vehicles on the path. Options in the Guide Path Type drop-down list are:

One Directional – Vehicles can travel in only one direction on the path; the direction i
which vehicles can travel is indicated by the path’s direction marker, as shown below

One-directional path

Vehicles that are traveling on the path use the Forward, Reverse, or Curve velocity de
in the vehicle’s specification by load type (see “Specifying vehicle attributes by load ty
on page 11.23).

Two Directional – Vehicles can travel in two directions on the path. The path’s directi
markers point in both directions to indicate a two-directional path, as shown below:

Two-directional path

Vehicles that are traveling on the path use the Forward, Reverse, or Curve velocity de
in the vehicle’s specification by load type (see “Specifying vehicle attributes by load ty
on page 11.23).

Spur – Vehicles can travel in two directions on the path. The path’s direction markers p
in the path’s forward direction of travel, as shown below:

Spur path

Although vehicles can travel in both directions on the path, the path has a forward dire
of travel that is used to determine vehicle orientation on the path (for more information
“Determining vehicle orientation on a path” on page 11.26). Vehicles that are travelin
the path use the Forward or Reverse spur velocity defined in the vehicle’s specificatio
load type (see “Specifying vehicle attributes by load type” on page 11.23).

When modeling two directional or spur paths, it is important to prevent vehicle collision
placing control points to limit the number of vehicles that can travel on the path at a t
(for more information, see “Setting control point capacity” on page 11.20).

ote
Note
✎

11.14 rev 1.0

Getting Started with AutoMod Introduction to Path Mover Systems

els

actor
s are
ath’s

t route.

a nav-
Vehicle Travel The Vehicle Travel attribute determines the alignment of vehicles that are traveling on the
path. Options in the Vehicle Travel drop-down list are:

Normal – A vehicle’s X axis is aligned with the path’s direction of travel.

Crab – A vehicle’s Y axis is aligned with the path’s direction of travel (the vehicle trav
sideways on the path).

Navigation
Factor

By default, vehicles take the shortest route to their destination. A path’s Navigation F
is a number that is multiplied by the length of the path; this factor is used when vehicle
searching for their shortest route. The default navigation factor is one. By changing a p
navigation factor, you can force vehicles to take a different path to their destination.

For example, in the system illustrated below, a vehicle traveling from pointA to pointB
would take path1, because the default navigation factor of 1 makes path1 the shortes

Navigation factor

However, if path1 had a navigation factor that made it longer than path2, for example,
igation factor of “3,” then the vehicle would use path2 as the shortest path instead.

Each of the path attributes is discussed in the following sections.
rev 1.0 11.15

Introduction to Path Mover Systems Getting Started with AutoMod

re are

low:

ining

icate
Setting the direction of travel on paths
By default, vehicles can travel in only one direction on a path; the direction in which vehi-
cles can travel is indicated by the path’s direction marker. In example model 11.1, the
four spur paths on which vehicles can travel in both directions.

To set the paths’ direction, do the following:

Step 1 Select the four paths on which vehicles travel to pick up or deliver loads, as shown be

Hold the Shift key to select more than one path at a time.

Setting the direction of paths in example model 11.1

Step 2 From the Edit menu, select Edit. The Path Edit window opens.

Step 3 Click Attributes to edit the attributes of the first path. The Guide Path window opens.

Step 4 In the Guide Path Type drop-down list, select Spur, then click OK. You have now changed
the path to a spur path.

Step 5 In the Path Edit window, click OK to begin editing the next selected path.

Step 6 Repeat steps 3 through 5 to set the value of the Guide Path Type attribute for the rema
selected paths. After editing the last path’s attributes, click OK, Quit Edit Each in the Path
Edit window to stop editing selected entities.

Notice that the direction markers on the paths are replaced with double arrows to ind
they are spur paths.

ote
Tip

☞

Select these two paths...

...and select these two paths
11.16 rev 1.0

Getting Started with AutoMod Introduction to Path Mover Systems

crab
s. In
p red

tion

 the

ions.
Setting crab movement on paths
On a normal path, a vehicle’s X axis is aligned with the path’s direction of travel (see
“Determining vehicle orientation on a path” on page 11.26 for more information). On a
path, a vehicle’s Y axis is aligned with the path, causing the vehicle to travel sideway
example model 11.1, vehicles travel sideways on the two paths where vehicles pick u
and blue loads.

To define crab movement on the paths, do the following:

Step 1 Select the two paths on which vehicles travel to pick up loads, as shown in the illustra
below:

Setting crab movement on paths in example model 11.1

Step 2 Edit each path’s attributes and set the value of the Vehicle Travel attribute to Crab.

After setting a path’s attribute value, click OK in the Path Edit window to begin editing
next selected path.

Step 3 When you have finished editing each path’s attributes, click OK, Quit Edit Each in the Path
Edit window to stop editing selected entities.

Vehicles are now able to travel sideways on the paths leading to the two pickup locat

Select these two paths

ote
Tip

☞

rev 1.0 11.17

Introduction to Path Mover Systems Getting Started with AutoMod

 12.2:
ling
e ver-
is a
ir bat-

ge the
 off or

ling to
Setting the navigation factor of paths
In example model 11.1, a vertical lane is defined where vehicles can have their batteries
replaced. This battery replacement area is not implemented until later (see “Example
Modeling battery replacement” on page 12.16 of the “Modeling Complex Material Hand
Systems” chapter). When the replacement area is added, vehicles will travel down th
tical lane and stop for 15 minutes to change batteries. Because battery replacement
lengthy process, we want this lane to be dedicated only to vehicles that are having the
teries replaced. To prevent other vehicles from traveling down the lane, we can chan
path’s navigation factor so that it is not selected as the shortest route when dropping
picking up loads.

To set the navigation factor of the battery replacement lane, do the following:

Step 1 Select the vertical path where vehicles travel to change batteries, as shown below:

Setting the navigation factor of the battery replacement lane in example model 11.1

Step 2 Edit the path’s attributes and set the value of the Navigation Factor attribute to “4.”

Step 3 Click OK, Quit Edit Each in the Path Edit window to stop editing selected entities.

The battery replacement lane is no longer the shortest route for vehicles that are trave
pick up or set down loads in the system.

Select this path
11.18 rev 1.0

Getting Started with AutoMod Introduction to Path Mover Systems

ravel

 point
oint’s
aving
ce

you
s.
Placing control points

Now that you have drawn the necessary paths and set their attributes in example model 11.1,
you are ready to place control points in the path mover system. Control points represent
locations where vehicles can stop, for example, to pick up or set down loads, or to park when
idle.

Placing control points is like placing stations in a conveyor system. To place control points
in example model 11.1, use the Point tool on the Path Mover palette.

Step 1 Place and name the control points, as shown below:

Placing control points in example model 11.1

Now that you have placed the control points in the model, you are ready to learn how to
change control point attributes.

Changing control point attributes

Control point attributes allow you to change the characteristics of individual control points
in a model. This textbook discusses the following control point attributes:

Control Point
Capacity

A control point’s capacity determines the number of vehicles that can simultaneously t
to a control point during a simulation.

Control Point
Release

A control point’s release value determines when a vehicle releases a claimed control
so that other vehicles can travel to the point. There are many ways to define a control p
release value. For example, a vehicle can release a control point immediately upon le
the point, after delaying for a specified amount of time, after traveling a certain distan
beyond the point, and so on.

To get a better understanding of how control point attributes affect vehicle behavior,
will edit the attributes of individual control points as described in the following section

blue_drop

off_wait blue_out blue_in

swap_area

red_insp

blue_onred_on

on_waitred_drop

park_place
rev 1.0 11.19

Introduction to Path Mover Systems Getting Started with AutoMod

 the
By
f
er of

 that
e path

ame
e
point

 spur
rwise,

exam-
t
up a
d was
 able
lock-

point

trol

d
Setting control point capacity
Each control point has a capacity that can be used to limit the number of vehicles that can
simultaneously travel to the point. In order for a vehicle to travel to a control point, it must
be able to claim one unit of the control point’s capacity. After leaving the control point,
vehicle releases one unit of capacity, which can then be claimed by another vehicle.
default, the capacity of control points is “Infinite,” which allows an unlimited number o
vehicles to travel to the control point simultaneously. However, you can limit the numb
vehicles that can travel to a control point by setting its capacity to a finite number.

Limiting control point capacity also has the effect of restricting the number of vehicles
can simultaneously travel on a path leading to a control point. For example, consider th
shown below:

Control point illustration

In order for a vehicle to leave its current control point, it must be able to claim the next con-
trol point on the path. A vehicle that is traveling from point “A” to point “C” must be able
to claim point “B” before it can leave point “A.” If the capacity of control point “B” is set
to one, only one vehicle can travel on the path between point “A” and point “B” at the s
time. Trailing vehicles will stop and accumulate at point “A” and wait for point “B” to b
released by the preceding vehicle before they can continue. Similarly, after arriving at
“B,” a vehicle must be able to claim point “C” before it can leave point “B.”

In example model 11.1, the number of vehicles that can simultaneously travel on the
paths where vehicles pick up loads or set down blue loads must be limited to one. Othe
multiple vehicles may enter a path, resulting in a deadlock. A deadlock is an impasse that
occurs when two vehicles are trying to move but are blocking one another’s path. For
ple, consider what would happen if two vehicles entered the spur path to control poin
“red_on” at the same time. The first vehicle would travel to the control point and pick
red load. The second vehicle would accumulate behind the first vehicle. Once the loa
on the first vehicle, the vehicle would attempt to leave the spur path, but would not be
to move, because the trailing vehicle, which is waiting to travel to the control point, is b
ing its path.

To prevent deadlocks from occurring, limit the number of vehicles that can travel to a
by changing its capacity, as follows:

Step 1 Select the control points “blue_drop,” “red_on,” and “blue_on.”

To select multiple control points, hold down the Shift key and click each point (the con
point graphics turn green to indicate that they are selected).

Step 2 From the Edit menu, select Edit. The Control Point Edit window opens for the first selecte
control point.

Step 3 Click Attributes. The Edit Control Point window opens.

Step 4 Change the control point capacity to “1” and click OK to close the Edit Control Point win-
dow.

Step 5 Click OK in the Control Point Edit window to begin editing the next control point.

Step 6 Repeat steps 3 through 5 to limit the capacity of the remaining control points to 1.

You are now ready to set the control points’ release values.

A B C

ote
Tip

☞

11.20 rev 1.0

Getting Started with AutoMod Introduction to Path Mover Systems

hicle.
point.

ny
icles

l point
eling
ans
ling to

trol
aving

 indi-
e sys-

 of the
ntrol
sly.
e to
ing in
l point

ehicle
 paths,

int

 the

_on”
nts after
Setting control point release values
A control point’s release value determines when the point is released by a leaving ve
Releasing a control point allows other vehicles in the system to claim and travel to the

A control point’s release value has no effect on control points with infinite capacity (a
number of vehicles can claim a point with infinite capacity, regardless of how many veh
are currently claiming it).

You can define control point release values in terms of distance. For example, a contro
release value of “50 feet” causes vehicles to release the point after leaving it and trav
50 feet in the system. By default, the control point release value is “0 feet,” which me
that a vehicle releases a control point as soon as it leaves the point and begins trave
its next point.

You can also define control point release values in terms of time. For example, a con
point release value of “5 minutes” causes vehicles to release the point 5 minutes after le
it, regardless of how far the vehicle travels in that amount of time.

You can also define control point release values using the setting “at end.” This setting
cates that vehicles do not release a control point until they reach their destination in th
tem.

In example model 11.1, you need to change the control point release values for each
control points at the end of a spur lane. You have already set the capacity of these co
points to one, which limits the number of vehicles that can enter the lane simultaneou
However, the default control point release value is “0 feet,” which could allow a vehicl
enter a spur lane before the preceding vehicle (which is on its way out) has left, result
a collision. To prevent collisions, you must change the release values for each contro
so that a vehicle does not release the point until it has left the spur path.

To change the control point release values, do the following:

Step 1 Select the control point “blue_drop.”

Step 2 From the Edit menu, select Edit. The Control Point Edit window opens.

Step 3 Click Attributes. The Edit Control Point window opens.

The path that this point is on is 30 feet long, and there is a short arc path on which the v
must travel, as well. To guarantee that the release value is long enough to cover both
you will set the release value to 38 feet.

Step 4 Change the control point release value to “38 feet” by selecting “feet” in the Control Po
Release drop-down list and then typing “38” in the text box. Click OK to close the Edit Con-
trol Point window.

Step 5 Click OK in the Control Point Edit window to close the window. You have now changed
release value of the control point “blue_drop.”

Step 6 Repeat this procedure to set the release value of the control points “red_on” and “blue
to 20 feet each. Because these paths are shorter, vehicles can release the control poi
traveling a shorter distance.

You are now ready to define vehicles in the path mover system.

ote
Note
✎

rev 1.0 11.21

Introduction to Path Mover Systems Getting Started with AutoMod

e. To

 vehi-

ula-
tiple
Defining vehicles

Vehicles can represent anything that carries loads in a system, such as manually operated
fork trucks, automated guided vehicles, or people. As with load types, you can define dif-
ferent types of vehicles that vary according to characteristics such as vehicle size, the time
required to pick up and set down loads, and so on. Defining multiple vehicle types allows
you to simulate different types of vehicles in the same system. For example, fork trucks and
people might travel on the same paths in the system. By default, path mover systems include
one vehicle of type “DefVehicle.”

In example model 11.1, you need to create three vehicles that are all of the same typ
define the vehicles, do the following:

Step 1 On the Path Mover palette, click Vehicle. The Vehicles window opens.

Step 2 Because the vehicle type “DefVehicle” is already selected, click Edit to edit the default vehi-
cle type. The Edit A Vehicle definition window opens, as shown below:

The Edit A Vehicle Definition window

Options in the Edit A Vehicle Definition window are defined as follows:

Vehicle Type The name of the vehicle type.

Edit Graphics The Edit Graphics option allows you to define the size, color, and shape of graphics for
cles of this type.

Vehicle
Capacity

The number of loads that vehicles of this type can carry at the same time during a sim
tion.This textbook only discusses single-capacity vehicles. For information about mul
capacity vehicles, see the “Path Mover System” chapter in volume 2 of the AutoMod User’s
Manual, online.

Load Pick Up
Time

The amount of time that vehicles of this type require to pick up a load.

Load Set Down
Time

The amount of time that vehicles of this type require to set down a load.

Number of
Vehicles

The number of vehicles of this type in the system.
11.22 rev 1.0

Getting Started with AutoMod Introduction to Path Mover Systems

 more
om-

s,
his

.

en it
 long
n dis-

wo
n has
n is

. You
iffer-
ever,
 to

Type

tion
rward
n trav-

when
.

ad
Vehicle Start
List

A list of locations where vehicles can be parked at the beginning of the simulation. The value
“Random” indicates that vehicles start at randomly selected points in the system. For
information, see “Defining vehicle starting locations” on page 12.12 of the “Modeling C
plex Material Handling Systems” chapter.

Specifications
by Load Type

The Specifications by Load Type option allows you to define different vehicle attribute
such as acceleration and velocity, based on the type of load the vehicle is carrying. T
option is discussed in the next section.

Step 3 Change the Number of Vehicles to “3.” You have now created three vehicles of type
“DefVehicle.”

You are now ready to define specifications by load type for the vehicles in the system

Specifying vehicle attributes by load type
Defining a specification by load type allows you to describe how a vehicle behaves wh
carries different types of loads. For example, vehicles might be required to carry very
loads or very heavy loads, which can change characteristics such as the accumulatio
tance between vehicles and the vehicle’s velocity.

The Specifications by Load Type list in the Edit A Vehicle Definition window contains t
predefined specifications: default and empty. The default is used when a specificatio
not been defined for the type of load a vehicle is transporting. The empty specificatio
used by vehicles that are not transporting loads.

In example model 11.1, two load types are processed in the system: L_red and L_blue
could define a specification for each load type that would cause vehicles to behave d
ently depending on whether they were carrying a red or blue load. In this system, how
load type has little effect on vehicle behavior, so you will edit the default specification
describe how vehicles behave when carrying either type of load.

To edit the default specification, do the following:

Step 1 Because the “Default” specification is already selected in the Specifications by Load
list, click Edit to edit the specification. The Vehicle Specification window opens.

The Vehicle Specification window allows you to define the acceleration and decelera
rates of the three vehicles, as well as the velocity of the vehicles when traveling in a fo
or reverse direction. You can also define separate velocities that the vehicles use whe
eling on spur, curve, or crab paths. In addition, you can define the velocity of vehicles
rotating in the system and the space between vehicles when accumulating on a path

For more detailed information about defining vehicle attributes in a specification by lo
type, see the “Path Mover System” chapter in volume 2 of the AutoMod User’s Manual,
online.

Step 2 Change the forward and reverse velocity of vehicles traveling on a spur path to be 2 feet per
second.

Step 3 Change the velocity of vehicles traveling on a crab path to be 1.5 feet per second.

For crab paths, the crab velocity takes precedence over the other path velocities. For exam-
ple, if a path is both a crab path and a spur path, vehicles use the crab velocity when traveling
on the path.

ote
Note
✎

ote
Note
✎

rev 1.0 11.23

Introduction to Path Mover Systems Getting Started with AutoMod
Step 4 Change the velocity of vehicles when they are rotating to be 3 degrees per second. The
Vehicle Specification window should appear as shown below:

Defining the velocity of vehicles in example model 11.1

Step 5 Click OK to close the Vehicle Specification window. You have now edited the default
velocities that vehicles use when carrying loads in the system.

Before closing the Edit A Vehicle Definition window, you need to place a graphic to repre-
sent the vehicles you have defined in the system (described next).

The forward and
reverse velocities of
vehicles that are
traveling on spur
paths is set to 2 feet
per second

The velocity of
vehicles that are
traveling on crab
paths is set to 1.5 feet
per second

The velocity of
rotating vehicles is set
to 3 degrees per
second
11.24 rev 1.0

Getting Started with AutoMod Introduction to Path Mover Systems

 vehi-
Placing vehicle graphics
You place vehicle graphics the same way that you place graphics for other entities.

To place vehicle graphics, do the following:

Step 1 In the Edit A Vehicle Definition window, click Edit Graphics. The Edit Vehicle Graphics
window opens.

Step 2 Scale the vehicle graphic to 4 feet on the X axis and 2 feet on the Y axis, as shown below:

Scaling vehicle graphics in example model 11.1

Step 3 Click Place, then click to the left of the paths in the Work Area window to place the vehicle
graphic in the system (as with load graphics, you can place vehicle graphics anywhere in the
Work Area window). A rectangular box appears representing a vehicle of type
“DefVehicle.”

Step 4 In the Edit Vehicle Graphics window, click Done to close the window.

Step 5 In the Edit A Vehicle Definition window, click Done to close the window.

Step 6 Export the model.

Now that you have placed the vehicle graphic, you are ready to learn how to determine
cle orientation during a simulation.

Scale the vehicle
graphic to
4 feet on the X axis
and 2 feet on the
Y axis
rev 1.0 11.25

Introduction to Path Mover Systems Getting Started with AutoMod

 the
 rect-
 front

n the
 crab

aintain
any
fer,
ormal

ard
or
ection

l. For
path’s

mal
ehi-
Determining vehicle orientation on a path
At the beginning of a simulation, vehicles are parked at a control point on a path and are
oriented to begin traveling in a forward direction. The orientation of the vehicle depends on
the path’s type. If a vehicle starts at a control point on a normal path, the vehicle’s X axis is
aligned with the path. If a vehicle starts at a control point on a crab path, the vehicle’s Y axis
is aligned with the path.

The vehicle’s graphic determines which edge of the vehicle is the “front” and which is
“back.” In this textbook, you will use the default graphic for vehicles (either a square or
angle). Using the default graphic, you cannot easily tell which end of the vehicle is the
or back; however, if the vehicle starts on a normal path, the front of the vehicle is the vehi-
cle’s leading edge at the beginning of a simulation.

Throughout a simulation, vehicles maintain the alignment of their axes with the paths i
system: on a normal path, the X axis of a vehicle is always aligned with the path; on a
path, the Y axis of a vehicle is always aligned with the path.

When a vehicle transfers from one path to another, the vehicle may need to rotate to m
the alignment of its axes with the destination path. Whether or not the rotation takes
time, and whether the vehicle’s direction of travel is forward or reverse after the trans
depends on the amount of the vehicle’s rotation and whether the destination path is a n
path or a crab path.

Determining vehicle orientation after a transfer to a normal path

When a vehicle transfers to a normal path, the vehicle will be traveling in either a forw
or a reverse direction after the transfer. Whether the vehicle is traveling in a forward
reverse direction is important because the vehicle uses different velocities for each dir
of travel (as defined in the vehicle’s specification by load type).

A vehicle is traveling in a forward direction when the front of the vehicle is the leading
edge in the path’s forward direction of travel. A vehicle is traveling in a reverse direction
when the back of the vehicle is the leading edge in the path’s forward direction of trave
normal one-directional and spur paths, the direction markers on the path indicate the
forward direction of travel, as shown below:

In the illustrations above, both paths’ forward direction of travel is to the right. For nor
two-directional paths, the path’s forward direction of travel is whichever direction the v
cle is currently traveling.

Note
Important

▲!

One-directional path Spur path
11.26 rev 1.0

Getting Started with AutoMod Introduction to Path Mover Systems

vel
d in

 vehi-
e-
with

ount
greater

rd
Whether a vehicle’s rotation takes any time, and whether the vehicle’s direction of tra
changes after the transfer, depends on the amount of the vehicle’s rotation, measure
degrees, as shown in the table below:

The illustration below shows the relation between a vehicle’s rotation amount and the
cle’s direction of travel on normal paths. The paths in the illustration are all normal on
directional paths; however, the vehicle’s behavior is the same for normal spur paths (
the same forward direction of travel) and normal two-directional paths.

Relation between a vehicle’s rotation amount and direction of travel on a normal path

In the illustration above, the arrow inside the vehicle points to the front of the vehicle. Notice
that the vehicle’s direction of travel remains the same after transfers with a rotation am
less than or equal to 135 degrees, but reverses after transfers with a rotation amount
than 135 degrees.

If the vehicle’s rotation
amount is... The rotation takes time? The vehicle’s direction of travel...

Less than 45 degrees No. Remains the same (if the vehicle was traveling in a
forward direction, it continues traveling in a
forward direction; if the vehicle was traveling in
reverse, it continues traveling in reverse).

Greater than or equal to 45
degrees, and less than or equal
to 135 degrees

Yes; the vehicle rotates using
the rotation velocity defined in
its specification by load type.

Is forward (the front of the vehicle becomes the
leading edge in the path’s forward direction of
travel).

Greater than 135 degrees No. Is reversed (if the vehicle was traveling in a forwa
direction, it travels in a reverse direction after the
transfer; if the vehicle was traveling in a reverse
direction, it travels in a forward direction after the
transfer).

100 degrees

150 degrees

135 degrees 45 degrees

25 degrees

0 degrees

No rotation time

Vehicle takes time to rotate

No rotation tim
e

Vehicle is traveling forward

Vehicle is traveling in reverse
rev 1.0 11.27

Introduction to Path Mover Systems Getting Started with AutoMod

icle’s

e table

tion to

t the
e is
xam-
le, the
 than
Determining vehicle orientation after a transfer to a crab path

When a vehicle transfers to a crab path, a forward or reverse direction of travel does not
apply; the vehicle travels sideways using the velocity defined for crab paths in the veh
specification by load type. Either side of the vehicle can be the leading edge.

As with transfers to normal paths, whether or not the vehicle’s rotation takes any time
depends on the amount of the vehicle’s rotation, measured in degrees, as shown in th
below:

When a vehicle transfers to a crab path, the vehicle makes the shortest possible rota
begin traveling sideways, as shown below:

Relation between a transfer’s angle and a vehicle’s orientation for crab paths

In the illustration above, the arrow inside the vehicle points to the front of the vehicle. Notice
that when a vehicle transfers to a crab path, the amount of the vehicle’s rotation is no
same as the path’s transfer angle. Whether or not the vehicle’s rotation takes any tim
determined by the change in the vehicle’s rotation, not the angle of the transfer. For e
ple, when the vehicle transfers from a normal path to a crab path with a 25 degree ang
amount of rotation required to orient the vehicle to begin traveling sideways is greater
45 degrees, so the vehicle takes time to rotate.

If the vehicle’s rotation
amount is... The rotation takes time?

Less than 45 degrees No.

Greater than or equal to 45
degrees, and less than or equal
to 135 degrees

Yes; the vehicle rotates using
the rotation velocity defined in
its specification by load type.

Greater than 135 degrees No.

100 degrees

150 degrees

135 degrees 45 degrees

25 degrees

0 degrees
Vehicle takes time to rotate

No rotation time

Vehicle is traveling forward on a normal path

crab path

crab path
crab path

Vehicle takes time to rotate
11.28 rev 1.0

Getting Started with AutoMod Introduction to Path Mover Systems

ot run
ehicle
 12,

path
int
icles
fter a
Summary
You have successfully drawn a path mover system’s path and control points. You cann
the model currently, because there are no vehicle scheduling lists defined to control v
movement in the system; you will add vehicle scheduling lists to the model in chapter
“Modeling Complex Material Handling Systems.”

In addition to drawing paths and placing control points, you have learned how to edit
attributes to create spur and crab paths, and you have learned how to edit control po
attributes to limit the number of vehicles that can travel on a path. You also defined veh
and their attributes and learned how to determine a vehicle’s orientation before and a
transfer.
rev 1.0 11.29

Introduction to Path Mover Systems Getting Started with AutoMod

 12.2”
re to

te).
aths
city of
ent

rol
Exercises

Exercise 11.1
The solution for this assignment is required to complete exercise 12.2 (see “Exercise
on page 12.30 of the “Modeling Complex Material Handling Systems” chapter); be su
save a copy of your model.

Draw the path mover system shown below:

Place and name the control points as indicated (control point locations are approxima
The parking location, “park_loc,” has capacity for three vehicles. The enter and exit p
are each two-directional paths and the enter and exit control points each have a capa
one (to prevent vehicle collisions) and a control point release value of 25 feet (to prev
vehicle deadlocks). All other control points have infinite capacity and the default cont
point release value.

Place the graphics for vehicles; the vehicles’ size is defined as:

ote
Note
✎

190 ft

100 ft

11 ft10 ft

9 ft

10 ft 10 ft

18 ft

10 ft

input_wait

park_loc

proc

proc_out

proc_in exit_wait

exit_3

exit_2

exit_1

enter_1enter_4 enter_3enter_2

41 ft

37 ft

X 4=
Y 2=
Z 1=
11.30 rev 1.0

Getting Started with AutoMod Introduction to Path Mover Systems

 12.3”
re to

inner
ated
acity
Exercise 11.2
The solution for this assignment is required to complete exercise 12.3 (see “Exercise
on page 12.32 of the “Modeling Complex Material Handling Systems” chapter); be su
save a copy of your model.

Draw the path mover system shown below:

The curves on the outer loop of path each have a five foot radius. The curves on the
loops of path each have a ten foot radius. Place and name the control points as indic
(control point locations are approximate). The parking location, “park_place,” has cap
for three vehicles; all other control points have infinite capacity.

Place the graphics for vehicles; the vehicles’ size is defined as:

ote
Note
✎

proc_in2

proc_out2

100 ft

200 ft

60 ft 22 ft 22 ft

insp_out

insp_in

get_off get_on proc_in1 proc_out1

proc_in3proc_out3proc_in4proc_out4

park_place

X 4=
Y 2=
Z 1=
rev 1.0 11.31

Introduction to Path Mover Systems Getting Started with AutoMod
11.32 rev 1.0

Getting Started with AutoMod Modeling Complex Material Handling Systems
Chapter 12

Modeling Complex Material Handling Systems

Example 12.1: Drawing a path mover system .. 12.4

Moving loads through a path mover system... 12.5
Defining the model logic in example model 12.1 ... 12.5

Controlling vehicles in a path mover system .. 12.7
How loads waken idle (parked) vehicles in a system.. 12.8
Defining locations where vehicles can search for work.. 12.9

Copying scheduling lists .. 12.11
Defining locations where vehicles can search for parking.. 12.11
Defining vehicle starting locations.. 12.12

Interpreting statistics in example model 12.1 ... 12.14

Example 12.2: Modeling battery replacement.. 12.16

Using process attributes and system attributes .. 12.16
Defining the model logic in example model 12.2 ... 12.17
Editing work lists .. 12.19
Defining a work and park list for the swap area ... 12.19

Interpreting statistics in example model 12.2 ... 12.20
Displaying control point statistics ... 12.22

Blocking vehicle movement .. 12.23
Example 12.3: Blocking vehicle collisions ... 12.23

Placing blocks in example model 12.3 .. 12.23
Example 12.4: Blocking vehicle deadlocks .. 12.26

Placing blocks in example model 12.4 .. 12.28

Summary .. 12.29

Exercises... 12.30
Exercise 12.1 ... 12.30
Exercise 12.2 ... 12.30
Exercise 12.3 ... 12.32
Exercise 12.4 ... 12.34
rev 1.0 12.1

Modeling Complex Material Handling Systems Getting Started with AutoMod
12.2 rev 1.0

Getting Started with AutoMod Modeling Complex Material Handling Systems

over
h a

ove-
icles
lace
Chapter 12

Modeling Complex Material Handling Systems

In chapter 11, “Introduction to Path Mover Systems,” you learned how to draw path m
systems. In this chapter, you will learn how to write model logic to move loads throug
path mover system.

This chapter introduces scheduling lists, which is one method for controlling vehicle m
ment in a path mover system. By defining scheduling lists, you can control where veh
travel to pickup loads or to park in the system. You will also learn how to define and p
blocks, which can be used to prevent vehicle collisions and deadlocks.
rev 1.0 12.3

Modeling Complex Material Handling Systems Getting Started with AutoMod

 sys-
ributes
eces-
in the

s of
tes.
by a
ntrol

ean
p”

here
e_in.

hat is
 After
here
p,
the

e bat-
ent”
Example 12.1: Drawing a path mover system
To learn how to control load and vehicle movement in a path mover system, you will com-
plete the model of the path mover system that you created in chapter 11, “Introduction to
Path Mover Systems.” Currently, the model contains a drawing of a material handling
tem; vehicle graphics have been placed, and the necessary path and control point att
have been defined. To complete the model, you will write the model logic, place the n
sary queues and resources, and define scheduling lists to control vehicle movement
path mover system.

An illustration and description of the system is provided below:

Layout of example model 12.1

Two types of loads are processed in this system: red loads and blue loads. Both type
loads have an interarrival time that is exponentially distributed with a mean of 5 minu
Loads first move into an infinite-capacity queue (Q_entry). Loads are then picked up
vehicle at one of two control points, depending on type; red loads are picked up at co
point “red_on” and blue loads are picked up at control point “blue_on.”

Red loads are carried to the control point “red_insp” where they are inspected (while
onboard the vehicle) by an inspector for a time that is exponentially distributed with a m
of 3 minutes. After being inspected, red loads are carried to the control point “red_dro
where they get off the vehicle and leave the system.

After getting onboard a vehicle, blue loads are carried to the control point “blue_in” w
they get off the vehicle and are placed in an infinite-capacity processing queue, Q_blu
Loads are processed in the queue by a single-capacity resource, R_blue, for a time t
normally distributed with a mean of 4 minutes and a standard deviation of 30 seconds.
completing processing, the loads move into an infinite-capacity queue, Q_blue_out, w
they wait to be picked up by a vehicle at control point “blue_out.” After being picked u
loads travel to the control point “blue_drop,” where they get off the vehicle and leave
system.

The system also contains a lane for replacing vehicle batteries; you will implement th
tery swapping area later in this chapter (see “Example 12.2: Modeling battery replacem
on page 12.16 for more information).

blue_drop

red_drop on_wait

red_on blue_on

swap_area

red_insp

blue_out blue_inoff_wait

park_place

Q_blue_out Q_blue_in

R_blue

Q_entry

R_insp

ote
Note
✎

12.4 rev 1.0

Getting Started with AutoMod Modeling Complex Material Handling Systems

th
 by

or

th
icked
n

ust

ing:

s-
Moving loads through a path mover system
Loads get on a vehicle and travel through a path mover system by executing the move and
travel actions in an arriving procedure.

The move action causes loads to get on a vehicle at a specific control point. For example, the
action:

move into pm:red_on

causes the load executing the action to move into the control point “red_on” in the pa
mover system “pm.” After moving into the control point, the load waits to be picked up
a vehicle. Once the load is on a vehicle, the move action is complete.

The travel action causes loads to travel between control points onboard a vehicle. F
example, the action:

travel to pm:red_insp

causes the load executing the action to travel to the control point “red_insp” in the pa
mover system “pm.” A load must already have moved into a control point and been p
up by a vehicle before executing the travel action. Once the load arrives at the destinatio
control point, the travel action is complete.

The travel action does not cause a load to get off a vehicle. To get off a vehicle, a load m
move into another location (for example, a queue or a station in a conveyor system).

Defining the model logic in example model 12.1

To define the logic that controls load movement in example model 12.1, do the follow

Step 1 Import a copy of the model you created in chapter 11, “Introduction to Path Mover Sy
tems.”

If you did not create the model, you can import the base version of example model 12.1,
which is a completed drawing of the path mover system.

Step 2 Create a new process system named “proc.”

Step 3 Create a new source file named “logic.m.”

ote
Note
✎

ote
Note
✎

rev 1.0 12.5

Modeling Complex Material Handling Systems Getting Started with AutoMod

er

g red
le for
 pick

of 5

of 5

4.

ork
Step 4 Edit the source file and type the following logic.

begin P_agvsys arriving

move into Q_entry

if load type = L_red then

begin

move into pm:red_on /*Get onboard a vehicle*/

travel to pm:red_insp /*Travel to “red_insp”*/

use R_insp for e 3 min /*Load stays on vehicle*/

travel to pm:red_drop /*Travel to “red_drop”*/

send to die /*Get off vehicle (sent to die)*/

end

else if load type = L_blue then

begin

move into pm:blue_on /*Get onboard a vehicle*/

travel to pm:blue_in /*Travel to “blue_in”*/

move into Q_blue_in /*Get off vehicle*/

use R_blue for n 4, .5 min

move into Q_blue_out

move into pm:blue_out /*Get on another vehicle*/

travel to pm:blue_drop /*Travel to “blue_drop”*/

send to die /*Get off vehicle (sent to die)*/

end

end

Take a moment to review the model logic. Refer to the example model description for an
explanation of load activity in the simulation (see “Example 12.1: Drawing a path mov
system” on page 12.4).

Notice that red loads remain onboard a vehicle during inspection (vehicles transportin
loads are delayed throughout the inspection process), while blue loads get off a vehic
processing (after setting down a blue load for processing, vehicles are free to park or
up another load).

Step 5 Save and quit the source file. When prompted, define the following entities:

P_agvsys – A single process.
Q_entry – A single queue with infinite capacity.
L_red – A load type with a creation rate that is exponentially distributed with a mean
minutes; the red loads’ first process is P_agvsys.
R_insp – A single resource with a capacity of 1.
L_blue – A load type with a creation rate that is exponentially distributed with a mean
minutes; the blue loads’ first process is P_agvsys.
Q_blue_in – A single queue with infinite capacity.
R_blue – A single resource with a capacity of 1.
Q_blue_out – A single queue with infinite capacity.

Step 6 Place the graphics for queues and resources, as shown in the illustration on page 12.

Step 7 Place the graphics for both load types (you can place the graphics anywhere in the W
Area window); set the loads’ color to be either red or blue, respectively, and scale the graph-
ics of both L_red and L_blue loads to the following size:

X 2=
Y 2=
Z 1=
12.6 rev 1.0

Getting Started with AutoMod Modeling Complex Material Handling Systems

5 for

nce

 more

akes
tion
e
cle to
cle by
ts off
ing to

oad
edul-

 desti-
wing

 to be
 con-
 loca-

hicle
 con-

 lists
loca-
m.
Controlling vehicles in a path mover system
Each vehicle in a path mover system is located at a control point at the beginning of a sim-
ulation. The first action the vehicle performs is to check its current control point to see
whether a load is waiting to be picked up at that location.

Loads move into control points and wait to get on a vehicle by executing the move action in
an arriving procedure (see “Moving loads through a path mover system” on page 12.
more information).

If a load is waiting at the vehicle’s current control point, the vehicle picks up the load. O
onboard a vehicle, the load determines the vehicle’s destination.

Loads determine a vehicle’s destination control point by executing a travel action in their
current procedure (see “Moving loads through a path mover system” on page 12.5 for
information).

The vehicle automatically calculates the shortest route to the load’s destination and t
that route to deliver the load. After arriving at the delivery location, the vehicle’s next ac
is determined by the load. The load can perform processing while onboard the vehicl
(which delays the vehicle), it can travel to another destination (which causes the vehi
calculate the shortest route and travel to the new destination), or it can get off the vehi
moving into another territory (for example, a queue or a conveyor station). If a load ge
the vehicle, the empty vehicle again checks its current location to see if a load is wait
be picked up.

If an empty vehicle checks its current control point for a waiting load, but there is no l
requiring pick up, the vehicle attempts to find work or a parking location using the sch
ing lists defined at its current control point. A scheduling list is a list of one or more control
points in the path mover system. Vehicles use scheduling lists to determine their next
nation. There are several types of scheduling lists; in this textbook, we discuss the follo
three types:

Work lists A work list is a set of locations at which a vehicle can search for loads that are waiting
picked up. A vehicle searches the locations on the work list without leaving its current
trol point. When a load is found, the vehicle calculates the shortest route to the pickup
tion and travels to that point to retrieve the load.

Park lists A park list is a set of locations at which a vehicle can search for available parking. A ve
searches the locations on the park list without leaving its current control point. When a
trol point with available capacity is found, the vehicle travels to the parking location.

Named lists A named list is a set of locations that can be referenced in a work or park list. Named
allow you to easily create and sort work or park lists for several different control point
tions. Named lists also allow you to define the starting locations of vehicles in a syste

ote
Note
✎

ote
Note
✎

rev 1.0 12.7

Modeling Complex Material Handling Systems Getting Started with AutoMod

ions
le

 list
d,

omes
loca-

own
duling
rk at
 pick-

t loca-
vail-

 the

icles
rch

he
at
When a vehicle is empty at a control point, the vehicle completes the following steps:

1. The vehicle looks for a load that is waiting to be picked up at its current location; if a
load is found, the vehicle picks up the load.

2. If no load is found at the vehicle’s current location, the vehicle searches the locat
on the work list defined for its current location. If a waiting load is found, the vehic
travels to the pickup location and picks up the load.

3. If no load is found on the work list, the vehicle searches the locations on the park
defined for its current location. If a parking location with available capacity is foun
the vehicle travels to the parking location and looks for work at that location.

4. If no parking locations are found, the vehicle parks at its current location and bec
idle until it is wakened, either by a load at its current location or a load at another
tion in the system (see the next section for more information).

It is important to define scheduling lists for control points where vehicles park or set d
loads in a system. If a vehicle is empty at a control point that does not have any sche
lists defined, the vehicle parks and becomes idle at its current location. If vehicles pa
incorrect locations in the system, they may block other vehicles that are delivering or
ing up loads.

How loads waken idle (parked) vehicles in a system

A vehicle becomes idle when it searches the work and park lists defined for its curren
tion, but does not find a load that is waiting to be picked up or a parking location with a
able capacity. Idle vehicles park and wait to be wakened by loads in the system.

When a load moves into a control point, the load completes the following steps:

1. The load looks for an idle vehicle at its current location. If there is an idle vehicle,
load wakens and gets on that vehicle.

2. If there is no idle vehicle at the load’s current location, the load wakens all idle veh
in the system and then waits to be picked up. When idle vehicles awake, they sea
their current location for loads that are waiting to be picked up, and then search t
work and park lists defined for their current location to find loads that are waiting
other control points in the system.

Note
Important

▲!
12.8 rev 1.0

Getting Started with AutoMod Modeling Complex Material Handling Systems

 and
ach

ook
on,”

 the
 con-

work
aw-

t
Defining locations where vehicles can search for work

When a vehicle cannot find work at its current control point, the vehicle checks to see
whether a work list has been defined for the point. Vehicles search the locations on a work
list in order, from top to bottom, until a load is found that is waiting to get on a vehicle. In
general, you should define a work list for every point where a vehicle can park or set down
a load in the system.

In example model 12.1, vehicles set down loads at the locations “blue_in,” “red_drop,”
“blue_drop,” and park at the location “park_place.” You need to define a work list at e
of these locations.

If a vehicle sets down a load at the control point “blue_in,” where should the vehicle l
for work? Loads wait to get on a vehicle at three pickup locations in the system: “red_
“blue_on,” and “blue_out.”

Vehicles will be more efficient if they search for work at pickup locations in the order of
locations’ distance to the vehicles’ current control point. Consequently, you should add
trol points to work lists in order of distance, with the closest control point listed first.

When a vehicle sets down a load at control point “blue_in,” the closest location where
is available is “blue_out,” followed by “red_on,” then “blue_on” (see “Example 12.1: Dr
ing a path mover system” on page 12.4 for an illustration of the system).

To define work lists for the control points in example model 12.1, do the following:

Step 1 Open the path mover system.

Step 2 On the Path Mover palette, click Work List. The Work Lists window opens.

Step 3 Click New to define a new work list. The New Work List window opens.

Step 4 Select “blue_in,” then click New to define a new work list for that control point. The Edi
Work Lists window opens.

Step 5 To add a location to the work list, click Add After. The Add Work List Locations window
opens.

Step 6 To add the first pickup location for blue loads, select “blue_out,” then click Add. The control
point is added to the work list in the Edit Work Lists window.

Step 7 Click Add After to add another location. The Add Work List Locations window opens.

Step 8 To add the pickup location for red loads, select “red_on,” then click Add. The control point
is added to the work list in the Edit Work Lists window.

Step 9 Click Add After to add another location. The Add Work List Locations window opens.

Step 10 To add the second pickup location for blue loads, select “blue_on,” then click Add. The con-
trol point is added to the work list in the Edit Work Lists window.

ote
Tip

☞

rev 1.0 12.9

Modeling Complex Material Handling Systems Getting Started with AutoMod

own
 to

ld the
nd

s
wait
t.”

loads

same
s for
op.”
The Edit Work Lists window appears as shown below:

Defining the work list for control point “blue_in”

Step 11 In the Edit Work Lists window, click Done.

You have now defined a work list for the control point “blue_in.” When a vehicle sets d
a blue load, the vehicle will look for work at the closest control point where loads wait
get on a vehicle, “blue_out, ” followed by the point “red_on,” then the point “blue_on.”

Now consider a vehicle that sets down a load at control point “red_drop.” Where shou
vehicle look for work? The closest pickup location is “red_on,” followed by “blue_on,” a
lastly “blue_out.”

Step 12 Create the work list for the control point “red_drop.”

After adding the last point, the Edit Work Lists window appears as shown below:

Defining the work list for control point “red_drop”

Step 13 In the Edit Work Lists window, click Done.

You have now defined a work list for the control point “red_drop.” When a vehicle set
down a red load, the vehicle will look for work at the closest control point where loads
to get on a vehicle, “red_on,” followed by the point “blue_on,” then the point “blue_ou

You still need to define a work list for the second point where vehicles set down blue
(“blue_drop”) and for the parking location (“park_place”). Notice that, at the remaining
points, the order in which vehicles should search the pickup locations for work is the
as the order for the location “red_drop.” You can save time when defining the work list
the remaining two points by copying the work list you just created for the point “red_dr

Pickup locations are added
in order of their distance to
the current drop-off location
(“blue_in”)
12.10 rev 1.0

Getting Started with AutoMod Modeling Complex Material Handling Systems

t

t

wn

ation
 park
d.
ould

 park-
oints

 and

wing:

it

wn
nd,
trol
ken
Copying scheduling lists
To copy the work list defined for the control point “red_drop,” do the following:

Step 1 In the Work Lists window, select “red_drop,” then click Copy. The Copy Work List window
opens.

Step 2 Select “blue_drop,” then click Copy. A copy of the work list is created for the control poin
“blue_drop.”

Step 3 In the Work Lists window, click Copy to create another copy of the list. The Copy Work
List window opens.

Step 4 Select “park_place,” then click Copy. A copy of the work list is created for the control poin
“park_place.”

You have now created a work list for each of the points where vehicles park or set do
loads in the example model.

Defining locations where vehicles can search for parking

When a vehicle cannot find work on a work list, the vehicle searches for a parking loc
on the park list defined for its current control point. Vehicles search the locations on a
list in order, from top to bottom, until a parking location with available capacity is foun
The vehicle then travels to the parking location and resumes looking for work. You sh
define a park list at every point where a vehicle sets down loads in the system.

If a system contains multiple parking locations, you can define a park list at each of the
ing locations to cause empty vehicles to continuously travel between parking control p
until work is found.

In example model 12.1, vehicles set down loads at the locations “blue_in,” “red_drop,”
“blue_drop.”

To create a park list for the control points where vehicles set down loads, do the follo

Step 1 On the Path Mover palette, click Park List. The Park Lists window opens.

Step 2 Click New to define a new park list. The New Park List window opens.

Step 3 Select “blue_drop,” then click New to define a new park list for that control point. The Ed
Park Lists window opens.

Step 4 To add a location to the park list, click Add After. The Add Park List Locations window
opens.

Step 5 To add the parking location to the park list, select “park_place,” then click Add. The control
point is added to the park list in the Edit Park Lists window.

Step 6 In the Edit Park Lists window, click Done.

Step 7 Copy the park list for “blue_drop” for the control points “red_drop” and “blue_in.”

You have now defined a park list for each of the control points where vehicles set do
loads. When a vehicle sets down a load, the vehicle will look for work; if no work is fou
the vehicle will travel to the control point “park_place.” Vehicles remain idle at the con
point “park_place” until they are wakened by loads in the system (see “How loads wa
idle (parked) vehicles in a system” on page 12.8 for more information).

ote
Note
✎

rev 1.0 12.11

Modeling Complex Material Handling Systems Getting Started with AutoMod

ing it
art at

r
 is not

 each

ate a

e.”

allows
llow
g the
ok.
Defining vehicle starting locations

By default, each vehicle in the path mover system starts at a random control point. Random
placement of vehicles is usually not a good method of starting vehicles in a system. For
example, the software could randomly place a vehicle at a control point without a work or
park list; as a result, the vehicle would park and remain idle throughout the simulation, wait-
ing for a load to require pickup at the vehicle’s current point.

You can control where vehicles start in the system by defining a named list and assign
to a vehicle type. If the named list contains only one control point, all of the vehicles st
that point.

A control point’s capacity is not a consideration when selecting the starting location fo
vehicles, because vehicles are added to the control point one at a time (a new vehicle
added until the previous vehicle has left).

If the named list contains multiple control points, vehicles are sequentially assigned to
point in the list, in order from top to bottom.

In example model 12.1, all vehicles must start at the control point “park_place.” To cre
named list that causes vehicles to start at the parking location, do the following:

Step 1 On the Path Mover palette, click Named List. The Named Lists window opens.

Step 2 Click New to define a new named list. The New Named List window opens.

Step 3 In the List Name text box, type “start_here”, then click Create. The Edit Named List window
opens.

Step 4 Select “park_place” in the Location Selection List, then click Add After. The parking loca-
tion is added to the named list.

Step 5 Click Done to close the Edit Named List window.

You have now created a named list that contains only the parking location “park_plac
However, you still need to define the list as the starting location for vehicles of type
“DefVehicle.”

Step 6 On the Path Mover palette, click Vehicle. The Vehicles window opens.

Step 7 The vehicle type “DefVehicle” is already selected, so click Edit to edit the vehicle defini-
tion. The Edit A Vehicle definition window opens.

Named lists can also be referenced in other scheduling lists. Referencing a named list
you to easily add the same locations to multiple work or park lists. Named lists also a
vehicles to automatically sort locations by distance or by loads that have been waitin
longest for pickup. Referencing and sorting named lists is not discussed in this textbo

ote
Note
✎

ote
Note
✎

12.12 rev 1.0

Getting Started with AutoMod Modeling Complex Material Handling Systems
Step 8 To define the vehicle start list, click Random, as shown below:

Changing the Vehicle Start List in example model 12.1

The Vehicle Start List window opens.

Step 9 Select “start_here,” then click OK.

Step 10 Click Done to close the Edit A Vehicle Definition window.

Vehicles in the system now start at the control point “park_place.”

Click Random to define
the Vehicle Start List
rev 1.0 12.13

Modeling Complex Material Handling Systems Getting Started with AutoMod
Interpreting statistics in example model 12.1
Now that you have defined the process system and the vehicle scheduling lists necessary to
simulate the example model, you are ready to run the model and analyze the simulation:

Step 1 Open the process system, then click Run Control on the Process System palette.

Step 2 Define a snap of 10 days.

Step 3 Export and run the model to completion.

During simulation, warnings appear in the Message window indicating that vehicle colli-
sions have occurred. You will learn how to block vehicle collisions later in this chapter; for
now, ignore the warning messages.

When the simulation is complete, do the following:

Step 4 From the Queues menu, select Statistics Summary. The Queue Statistics window opens, as
shown below:

Queue summary statistics in example model 12.1

From the statistics for the queue Q_entry, we see that there is an average of 21.74 loads that
wait to enter the system; these loads wait an average time of 54.43 minutes (3265.94 sec-
onds) to get on a vehicle.

Step 5 From the Processes menu, select Statistics Summary. The Process Statistics window opens,
as shown below:

Process summary statistics in example model 12.1

The average time that loads spend in the system is 96.24 minutes (5774.41 seconds).

You may be able to reduce the number of loads that wait, the waiting time of each load, and
the time that loads spend processing, by increasing the number of vehicles in the system. To
check the utilization of vehicles, look at the vehicle statistics.

ote
Note
✎

12.14 rev 1.0

Getting Started with AutoMod Modeling Complex Material Handling Systems

l.
Step 6 From the Path Mover menu, select Vehicles. The Path Mover Statistics window opens, as
shown below:

Vehicle statistics in example model 12.1

These statistics suggest the need for additional vehicles in the system. The percentage of
time that each vehicle spends idle (parked) is less than one-hundredth of a percent.

The average capacity lost due to vehicle congestion is 15.3 percent. In this model, vehicle
congestion is largely due to delays at the spur paths where vehicles travel one at a time.

From this preliminary analysis, you can see the need to conduct further cost analysis using
the AutoStat software; by comparing the cost of WIP with the cost of adding additional vehi-
cles in the system, you could determine the optimal number of vehicles to operate in the sys-
tem. This analysis is the focus of exercise 12.1 (see “Exercise 12.1” on page 12.30).

Now, you are ready to implement the battery replacement area in the example mode

Vehicles spend very
little time parking,
indicating high
utilization of vehicles in
this system
rev 1.0 12.15

Modeling Complex Material Handling Systems Getting Started with AutoMod

ttery;
d to

r of

 for

s the

fined

ys-

ry
Example 12.2: Modeling battery replacement
AGVs are often powered by batteries that must be replaced when their charge is running
low. You will expand the material handling system in example model 12.1, so that vehicles
use a dedicated lane for battery replacement, as shown below:

Layout of example model 12.2

The time between battery replacements is determined by a normal distribution with a mean
of 8 hours and a standard deviation of 1 hour. A technician replaces each vehicle’s ba
the technician can only replace the battery for one vehicle at a time. The time require
replace a battery is 15 minutes.

Using process attributes and system attributes
In order to implement the battery replacement area, you will use two standard entity
attributes:

total The total attribute is a standard attribute of processes that indicates the total numbe
loads that have been sent to a process. Think of the total attribute as a unique integer value
belonging to each process; when a load is sent to a process, the process’ total is incre-
mented by one. You can use the total attribute to refer to the number of loads that have
been sent to a process at any given moment during a simulation.

When using the total attribute in logic, it must be preceded by the name of the process
which you want the total. For example, the syntax P_Start total represents the number of
loads that have been sent to the process P_start.

vehicles size The vehicles size attribute is a standard attribute of path mover systems that indicate
number of vehicles that are in a path mover system. The value of the vehicles size
attribute is equal to the total number of vehicles (of any vehicle type) that you have de
in the system.

When using the vehicle size attribute in logic, it must be preceded by the name of the s
tem for which you want the number of vehicles. For example, the syntax pm vehicle size
represents the number of vehicles in the path mover system named “pm.”

To see how these attributes are used in the model logic, define the logic for the batte
replacement area, as described in the next section.

blue_drop

red_drop on_wait

red_on blue_on

swap_area

red_insp

blue_out blue_inoff_wait

park_place

Q_blue_out Q_blue_in

R_blue

Q_entry

R_insp

Vehicles needing to change their
batteries travel on a dedicated lane to
the control point “swap_area”
12.16 rev 1.0

Getting Started with AutoMod Modeling Complex Material Handling Systems

thout

re are
ng pro-

es the

nt
ace-
 sec-

nutes
ot all

a
time
 (this
he con-
rk

 that
ick

nutes
 15
 the
Defining the model logic in example model 12.2

To define the logic that simulates battery replacement, do the following:

If you have created the example model in this chapter, you can continue using your current
model. If you have not created the model but want to start at this point, you can import a
copy of the base version of example model 12.2.

Step 1 Edit the source file named “logic.m.”

Step 2 Insert the following function and procedure at the beginning of the source file:

begin model initialization function

create (pm vehicles size) loads of type L_dummy to P_swap

return true

end

begin P_swap arriving

set A_index to P_swap total

wait for 480*(A_index - 1)/(pm vehicles size) min /* stagger swaps */

while 1=1 do

begin

wait for n 8, 1 hr /* time between swaps */

move into pm:swap_area /* wait to get on a vehicle */

use R_swap for 15 min /* swap time */

move into Q_dummy /* get off vehicle */

end

end

This logic is written so that any number of vehicles can be added to the simulation wi
needing to edit the battery replacement logic.

First, the model initialization function creates the same number of dummy loads as the
vehicles in the path mover system. The function sends each load to the P_swap arrivi
cedure (one load for each vehicle).

When the first load executes the P_swap arriving procedure, the value of the total attribute
is one; the load’s attribute A_index is set to this value. When the second load execut
P_swap arriving procedure, the value of the total attribute is two; the load’s attribute
A_index is set to that value, and so on.

The A_index value is then used in a wait action that delays each load for a different amou
of time. The time is calculated using a fraction of the mean time between battery repl
ments (8 hours, or 480 minutes). The first load is delayed for 0 minutes (480*0/3), the
ond load is delayed for 160 minutes (480*1/3), and the third load is delayed for 320 mi
(480*2/3). These delays are used to stagger the battery swap times so that they do n
occur around the same time during the simulation.

The logic that causes vehicles to travel to the battery replacement area is defined in
while...do loop that repeats throughout the simulation. First, each load delays for a
that is normally distributed with a mean of 8 hours and a standard deviation of 1 hour
delay represents the time between battery replacements). The loads then move into t
trol point “swap_area,” where they wait to get on a vehicle. (Later, you will edit the wo
lists defined in the model to cause vehicles to look for work at that location.) A vehicle
is searching for work will find the dummy load and travel to the “swap_area” point to p
up the load. Once onboard the vehicle, the load uses the resource R_swap for 15 mi
(the vehicle is delayed at the control point while the load is using the resource). After
minutes, the load gets off the vehicle by moving into a dummy queue, which releases
vehicle to travel to another location.

ote
Note
✎

rev 1.0 12.17

Modeling Complex Material Handling Systems Getting Started with AutoMod

sched-
he

ause
In this simulation, it is not important which vehicle travels to the control point and is delayed
for the battery swapping time (the same vehicle could by delayed at the swap area multiple
times in sequence); it is only important that a vehicle be prevented from picking up and
delivering loads during this time period. If more accurate simulation is required, you could
assign specific vehicles to travel to the swap area by changing the vehicle’s currently
uled job (not discussed in this textbook). For information about scheduled jobs, see t
“Vehicle Scheduling” chapter in volume 2 of the AutoMod User’s Manual, online.

Step 3 Save and quit the source file. When prompted, define the following entities:

L_dummy – A load type with no creation rate.
P_swap – A single process.
A_index – A load attribute of type integer.
R_swap – A single resource with a capacity of 1.
Q_dummy – A single queue with infinite capacity.

Step 4 Place the graphics for the resource and queue, as shown below:

Placing the resource and queue graphics in example model 12.2

Before running the simulation, you need to edit the work lists in the example model to c
vehicles to look for work at the “swap_area” control point.

ote
Note
✎

blue_drop

red_drop on_wait

red_on blue_on

swap_area

red_insp

blue_out blue_inoff_wait

park_place

Q_blue_out Q_blue_in

R_blue

Q_entry
R_insp

R_swap

Q_dummy

Place the graphics for the
swap resource and queue
12.18 rev 1.0

Getting Started with AutoMod Modeling Complex Material Handling Systems

the
hen

rity
rea”

 lists

he

the

, the
vehicle

k at

king
Editing work lists

To cause vehicles to look for work at the “swap_area” control point, you need to edit
work lists at the control points where vehicles park or set down loads in the system. W
an idle vehicle’s battery is running low, battery replacement should take a higher prio
than picking up waiting red or blue loads. To ensure that vehicles check the “swap_a
control point first, you will insert that control point at the top of each existing work list.

To edit the scheduling lists:

Step 1 On the Path Mover palette, click Work List. The Work Lists window opens.

Step 2 The point “blue_drop” is already selected, so click Edit to edit the list. The Edit Work Lists
window opens.

Step 3 Select the first point on the list, in this case point “red_on,” then click Add Before to insert
a point at the top of the list. The Add Work List Locations window opens.

Step 4 Select “swap_area,” then click Add. The point is inserted at the beginning of the list.

Step 5 Click Done to close the Edit Work Lists window.

Step 6 Repeat these steps to insert the “swap_area” control point at the beginning of the work
for the points “blue_in,” “park_place,” and “red_drop.”

You have now edited all work lists in the model to cause vehicles to look for work at t
“swap_area” control point first.

One other change is needed. Because vehicles set down a load and become idle at
“swap_area” control point, you need to define a work and park list for this location.

Defining a work and park list for the swap area

After the dummy load at the point “swap_area” completes delaying for the swap time
load moves into the queue Q_dummy and releases the current vehicle. To cause the
to leave the point “swap_area,” you need to define a work and park list for the point.

To define the lists:

Step 1 Create a work list for the “swap_area” control point that causes vehicles to look for wor
the following points (in order, from top to bottom):

• blue_out
• red_on
• blue_on

Step 2 Create a park list for the “swap_area” control point that causes vehicles to look for par
at the point “park_place.”

You have now defined the necessary scheduling lists to run example model 12.2.
rev 1.0 12.19

Modeling Complex Material Handling Systems Getting Started with AutoMod
Interpreting statistics in example model 12.2
Now that you have implemented the battery replacement area, you are ready to run the
model and analyze the simulation:

Step 1 Export and run the model to completion.

Step 2 From the Queues menu, select Statistics Summary. The Queue Statistics window opens, as
shown below:

Queue summary statistics in example model 12.2

The statistics for the queue Q_entry shows that there is an average of 45.45 loads that wait
to enter the system, as compared with 21.74 loads before the battery replacement area was
implemented. Loads wait an average time of 113.24 minutes (6794.39 seconds) to get on a
vehicle, as compared with 54.43 minutes before the battery replacement area was imple-
mented.

Step 3 From the Processes menu, select Statistics Summary. The Process Statistics window opens,
as shown below:

Process summary statistics in example model 12.2

Loads spend an average time of 172.27 minutes (10336.21 seconds) in the system, as com-
pared with 96.24 minutes before the battery replacement area was implemented.
12.20 rev 1.0

Getting Started with AutoMod Modeling Complex Material Handling Systems
Step 4 From the Path Mover menu, select Vehicles. The Path Mover Statistics window opens, as
shown below:

Vehicle statistics in example model 12.2

Vehicles spend even less idle time in this system than before, reconfirming the need for
additional vehicles in the system.

Notice that because vehicles spent time in the battery replacement lane during the simula-
tion, the vehicle congestion in the system decreased (the average capacity lost due to con-
gestion decreased from 15.3 percent to 14.3 percent).
rev 1.0 12.21

Modeling Complex Material Handling Systems Getting Started with AutoMod

 vehi-

attery
icles
igher
times
laced.

e by
 dur-
Displaying control point statistics

Another way to verify that vehicles are traveling to the battery swapping area is by checking
control point statistics.

To display control point statistics:

Step 1 From the Path Mover menu, select Control Points. The Path Mover Statistics window opens,
as shown below:

Control point statistics in example model 12.2

Control point statistics are defined as follows:

Name The name of the control point.

Total The total number of vehicles that claimed the control point.

Cur The number of vehicles that are currently claiming the control point.

Average The average number of vehicles that claimed the control point at the same time.

Capacity The total number of vehicles allowed to claim the control point at the same time.

Max The maximum number of vehicles that claimed the control point at the same time.

Min The minimum number of vehicles that claimed the control point at the same time.

Util The fraction of the control point’s capacity that vehicles utilized.

Av_Time The average time a vehicle claimed the control point.

Av_Wait The average time a vehicle waited to claim the control point. This is the average of all
cles, including vehicles that claimed the control point without waiting.

From the statistics for the point “swap_area,” you can see that vehicles travel to the b
replacement area a total of 85 times during the simulation. The average time that veh
spend at the control point is 17.61 minutes (1056.51 seconds). This number is slightly h
than the constant 15 minutes defined for the swapping time, because a vehicle some
needs to wait for a preceding vehicle to leave the point before it can have its battery rep

You can tell that multiple vehicles were waiting for battery replacement at the same tim
checking the value of the Max statistic for the control point “swap_area;” at least once
ing the simulation, all three vehicles were waiting at the control point.

Vehicles
changed
batteries a
total of 85
times

ote
Tip

☞

12.22 rev 1.0

Getting Started with AutoMod Modeling Complex Material Handling Systems

le
nter a
ntil

c-

o
posite

h. For
ath

mber

locks

e vehi-
t the

h to

urrent
rt a

in-

 of
Blocking vehicle movement
Often, it is necessary to limit vehicle movement in a system to prevent vehicle collisions or
deadlocks. You can limit the movement of vehicles in a path mover system by placing
blocks in the Work Area window. A block is graphical region that has a limited capacity;
usually the capacity is set to one to prevent multiple vehicles from traveling through the
block at the same time, however, the capacity can be set to any number. When a vehicle
enters a block, it automatically claims one unit of the block’s capacity; when the vehic
leaves a block, it automatically releases one unit of capacity. If a vehicle attempts to e
block that has no available capacity, the vehicle is delayed at the edge of the block u
capacity becomes available.

When using blocks as a collision control feature, the block’s graphic is placed at interse
tions to prevent collisions when vehicles are merging from one path to another.

When using blocks as a deadlock avoidance feature, the block’s graphic can be placed t
encompass a two-directional guide path and prevent vehicles that are traveling in op
directions from blocking each other on the same path.

Control point capacity can also be used to prevent deadlocks on a two-directional pat
more information, see “Placing control points” on page 11.19 of the “Introduction to P
Mover Systems” chapter.

Blocks can also be used to prevent vehicle deadlocks on loops of path with a limited nu
of control points (this concept is discussed later in the chapter).

To demonstrate how blocks can be used to prevent vehicle collisions, you will place b
in the example material handling system that you have created.

Example 12.3: Blocking vehicle collisions

When you run example model 12.2, warning messages appear indicating that there ar
cle collisions during the simulation. To prevent these collisions, you will place blocks a
intersections where vehicles merge onto a new path.

Placing blocks in example model 12.3
There are six intersections in the example model where vehicles merge from one pat
another. To prevent vehicle collisions at these intersections, do the following:

If you have created the example model in this chapter, you can continue using your c
model. If you have not created the model but want to start at this point, you can impo
copy of the base version of example model 12.3.

Step 1 Open the process system, then click Blocks on the Process System palette. The Blocks w
dow opens.

Step 2 Click New to define a new block. The Define A Block window opens.

Step 3 Name the block “B_intersect.”

Step 4 Change the Number of Blocks to “6” (changing the number of blocks creates an array
blocks).

Step 5 Because the Default Capacity is already set to one, click OK to close the Define A Block
window.

Step 6 Because B_intersect is already selected in the Blocks window, click Edit Graphic. The Edit
Block Graphics window opens.

Step 7 Select B_intersect(1), then click Place to place the block’s graphic.

Step 8 Click anywhere in the Work Area window to place the default block.

ote
Note
✎

ote
Note
✎

rev 1.0 12.23

Modeling Complex Material Handling Systems Getting Started with AutoMod

 the

which

int
Step 9 Scale the block to two feet in every direction, as shown below:

Scaling the size of block B_intersect(1)

Step 10 Click Move and drag the block’s graphic so that it encompasses the intersection where
spur path to point “blue_drop” merges into the loop, as shown below:

Placing a block in example model 12.3

You only need to place blocks at intersections where vehicles merge onto a path on
other vehicles may be traveling, as shown above. You do not need to place blocks at inter-
sections where vehicles diverge (for example, the diverging path that leads to the po
“park_place”) because vehicle collisions are not possible at those intersections.

blue_drop

off_wait

park_place

blue_out blue_in

Q_blue_inQ_blue_out

R_blue

Drag the block’s graphic so that
it encompasses the transfer from
the spur to the loop

B_intersect(1)

ote
Note
✎

12.24 rev 1.0

Getting Started with AutoMod Modeling Complex Material Handling Systems
Step 11 Place the remaining blocks at intersections where vehicles merge, as shown in the illustra-
tion below (all block graphics are scaled to two feet in every direction):

Placing blocks in example model 12.3

You have now placed blocks at all of the intersections where vehicles merge during the sim-
ulation.

Step 12 Click Done to close the Edit Block graphics window.

Step 13 Export and run the model. Notice that there are no collision warnings during the simulation.
The example model is now complete.

The next example model is a different path mover system that demonstrates the use of blocks
as a deadlock avoidance feature.

blue_drop

red_drop on_wait

red_on blue_on

swap_area

red_insp

blue_out blue_inoff_wait

park_place

Q_blue_out Q_blue_in

R_blue

Q_entry
R_insp

R_swap

Q_dummy

B_intersect(1)

B_intersect(2)

B_intersect(3) B_intersect(4)

B_intersect(5)B_intersect(6)
rev 1.0 12.25

Modeling Complex Material Handling Systems Getting Started with AutoMod

po-
to

ean
 wait

icle
po-
ue

) and
s

ty

nt
eep
” to
and
Example 12.4: Blocking vehicle deadlocks

Consider the path mover layout shown below:

Layout of example model 12.4

Loads arrive and move into the control point “enter” with an interarrival time that is ex
nentially distributed with a mean of 5 minutes. After getting on a vehicle, loads move
point “cp1,” where they get off the vehicle and move into the infinite-capacity queue,
“Q_one.” Loads delay in the queue for a time that is exponentially distributed with a m
of 5 minutes and then move into the infinite-capacity queue “Q_outofone,” where they
to get back on a vehicle at the point “cp1.”

After getting on a vehicle, loads travel to point “cp2,” where they again get off the veh
and move into the infinite-capacity queue “Q_two.” After delaying for a time that is ex
nentially distributed with a mean of 5 minutes, they move into the infinite capacity que
“Q_outoftwo” and wait to get back on a vehicle at the point “cp2.”

Loads continue this procedure, traveling to points “cp3” (where they get off the vehicle
“cp4” (where they again get off the vehicle). After being picked up at point “cp4,” load
travel to the point “depart,” where they leave the system.

The capacity of each of the numbered control points is set to one. The limited capaci
allows only one vehicle to claim and travel to each of these points at a time.

A named list is defined to start vehicles at the control point “depart.” A park list at poi
“enter” sends empty vehicles to point “cp1.” The remaining park lists are defined to k
empty vehicles moving in the system. For example, a park list is defined at point “cp1
send empty vehicles to “cp2.” A park list at point “cp2” sends empty vehicles to “cp3,”
so on. The park list at “cp4” sends loads back to “cp1.”

depart cp4 cp3

cp2cp1enter

Q_enter Q_one Q_outofone Q_two Q_outoftwo

Q_threeQ_outofthreeQ_outoffour Q_four
12.26 rev 1.0

Getting Started with AutoMod Modeling Complex Material Handling Systems
The work lists in the system are defined as shown in the table below:

Shortly after 20 minutes of simulation, the vehicles in this system become deadlocked.

To view the deadlock:

Step 1 Import a copy of the base version of example model 12.4.

Step 2 Run the model.

To speed up the simulation, increase the display step to update the display every 2 seconds.

Shortly after 20 minutes of simulation time, the fourth vehicle enters the loop and the vehi-
cles become deadlocked. The deadlock occurs because each vehicle is trying to travel to a
control point that is currently occupied by another vehicle.

To prevent the deadlock, you need to place a block to ensure that only three vehicles enter
the loop containing the numbered control points at the same time.

If empty at point... Then look for work at point(s)...

cp1 cp2
cp3
cp4
enter

cp2 cp3
cp4
enter

cp3 cp4
enter

cp4 enter

depart enter

enter cp1

ote
Tip

☞

rev 1.0 12.27

Modeling Complex Material Handling Systems Getting Started with AutoMod

ing

 loop
oint
able

cp1”

 with-
o turn
Placing blocks in example model 12.4
To place a block that allows only three vehicles in the loop in example model 12.4, do the
following:

Step 1 Edit the model.

Step 2 On the Process System palette, click Blocks. The Blocks window opens.

Step 3 Click New to define a new block. The Define A Block window opens.

Step 4 Name the block “B_deadlock.”

Step 5 Change the Default Capacity to “3” and click OK to close the Define A Block window.

Step 6 Because B_deadlock is already selected in the Blocks window, click Edit Graphic. The Edit
Block Graphics window opens.

Step 7 Click Place to place the block’s graphic, then click anywhere in the Work Area window to
place the default block.

Step 8 Scale the block to 21.25 feet in the X direction and 13 feet in the Y direction.

Step 9 Click Move, then drag the block’s graphic so that it encompasses both the loop contain
the numbered control points and the point “enter,” as shown below:

Placing the block in example model 12.4

The block must encompass the control point “enter.” Otherwise, a vehicle outside the
(at point “enter”) may claim the control point “cp1” before a vehicle inside the loop at p
“cp4.” As a result, the vehicle outside the loop would remain at the block’s boundary, un
to enter the block, and the vehicle at point “cp4” would be unable to travel to the point “
because it was already claimed — another deadlock situation.

Step 10 Click Done to close the Edit Block Graphics window.

Step 11 Export and run the model.

Set an alarm to pause the simulation after 20 minutes; you can then run the simulation
out graphics to quickly advance to the time when the deadlock occurred. Remember t
graphics back on before continuing the simulation.

The block prevents the deadlock from occurring.

depart cp4 cp3

cp2cp1enter

Q_enter Q_one Q_outofone Q_two Q_outoftwo

Q_threeQ_outofthreeQ_outoffour Q_four

The block encompasses the
loop and the point “enter”

B_deadlock

Note
Important

▲!

ote
Tip

☞

12.28 rev 1.0

Getting Started with AutoMod Modeling Complex Material Handling Systems
Summary
In this chapter, you learned how to write the model logic that controls load movement in a
path mover system. You also learned how to control vehicles by creating scheduling lists at
control point locations. The chapter also discussed preventing vehicle collisions and dead-
locks by placing blocks in the system.
rev 1.0 12.29

Modeling Complex Material Handling Systems Getting Started with AutoMod

e sys-
 $300
 (WIP)
t is the

umber

to

 14.1”
odel.

bout

 a
ad is
Exercises

Exercise 12.1

Copy the final version of example model 12.3 to a new directory. Additional information
about this system is provided below.

The facility’s operations department wants to lease additional vehicles to operate in th
tem while management wants to operate fewer vehicles. An AGV has a lease cost of
per day and daily maintenance is 50 percent of the lease cost. Each work in process
load in the system, on the average, translates into a daily carrying cost of $10 (the cos
same for both red and blue loads).

Conduct an analysis that varies the number of vehicles in the system; determine the n
of vehicles that results in the lowest total cost.

Use AutoStat to conduct the analysis with five replications and use the Setup wizard
define the following model properties:

• Model is random
• Check for infinite loops and stop runs that are longer than two minutes
• Do not define a warmup
• Define a snap length of three days

Exercise 12.2
The solution for this assignment is required to complete exercise 14.1 (see “Exercise
on page 14.27 of the “Additional Features” chapter); be sure to save a copy of your m

Copy your solution model for exercise 11.1 to a new directory. Additional information a
this system is provided below and on the following page.

Four different types of loads are processed in this system; each load type is assigned
unique color. The interarrival rate, pickup location, and exit location for each type of lo
defined in the following table:

ote
Tip

☞

ote
Note
✎

Load color Interarrival rate Pickup location Exit location

red exponential 9 minutes enter_1 exit_1

blue exponential 9 minutes enter_2 exit_2

yellow exponential 12 minutes enter_3 exit_3

green exponential 12 minutes enter_4 exit_3
12.30 rev 1.0

Getting Started with AutoMod Modeling Complex Material Handling Systems

tra-

out”
0 sec-
” and

ad for
where

ns are
mine

to
After being picked up by a vehicle, each load travels to control point “proc_in” and is
unloaded into an infinite-capacity queue, “Q_proc_in” for processing (refer to the illus
tion below).

Exercise 12.2 path mover layout

There is a single-capacity resource, “R_proc,” operating between “proc_in” and “proc_
that processes each load for a time that is exponentially distributed with a mean of 10
onds. After processing, loads move into another infinite-capacity queue, “Q_proc_out,
wait to be picked up by a vehicle at control point “proc_out.”

After being picked up by a vehicle, loads travel to control point “proc,” where they are
inspected (while onboard the vehicle) by an inspector. The inspector inspects each lo
a constant 100 seconds. After inspection, loads travel to their assigned exit location,
they are removed from the system.

Vehicles start the simulation at the point “park_loc.”

Model this system and place blocks at each of the intersections where vehicle collisio
possible. Conduct an analysis that varies the number of vehicles in the system; deter
the number of vehicles that results in the lowest average time in system for loads.

Use AutoStat to conduct the analysis with five replications and use the Setup wizard
define the following model properties:

• Model is random
• Check for infinite loops and stop runs that are longer than two minutes
• Do not define a warmup
• Define a snap length of three days

input_wait

park_loc

proc

proc_out

proc_in
exit_wait

exit_3

exit_2

exit_1

enter_1enter_4 enter_3enter_2

R_insp Q_proc_out

Q_proc_in

R_proc

ote
Tip

☞

rev 1.0 12.31

Modeling Complex Material Handling Systems Getting Started with AutoMod

 14.2”
odel.

bout

ean of

 a sin-
e

 load
_in1”
r a time
ete,
int
eated

oint
d for

com-
icle at
Exercise 12.3
The solution for this assignment is required to complete exercise 14.2 (see “Exercise
on page 14.27 of the “Additional Features” chapter); be sure to save a copy of your m

Copy your solution model for exercise 11.2 to a new directory. Additional information a
this system is provided below.

Loads are generated in the system at a time that is exponentially distributed with a m
4 minutes. A single-capacity resource for processing loads is located between each
“proc_in” and “proc_out” control point (refer to the illustration below).

There is an infinite-capacity queue before and after each resource. Similarly, there is
gle-capacity inspector between “insp_in” and “insp_out” with an infinite-capacity queu
before and after the inspector.

Loads are picked up by a vehicle at control point “get_on.” After being picked up, each
travels to the first processing location. Loads are unloaded into the first queue at “proc
where they wait to use the processing resource. The resource processes each load fo
that is exponentially distributed with a mean of 3 minutes. When processing is compl
loads move into the second queue and wait to be picked up by a vehicle at control po
“proc_out1.” Loads then move to the next processing location where the process is rep
(all resources process loads for the same amount of time).

After completing processing at the fourth processing location, loads travel to control p
“insp_in” where they are unloaded into the inspector’s first queue. Loads are inspecte
a time that is exponentially distributed with a mean of 3 minutes. When inspection is
plete, loads move into the inspector’s second queue and wait to be picked up by a veh
control point “insp_out.” Loads then travel to control point “get_off” where they are
removed from the system.

Vehicles start the simulation at point “park_here.”

ote
Note
✎

proc_in2

proc_out2

insp_out

Insp_in

get_off get_on proc_in1 proc_out1

proc_in3proc_out3proc_in4proc_out4

park_here

single-capacity
resource

infinite-capacity
queues

single-capacity
inspector

infinite-capacity
queues
12.32 rev 1.0

Getting Started with AutoMod Modeling Complex Material Handling Systems
Model this system, and place blocks at each of the intersections where vehicle collisions are
possible.

Complete the following:

a) Conduct an analysis to vary the number of vehicles in the system from 1 through 6 and
determine the number of vehicles that results in the lowest average time in system for
loads.

b) Is there a statistically significant difference between the vehicle configuration with the
lowest average time in system and all other vehicle configurations?

c) Based on your findings in (a) and (b), how many vehicles would you recommend leas-
ing for operation in the system?

Use AutoStat to conduct the analysis with five replications, and use the Setup wizard to
define the following model properties:

• Model is random
• Check for infinite loops and stop runs that are longer than two minutes
• Do not define a warmup
• Define a snap length of three days

ote
Tip

☞

rev 1.0 12.33

Modeling Complex Material Handling Systems Getting Started with AutoMod

en-

d the

ed as:

ions

ehi-
n be
Exercise 12.4

Consider the path mover system shown below:

The path mover system consists of two intersecting two-directional paths. Loads indepen-
dently arrive at control point “top_pt” and control point “left_pt” at a time that is expon
tially distributed with a mean of three minutes.

The system operates two vehicles. The first vehicle starts at control point “top_pt” an
second vehicle starts at control point “left_pt.” The vehicles’ size is defined as:

A block is placed at the center of the intersection of the paths. The block’s size is defin

Create this model and run the simulation for 24 hours. Determine the number of collis
that were prevented during the simulation.

You can discover the number of prevented collisions by finding out how many times v
cles were required to wait to claim the block at the intersection. Block wait statistics ca
found by selecting Single Block from the Blocks menu in the Simulation window.

top_pt

right_pt

bottom_pt

left_pt 100 ft

100 ft

X 4=
Y 2=
Z 1=

X 2=
Y 2=
Z 2=

ote
Note
✎

12.34 rev 1.0

Getting Started with AutoMod Indefinite Delays

.7

.8

.11

.11

.13

.15

.16

13
Chapter 13

Indefinite Delays

Delay types ... 13.4

Creating indefinite delays... 13.5
Causing loads to wait on an order list ... 13.5
Ordering loads off an order list ... 13.5
Backordering loads.. 13.7

Using the attribute “current loads”... 13

Example 13.1: Modeling an assembly and packaging operation.............................. 13
Defining the order list in example model 13.1.. 13.9

Modeling slugging conveyors using order lists ... 13

Example 13.2: Creating slugs on one entrance lane... 13
Modeling example 13.2 using order lists .. 13.12

Example 13.3: Creating slugs on two entrance lanes... 13
Modeling example 13.3 using order lists .. 13.14

Sorting loads by priority... 13

Example 13.4: Modeling load priority .. 13
Defining the order list in example model 13.4.. 13.16
Displaying order list statistics ... 13.18

Summary...18

Exercises... 13.19
Exercise 13.1 ... 13.19
Exercise 13.2 ... 13.19
Exercise 13.3 ... 13.20
Exercise 13.4 ... 13.20
Exercise 13.5 ... 13.21
rev 1.0 13.1

Indefinite Delays Getting Started with AutoMod
13.2 rev 1.0

Getting Started with AutoMod Indefinite Delays
Chapter 13

Indefinite Delays

You have already learned several ways in which loads can be delayed during a simulation,
for example, a load delays when executing the wait action in an arriving procedure or when
waiting to be picked up by a vehicle. This chapter focuses on delaying loads for an indefinite
amount of time by using an order list.

Causing loads to wait on an order list is a flexible way to delay loads during a simulation;
the duration of the delay depends on the processing of other loads in the simulation. Indefi-
nite delays are useful when individual loads must be grouped at some point during their pro-
cessing. For example, consider a system in which loads arrive at a queue to be packaged in
boxes. Each load must wait in the queue until the required number of loads have arrived, at
which point the waiting loads can be packaged in a box. In the AutoMod software, you can
delay the loads, for as long as necessary, by using an order list.
rev 1.0 13.3

Indefinite Delays Getting Started with AutoMod

ussed
Delay types
This textbook discusses three different types of load delays in the AutoMod software:

Definite During a definite delay, a load waits for a known amount of time. Definite delays are created
by using the wait action to delay a load in an arriving procedure; the duration of the delay
can be either constant or random. If the delay is random, a distribution that determines the
duration of the delay is defined in the action. The following actions are examples of definite
delays:

wait for 10 min

wait for e 2 hr

wait for V_time

State-based During a state-based delay, a load waits for an entity with limited capacity to become avail-
able. For example, the load may need to wait for a path mover vehicle to arrive or a resource
or queue to become available. The duration of the delay is not known when the action is exe-
cuted, but is determined during the simulation. The following actions are examples of state-
based delays:

get R_worker

use R_worker for 10 min

move into pm:get_off

move into Q_mach(1)

Indefinite During an indefinite delay, a load waits until it is ordered to continue by another load in the
simulation. Like state-based delays, the duration of the delay is not known when the action
is executed, but is determined by the processing of other loads during the simulation.
Because loads execute the model logic, almost any condition that a load might wait for can
be changed by another load’s processing during a simulation. This type of delay is disc
in greater detail throughout this chapter.
13.4 rev 1.0

Getting Started with AutoMod Indefinite Delays

proce-

on-

e next
Creating indefinite delays
Creating an indefinite delay requires two loads.

The first load executes a wait to be ordered action to get on an order list. An order list
is a user-defined list of loads that are delayed in the simulation. An order list does not have
a capacity; any number of loads can wait on a single order list. Once on the list, a load is
delayed indefinitely.

Later in the simulation, a second load executes an order action to order the waiting load off
the list. The second load can order any number of waiting loads off an order list at the same
time. The order action determines the next action that is performed by the waiting loads.

These concepts are discussed in greater detail in the following sections.

Causing loads to wait on an order list

To get on an order list, a load executes a wait to be ordered action in an arriving proce-
dure. In the action, the load specifies the order list on which it wants to wait. By default,
loads are appended to the list in the order in which they execute the wait to be ordered
action (the load that has been waiting the longest is at the top of the list).

For example, if a load has arrived at a queue to be packaged in a box, but additional loads
are required to fill the box, the load can wait for the additional loads by executing the fol-
lowing action to get on the order list OL_delay:

wait to be ordered on OL_delay

After executing the wait to be ordered action, the load is delayed in its current process
and waits to execute the next action in its current arriving procedure. The territory of the load
does not change; loads on an order list remain in their current queue or movement system
location.

Ordering loads off an order list

A load can order any number of waiting loads off an order list by executing the order action
in an arriving procedure. In the action, the ordering load specifies the number of waiting
loads to order. Loads get off the list in order from top to bottom (the top load in the list is
the first to get off). This textbook discusses ordering the following quantities of loads off a
list:

• The first load
• Some number of loads
• All loads

When loads are ordered off a list, they can be ordered to do one of the following:

• Continue (loads execute the next action in their current arriving procedure)
• Go to another process (loads execute the first action in the new process’ arriving

dure)
• Wait on another order list (loads continue to delay on another order list)
• Die (loads are removed from the simulation)

For example, the following syntax orders the first load on the order list OL_delay to c
tinue executing in its current process:

order 1 load from OL_delay to continue

The load at the top of the order list OL_delay gets off the list and resumes executing th
action in its current arriving procedure.
rev 1.0 13.5

Indefinite Delays Getting Started with AutoMod

rritory

s do

 a spe-
con-
e the
To order five loads from OL_delay to the process P_inspect, use the following syntax:

order 5 loads from OL_delay to P_inspect

The first five loads get off the order list and leave their current process to enter the process
P_inspect. The ordered loads immediately begin executing the arriving procedure defined
for the P_inspect process.

To order all loads to move from one order list to another, use the following syntax:

order all loads from OL_delay to OL_wait

All the loads that are currently on the order list OL_delay are taken off the list and added to
the list OL_wait. By default, loads are sorted on the new list in the same order; the load that
has been waiting the longest is at the top of the list. The loads’ current process and te
do not change.

To order three loads from OL_delay to die, use the following syntax:

order 3 loads from OL_delay to die

The first three loads on the list are immediately removed from the simulation; the load
not complete the execution of their current arriving procedure.

When ordering loads off an order list, you can also order only those loads that satisfy
cific condition. For example, you can order only loads of type L_blue off the list. Using
ditions when ordering loads is not discussed in this textbook. For more information, se
order action in the AutoMod Syntax Help.

ote
Note
✎

13.6 rev 1.0

Getting Started with AutoMod Indefinite Delays

e
mple,
ait-
Backordering loads

An order is filled when an order list contains at least as many loads as are ordered off the
list. For example, if you order five loads off an order list that contains six loads, the order is
filled: five loads get off the list, leaving one load still waiting on the list.

When you use the all syntax in the order action, the order is always filled. Regardless of
the number of loads on the list (whether there are 20 loads or 0 loads), all loads get off the
list.

An order list may not always contain a sufficient number of loads to completely fill an order;
in such cases, all of the loads are ordered off the list to partially fill the order. For example,
if you order five loads off a list that contains only two loads, the two waiting loads get off
the list.

You can use the in case order not filled syntax to create a backorder when an order is
not completely filled. When loads are back ordered, any loads that are ordered to wait on the
list later in the simulation are automatically ordered off the list until the backorder is filled.
For example, consider the syntax below:

order 5 loads from OL_delay to continue

in case order not filled backorder on OL_delay

If the order list OL_delay only contains three loads when the order action is executed, all
three loads are ordered to continue and a backorder of two loads is created. The next two
loads that are ordered to wait on the order list OL_delay are immediately ordered to continue
(to fill the backorder) and do not delay in the simulation.

You can execute any actions after the in case order not filled syntax. For example,
the syntax below prints warnings to the Message window when an order is not filled, but
does not create a backorder.

order 5 loads from OL_delay to continue

in case order not filled

begin

print “Warning! Order for 5 loads from OL_delay not filled at time ”
ac to message

print “No loads back ordered.” to message

end

Using the attribute “current loads”
Like other AutoMod entities, order lists have standard attributes with values that are auto-
matically set by the software. The current loads attribute is an attribute of several different
AutoMod entities, including resources, processes, and order lists. The current loads
attribute indicates the number of loads that are currently claiming an entity. For example,
the attribute can refer to the number of loads that are currently using a resource, executing
a process, or waiting on an order list.

The current loads attribute represents a unique integer value for each entity; for example,
when a load executes a wait to be ordered action to wait on a list, the order list’s current

loads attribute increments by one. When a load is ordered off a list, the order list’s current

loads attribute decrements by one. You can use the current loads attribute to refer to the
number of loads on an order list at any given moment during a simulation.

When using the current loads attribute in logic, it must be preceded by the name of th
order list, resource, or process for which you want the number of current loads. For exa
the syntax OL_delay current loads represents the number of loads that are currently w
ing on the order list OL_delay.

ote
Note
✎

ote
Note
✎

rev 1.0 13.7

Indefinite Delays Getting Started with AutoMod

e infi-
s are
aging.
s and

e box
m.
Example 13.1: Modeling an assembly and packaging operation
To better understand how order lists are used in a simulation, consider the conveyor layout
shown below:

Layout of example model 13.1

The model is the same as the example conveyor system you created in chapter 6, but with
an added assembly and packaging operation at the end of the conveyor. The processing and
inspection operations, as well as the load arrival rates, remain the same as were defined in
the original model (see “Example 6.1: Drawing a conveyor system” on page 6.9 of the
“Introduction to Conveyors” chapter for more information).

In this expanded model, loads leave the conveyor at station “sta_out” and move into th
nite-capacity queue Q_assemble. As soon as the queue contains four loads, the load
assembled and packaged in a box. An order list is used to group the four loads for pack
The time required to package the loads is normally distributed with a mean of 8 minute
a standard deviation of 30 seconds.

After packaging, each box moves into the infinite-capacity queue Q_barcode where th
uses an automatic barcoder for 2 seconds. The completed box then leaves the syste

Q_geton

Q_process_in

Q_process_out

Q_resource

R_resource

R_insp

sta_in

sta_proc_in

sta_proc_out

sta_insp_in

sta_out

sta_insp_out

Q_inspect_in Q_inspect_out

Q_inspect

Q_assemble

Q_barcode R_barcoder
13.8 rev 1.0

Getting Started with AutoMod Indefinite Delays
Defining the order list in example model 13.1

The logic that is used to simulate example 13.1 has already been defined in the base version
of example model 13.1. However, the logic is currently commented because the order list
that groups four loads in the queue Q_assemble has not yet been defined. You need to import
the model and define the order list.

To define the order list:

Step 1 Import a copy of the base version of example model 13.1.

Step 2 Edit the model logic and delete the comment markers /* and */ at the beginning and end of
the source file.

Take a moment to review the new assembly and barcode procedures, shown below:

begin P_assemble arriving

move into Q_assemble /*assemble and box here*/

if OL_assemble current loads = 3 then

begin

order 3 loads from OL_assemble to die

/*The fourth loads kills the first three loads*/

set load type to L_box

/*Fourth load becomes a box*/

wait for n 8, .5 min /*assemble and box time*/

send to P_barcode

end

else wait to be ordered on OL_assemble

end

begin P_barcode arriving

move into Q_barcode /*barcode here*/

use R_barcoder for 2 sec /*use the barcode machine*/

send to die

end

After getting off the conveyor, each load moves into the infinite-capacity queue
Q_assemble. Each load then checks to see how many loads are currently waiting on the
order list OL_assemble. If there are not yet three loads on the list, the current load is ordered
to wait on the list. If there are already three loads waiting on the list, the current (fourth) load
orders the three loads to die and then changes its load type to L_box, representing a box in
the system. The load then delays for the assembly and packaging time and is then sent to the
P_barcode arriving procedure.

In the P_barcode arriving procedure, the box moves into the infinite-capacity queue
Q_barcode, then uses an automatic barcoder for 2 seconds before leaving the system.

Step 3 Save and quit the source file. The Error Correction window appears, indicating that
OL_assemble is undefined.

Step 4 Select Define. In the Define as drop-down list, select Orderlist.
rev 1.0 13.9

Indefinite Delays Getting Started with AutoMod

s been
on.

r inte-
 in

By
ower

cides
tation
et to

 list.

 list.
Step 5 Click Define as. The Define An Order List window appears, as shown below:

The Define An Order List window

Options in the Define An Order List window are defined as follows:

Name The name of the order list.

Number of
Order Lists

The number of order lists you are defining; typing a number greater than one creates an array
of order lists.

Sort by The criterion by which the loads on the order list are sorted.

Options in the Sort by list are:

Entry Time – Loads are sorted in the order in which the loads got on the order list. By
default, the loads are sorted with the lowest value first, which causes the load that ha
waiting the longest to be at the top of the order list. This is the default sortation criteri

Priority – Loads are sorted by an integer priority value that is unique to each load. By
default, the loads are sorted with the lowest value first, which causes loads with lowe
ger values to be the first loads ordered off the list. This sortation criterion is discussed
more detail later in this chapter.

Load attribute – Loads are sorted according to the value of a numeric load attribute.
default, the loads are sorted with the lowest value first, which causes loads with the l
load attribute values to be the first loads ordered off the list.

Tie breaker If two loads have the same value in the sortation criterion, the tie-breaker criterion de
which load is listed first. The tie-breaker uses the load’s entry time to determine the sor
order; consequently, the tie-breaker criterion is useful when the sortation criterion is s
either priority or load attribute.

Options in the Tie breaker list are:

First In First Out – The first load that was added to the list is the first load to get off the

Last In First Out – The last load that was added to the list is the first load to get off the

Step 6 You want to use the default options for the order list, so click OK to close the Define An
Order List window.

You have now defined the order list OL_assemble.

Step 7 Export and run the model.

Step 8 Once you are familiar with how loads are processed in the simulation, quit the model.

Now you are ready to learn another use for order lists: creating slugs on a conveyor.
13.10 rev 1.0

Getting Started with AutoMod Indefinite Delays

 by
nsfer.
 you
es not
ions of

r lists.
econd

keeping

uted
n.”
 slugs

 the
mean
Modeling slugging conveyors using order lists
In chapter 9, “Modeling Complex Conveyor Systems,” you learned how to form slugs
taking down and bringing up the motor of a small section of conveyor before a side tra
In this chapter, you will learn an easier method of forming slugs using order lists. When
use order lists, you can form slugs at any station in a conveyor system (the station do
need to be located before a side transfer and you do not need to draw any extra sect
conveyor, as was required in chapter 9).

This chapter uses two example models to demonstrate how to form slugs using orde
The first model creates slugs on a single entrance lane in the conveyor system. The s
model creates slugs on two separate entrance lanes and introduces a new method of
the slugs separate as they travel through the system.

Example 13.2: Creating slugs on one entrance lane
Consider the conveyor layout shown below:

Layout of example model 13.2

Loads arrive in the infinite-capacity queue Q_part at a rate that is exponentially distrib
with a mean of 20 seconds. After arrival, loads get on the conveyor at station “part_o
Loads travel down the entrance lane to station “part_wait,” where they accumulate into
consisting of 10 loads each.

As soon as 10 loads have accumulated, the slug continues to station “inspect,” where
loads are inspected by an inspector for a time that is exponentially distributed with a
of 15 seconds.

After inspection, the loads travel to the end of the conveyor and leave the system.

To become familiar with the formation of slugs in the simulation, do the following:

Step 1 Import and run a copy of example model 13.2

Step 2 When you are ready to continue, close the model.

Q_part

part_on part_slug part_wait

inspect

goodbye

R_inspect
rev 1.0 13.11

Indefinite Delays Getting Started with AutoMod

” and
le

 trav-
art.”

e first
iling
, the

ering
t, the
 value

wait.”

ct,”
then
st the

d stops

 in
 close

the sta-
e
is);
t posi-
Modeling example 13.2 using order lists

The model logic for example model 13.2 is shown below:

begin P_part arriving

move into Q_part

move into conv:part_on

travel to conv:part_slug

inc V_slug by 1

if V_slug = 10 then /* release the slug */

begin

order V_slug loads from OL_part to continue

in case order not filled backorder on OL_part

set V_slug to 0

end

travel to conv:part_wait

wait to be ordered on OL_part /* form the slug */

travel to conv:inspect

use R_inspect for e 15 sec

travel to conv:goodbye

end

To understand the logic, consider the actions that are executed by the first ten loads in the
simulation.

The first load moves into the queue Q_part, gets on the conveyor at station “part_on,
travels to the station “part_slug.” At the station, the load increments the integer variab
V_slug, which counts the number of loads in the currently forming slug. The load then
els to the station “part_wait,” where the load is ordered to wait on the order list “OL_p

The next eight loads in the simulation perform the same actions. However, because th
load is already stopped at the station “part_wait” (while waiting on the order list), the tra
loads accumulate behind the first load and do not arrive at the station. Consequently
loads do not complete the travel to conv:part_wait action and are not yet ordered to
wait on the order list.

When the tenth load arrives at the station “part_slug,” it releases the current slug by ord
10 loads off the order list. Because only the first load in the slug is currently on the lis
remaining 9 loads are back ordered. After releasing the slug, the tenth load resets the
of the V_slug variable to begin counting the next slug, then travels to the station “part_

After the first load in the slug leaves the station “part_wait” to travel to the station “inspe
each of the trailing loads arrive at the station, are ordered to wait on the list, and are
immediately ordered to continue (to fill the backorder). Each load in the slug travels pa
station without stopping.

When the eleventh load arrives at the station, the backorder has been filled, so the loa
and waits on the order list, which causes the next slug to begin accumulating.

When using order lists to form slugs on a conveyor, you must place stations correctly
order to prevent a gap between loads in the slug. The last load in the slug must be as
to the preceding load as possible when the slug is released. In example model 12.3,
tion “part_slug” is placed 18 feet from station “part_wait,” to allow enough space on th
conveyor for exactly 9 loads to accumulate (the loads are scaled to 2 feet on the X ax
when the tenth load arrives at the station to release the slug, it is already in the correc
tion to begin traveling immediately behind the ninth load.

Note
Important

▲!
13.12 rev 1.0

Getting Started with AutoMod Indefinite Delays

pector
loads
Example 13.3: Creating slugs on two entrance lanes
Now consider the conveyor layout shown below:

Layout of example model 13.3

In this example, two different load types arrive at the infinite-capacity queues before the two
entrance lanes in the system. Loads of type L_red arrive at the queue Q_red, and loads of
type L_blue arrive at the queue Q_blue. The size of red loads is defined as:

The size of blue loads is defined as:

Both load types arrive at a rate that is exponentially distributed with a mean of 30 seconds.

After arriving in a queue, loads of each type get on the conveyor and travel to the end of their
respective entrance lanes, where the loads accumulate into slugs. Red loads form slugs con-
sisting of 10 loads each and blue loads form slugs consisting of 8 loads each.

The slugs are prevented from mixing when transferring from the entrance lanes to the ver-
tical section of conveyor. If slugs on both entrance lanes are ready to release at the same
time, one of the slugs is delayed until the other slug has traveled passed the entrance lanes,
at which time the delayed slug is released.

The completed slugs travel to the station “inspect,” where they are inspected by an ins
for a time that is exponentially distributed with a mean of 10 seconds. The inspected
then travel to the station “goodbye,” where they leave the system.

Q_red
red_on red_slug red_wait

inspect

goodbye

R_inspect

blue_on blue_slug blue_wait R_separate
Q_blue

slug_cleared

X 2=
Y 3=
Z 1=

X 3=
Y 2=
Z 1=
rev 1.0 13.13

Indefinite Delays Getting Started with AutoMod
To become familiar with the formation of slugs in the simulation, do the following:

Step 1 Import and run a copy of example model 13.3.

Step 2 When you are ready to continue, close the model.

Modeling example 13.3 using order lists

The model logic for example model 13.3 is shown below:

begin P_red arriving

move into Q_red

move into conv:red_on

travel to conv:red_slug

inc V_red by 1

if V_red = 10 then /* release the slug */

begin

get R_separate

order 10 loads from OL_red to continue

in case order not filled backorder on OL_red

set V_red to 0

set A_last to true

end

travel to conv:red_wait

wait to be ordered on OL_red /* form the slug */

travel to conv:slug_cleared

if A_last = true then free R_separate

travel to conv:inspect

use R_inspect for e 10 sec

travel to conv:goodbye

send to die

end

begin P_blue arriving

move into Q_blue

move into conv:blue_on

travel to conv:blue_slug

inc V_blue by 1

if V_blue = 8 then /* release the slug */

begin

get R_separate

order 8 loads from OL_blue to continue

in case order not filled backorder on OL_blue

set V_blue to 0

set A_last to true

end

travel to conv:blue_wait

wait to be ordered on OL_blue /* form the slug */

travel to conv:slug_cleared

if A_last = true then free R_separate

travel to conv:inspect

use R_inspect for e 10 sec

travel to conv:goodbye

send to die

end
13.14 rev 1.0

Getting Started with AutoMod Indefinite Delays

 slugs
t load

emain-
in the

y
list and
e load

flag to

travel

hen
esource

st load
eriod.

e time

hap-
 in

ing

 pre-
oads
with
s 0.
r to a
xam-
oce-
The logic to control the formation and release of slugs is defined in two separate procedures,
one for each load type. The P_red and P_blue arriving procedures are similar to the P_part
arriving procedure that is defined in example model 13.2 (see “Example 13.2: Creating
on one entrance lane” on page 13.11). The procedures form a slug by delaying the firs
in each slug on an order list and then releasing the slug by backordering each of the r
ing loads in the slug. Example model 13.3 demonstrates some important differences
way that slugs are released, however.

Before releasing a slug, the last load in each slug first claims a single-capacity dumm
resource, R_separate. The load then orders the correct number of loads off the order
resets the value of the variable that is used to count the number of loads in the slug. Th
also sets the value of the load attribute A_last to true. This load attribute is used as a
indicate the last load in the slug.

Notice that a new station, “slug_cleared,” has been placed on the conveyor. All loads
to this station before continuing on to the station “inspect.” As each load passes the
“slug_cleared” station, they check to see if the value of their A_last attribute is true. W
the last load passes by the station, the value is true, so the load releases the dummy r
R_separate.

Because the dummy resource is claimed from the moment a slug releases until the la
has passed the station “slug_cleared,” the other slug cannot release during this time p
If the slug is ready for release, the last load is delayed until it can claim the resource
R_separate. Using the dummy resource prevents the slugs from releasing at the sam
and merging with one another as they travel down the vertical section of conveyor.

You could claim any entity with limited capacity to simulate the separation of slugs. In c
ter 14, “Additional Features,” you will learn how to use counters, which could be used
place of the dummy resource in this example.

Sorting loads by priority
You can sort loads on an order list using a criterion other than entry time. In the follow
example, you will sort loads using the load attribute priority.

Priority is a standard load attribute of type integer that is used to indicate the relative
cedence of loads on an order list. By default, when an order list is sorted by priority, l
with lower integer values are sorted above loads with higher integer values (the load
the lowest integer value is the highest priority). The default priority value of all loads i
You can set a load’s priority to a higher value to decrease its precedence on the list o
lower value (including negative numbers) to increase its precedence on the list. For e
ple, to set the priority of the current load to 1, use the following action in an arriving pr
dure:

set priority to 1

To see how to use the priority attribute with order lists, look at the following example.

ote
Note
✎

rev 1.0 13.15

Indefinite Delays Getting Started with AutoMod
Example 13.4: Modeling load priority
In this example, loads are processed in a machine shop. Some loads are high priority (hot).
Hot loads are processed in the machine center before the other loads in the system. The time
between arrivals for hot loads is exponentially distributed with a mean of 10 minutes. The
time between arrivals for other loads is exponentially distributed with a mean of 40 seconds.
All loads complete the same steps in the system.

Loads first move into an infinite-capacity waiting queue, where they wait to use a single-
capacity machine. The machine processes each load for a time that is normally distributed
with a mean of 30 seconds and a standard deviation of 2 seconds. The machine has its own
single-capacity queue for processing.

After processing at the machine, loads are removed from the system.

You will simulate the system for 10 days.

Defining the order list in example model 13.4

The logic that is used to simulate example 13.4 has already been defined in the base version
of the example model. However, the logic is currently commented, because the order list in
the logic has not yet been defined. Therefore, you need to import the model and define the
order list.

To define the order list:

Step 1 Import a copy of the base version of example model 13.4.

Step 2 Edit the model logic and delete the comment markers /* and */ at the beginning and end of
the source file.

Take a moment to review the model logic, shown below:

begin P_inshop arriving

move into Q_mach_wait

if R_mach current value = 0 /* If machine is idle */

then

send to P_machine

if load type = L_hot then

set priority to 1

else

set priority to 2 /* 2 is a lower priority than 1 */

wait to be ordered on OL_wait
/* sorted by priority, lowest integer values first */

end

begin P_machine arriving

move into Q_mach

use R_mach for n 30,2 sec

order 1 load from OL_wait to P_machine

send to die

end

Two load types are defined in the system, L_hot and L_other. Both types of loads are sent
to the P_inshop arriving procedure.

Each load first moves into the infinite-capacity queue Q_mach_wait. If the resource
R_mach is currently idle (no loads are claiming the resource), the current load is immedi-
ately sent to the P_machine arriving procedure; the load moves into the processing queue
and claims the resource. If, however, the resource is currently processing a load, a priority
13.16 rev 1.0

Getting Started with AutoMod Indefinite Delays
value is assigned to the load and the load is ordered to wait on an order list. Loads of type
L_hot are assigned a priority value of one and loads of type L_other are assigned a priority
value of two, which causes L_other loads to be sorted below L_hot loads on the order list.

Each time a load completes processing at the machine, it orders a load off the order list to
the process P_machine, causing the next waiting load to execute the P_machine arriving
procedure. If there are no loads currently waiting on the list, the order action is ignored (a
backorder is not created).

Step 3 Save and quit the source file. The Error Correction window appears, indicating that
OL_await is undefined.

Step 4 To define the order list, select Define. In the Define as drop-down list, select Orderlist.

Step 5 Click Define as. The Define An Order List window appears.

Step 6 In the Sort list, select Priority.

Step 7 The tie breaker is already set to First In First Out, so click OK to close the Define An Order
List window.

You have now defined the order list OL_wait.
rev 1.0 13.17

Indefinite Delays Getting Started with AutoMod
Displaying order list statistics

To verify that loads are being ordered to wait in example model 13.4, look at the order list
statistics.

To display summary statistics for the order list OL_wait:

Step 1 Export and run the model to completion.

Step 2 From the Order Lists menu, select Statistics Summary. The Order Lists Statistics window
appears, as shown below:

Order list summary statistics

Order list statistics are defined as follows:

Name The name of the order list.

Total The total number of loads that were ordered to wait on the order list.

Cur The number of loads that are currently on the order list.

Average The average number of loads that were on the order list at the same time.

Max The maximum number of loads that were on the order list at the same time.

Min The minimum number of loads that were on the order list at the same time.

Av_Time The average time that each load spent on the order list.

Tot_Back_
Ordered

The total number of loads on the order list that filled back orders.

The summary statistics for the order list OL_wait indicate that there were 14,986 loads that
attempted to use the resource R_mach, but were ordered to wait on an order list until the
machine became available. The average time that each load spent on the order list was about
one minute (57.94 seconds).

Step 3 Quit the model.

Summary
In this chapter, you learned how to delay loads indefinitely using order lists. Practical appli-
cations for order lists include modeling a packaging operation, modeling conveyor slugging,
and prioritizing loads in a system.
13.18 rev 1.0

Getting Started with AutoMod Indefinite Delays

blies—

mber
make

ation

f four
nto an
time
and a

e?
Exercises

Exercise 13.1

Copy the final version of example model 13.1 to a new directory. Edit the copied model
using the information provided below.

After bar coding, boxes move into an infinite-capacity queue, where they are assembled into
cases; four boxes form a case. Completed cases then move into another infinite-capacity
queue where they are loaded onto pallets; four cases form a pallet. Completed pallets then
leave the system. You do not need to model a time delay for the case and pallet assem
they occur instantaneously.

The size of cases is defined as:

The size of pallets is defined as:

Model these additional operations using order lists. Use variables to count the total nu
of completed cases and pallets. Run the model for 10 days. Verify the output data to
sure that the assemblies, cases, and pallets are being formed properly.

Exercise 13.2

Copy example model 13.2 to a new directory. Edit the copied model using the inform
provided below:

Immediately after the inspection station, loads on the conveyor form slugs consisting o
loads per slug. Completed slugs travel to the end of the conveyor, where they move i
infinite-capacity queue and are assembled into cases (each slug forms a case). The
required to package a case of loads is normally distributed with a mean of 3 minutes
standard deviation of 30 seconds.

Model these additional operations using order lists and run the model for five days.

What was the maximum number of loads that were on section “sec5” at the same tim

X 4=
Y 4=
Z 4=

X 5=
Y 5=
Z 5=
rev 1.0 13.19

Indefinite Delays Getting Started with AutoMod

rocess
in-
iting

ing of
Exercise 13.3

Copy example model 13.2 to a new directory.

Edit the model so that the size of loads is defined as:

Edit the model so that loads form slugs consisting of six loads each (instead of ten loads
each).

Run the model for five days.

What was the maximum number of loads that could not get on the conveyor due to conges-
tion?

Exercise 13.4

Copy the final version of example model 13.4 to a new directory.

First, run the copied example model for 200 days and find the average time that loads spent
in process “P_inshop.”

Now edit the model using the information provided below:

In addition to the current load creations, a third load type is created and sent to the p
“P_inshop” with an interarrival time that is exponentially distributed with a mean of 20 m
utes. The new load type is given higher priority than the other two load types on the wa
list for resource R_machine.

After editing the model, run the simulation for 200 days and determine the percentage
increase in the average time that loads spent in process “P_inshop” due to the process
the new load type.

X 3=
Y 4=
Z 1=
13.20 rev 1.0

Getting Started with AutoMod Indefinite Delays

ed, it
ntially

e ver-
 same

eyor
Exercise 13.5

Copy example model 13.2 to a new directory. Edit the copied model to simulate the system
described below.

Three different types of loads are processed in this system; each load type is assigned a
unique color. The interarrival rate, load size, and slug size for each type of load is defined
in the following table:

Loads are sorted by color into one of three infinite-capacity queues. Loads then get on one
of three conveyor sections, as shown below:

At the end of each entrance section, the loads form slugs. The number of loads in each slug
is determined by the load’s color (see the table above). When a complete slug is form
travels to the inspection station, where each load is inspected for a time that is expone
distributed with a mean of 10 seconds.

The slugs are prevented from mixing when transferring from the entrance lanes to th
tical section of conveyor. If slugs on multiple entrance lanes are ready to release at the
time, only one slug is released while the others delay.

After inspection, loads travel to station “goodbye,” where they leave the system.

Run the model for 10 days.

What was the maximum number of loads of each type that could not get on the conv
due to congestion?

Load color Interarrival time Load size Slug size

red exponential 30 seconds 2×3×1 10

blue exponential 45 seconds 3×2×1 12

green exponential 60 seconds 3×4×1 8

inspect

goodbye
Red loads enter and form slugs on the top lane

Blue loads enter and form slugs on the middle lane

Green loads enter and form slugs on the bottom lane
Loads are sorted into
one of three queues
before getting on the
conveyor
rev 1.0 13.21

Indefinite Delays Getting Started with AutoMod
13.22 rev 1.0

Getting Started with AutoMod Additional Features
Chapter 14

Additional Features

Collecting custom statistics and controlling capacity with counters 14.4
Example 14.1: Tracking the number of red and blue loads in the system 14.5

Defining counters... 14.5

Displaying text in the Simulation window with labels ... 14.8
Defining labels .. 14.8
Printing to labels ... 14.10

Collecting custom statistics with tables ... 14.12
Categories of table statistics.. 14.13

Table statistics.. 14.13
Frequency statistics .. 14.13

Defining tables .. 14.14
Updating tables.. 14.15
Viewing table statistics ... 14.16

Reusing logic with subroutines .. 14.17
Defining subroutines ... 14.17

Performing calculations with functions .. 14.19
Characteristics of functions... 14.19
Types of functions... 14.20

User-defined functions... 14.21
Standard math library functions... 14.22
Time-specific functions ... 14.23
Pre-defined functions ... 14.23

Defining functions... 14.23
Converting time in system to minutes using a function... 14.24
Squaring a value using a math library function ... 14.25

Summary .. 14.26

Exercises... 14.27
Exercise 14.1 ... 14.27
Exercise 14.2 ... 14.27
Exercise 14.3 ... 14.27
rev 1.0 14.1

Additional Features Getting Started with AutoMod
14.2 rev 1.0

Getting Started with AutoMod Additional Features

ng

tion

ro-
Chapter 14

Additional Features

This chapter discusses several features that can be useful when building a model in the
AutoMod software:

• Counters – Allow you to track custom statistics (like a variable) and limit loads usi
capacity (like a queue or resource)

• Labels – Allow you to place text in your model and update it throughout the simula
• Tables – Allow you to track and tabulate custom statistics
• Subroutines – Allow you to reuse code for more efficient programming
• Functions – Allow you to perform calculations and reuse code for more efficient p

gramming
rev 1.0 14.3

Additional Features Getting Started with AutoMod

nted
s” on

t be

iables,
r
ge, cur-
le. If
e than

ad. For
 using

 one,
 P_2,

d.
Collecting custom statistics and controlling capacity with counters
Counters are generic entities used to:

• Track integer values (like an integer variable)
• Control capacity (like a queue or resource)

A counter is an integer entity with a value that can be set, incremented, and decreme
like a variable using any positive integer (See “Setting variable and load attribute value
page 7.7 of the “Advanced Process System Features” chapter for more information).
Counters are initially set to zero, which is their minimum value (counter values canno
negative).

You can use counters for the same types of things for which you have used integer var
such as controlling loops or tracking the number of loads in the system. Use a counte
instead of a variable when you are interested in statistics and attributes such as avera
rent, minimum, maximum, total and average time, which are not available for a variab
you are not interested in the statistics, use a variable, because it requires less CPU tim
a counter, which allows your model to run more quickly.

Counters have capacity, like a resource or a queue, so you can use them to delay a lo
example, you could limit the number of loads in the process P_2 to one load at a time
a counter, C_P2cap, of capacity one, as shown below:

begin P_1 arriving
use R_resource for 5 min
inc C_P2cap by 1 /* capacity one */
send to P_2

end
begin P_2 arriving

use R_resource for 10 min
dec C_P2cap by 1
send to die

end

The first load increments C_P2cap by one and enters P_2. The counter’s capacity is
meaning it cannot be incremented any higher. Therefore, as long as the first load is in
all other loads in P_1 are delayed at the increment action until the counter is decremente
14.4 rev 1.0

Getting Started with AutoMod Additional Features

me?
?
e?
Example 14.1: Tracking the number of red and blue loads in the system
Example model 14.1 is based on example 12.3. The model uses vehicles to carry red and
blue loads through the system. Example model 14.1 uses counters to answer the following
questions for a five-day simulation:

• What is the maximum number of loads (both red and blue) in the system at any ti
• What is the average and maximum number of red loads in the system at any time
• What is the average and maximum number of blue loads in the system at any tim
• How many battery replacements occur?

Defining counters
You will need four counters to track the required information:

To define the necessary counters:

Step 1 Import a copy of the base version of example model 14.1.

Counter name Purpose

C_insystem Tracks the total number of loads in the system

C_red Tracks the number of red loads in the system

C_blue Tracks the number of blue loads in the system

C_swap Tracks the number of battery replacements that occur
rev 1.0 14.5

Additional Features Getting Started with AutoMod

w:

nding
e cor-

nter for
using
nt

he
Step 2 Edit the model logic and delete the comment markers /* and */ at the beginning and end of
the source file. The model’s logic uses the necessary counters, as shown in bold belo

begin P_agvsys arriving

inc C_insystem by 1 /* a load enters the system */

move into Q_entry

if load type = L_red then

begin

inc C_red by 1 /* add one red */

move into pm:red_on

travel to pm:red_insp

use R_insp for e 3 min

travel to pm:red_drop

dec C_red by 1 /*subtract one red*/

dec C_insystem by 1 /* a load leaves the system */

send to die

end

else

begin

inc C_blue by 1 /* add one blue */

move into pm:blue_on

travel to pm:blue_in

move into Q_blue_in

use R_blue for n 4, .5 min

move into Q_blue_out

move into pm:blue_out

travel to pm:blue_drop

dec C_blue by 1 /*subtract one blue*/

dec C_insystem by 1 /* a load leaves the system */

send to die

end

end

begin P_init arriving

clone pm vehicles size to P_swap

send to die

end

begin P_swap arriving

set A_index = P_swap total

wait for 480*(A_index-1)/(pm vehicles size) min

 while 1=1 do

 begin

 wait for n 480, 60 min

move into pm:swap_area

use R_swap for 15 min

inc C_swap by 1 /* count number of battery swaps */

move into Q_hide

end

end

When a load enters the arriving procedure, it increments the counter C_insystem. Depe
on its load type (red or blue), the load increments C_red or C_blue, then moves into th
rect location to be processed. When finished processing, the load decrements the cou
its load type and the system counter C_insystem. Vehicle battery swaps are tracked
the counter C_swap. None of these counters are used to control capacity, only to cou
events. Because you do not know how many loads are in the model, you will define t
counters as infinite capacity.
14.6 rev 1.0

Getting Started with AutoMod Additional Features

 loads
ocess
Step 3 From the File menu, select Save & Quit. The Error Correction window opens, indicating that
C_insystem is undefined.

Step 4 To define the counter, select Define. In the Define as drop-down list, select Counter.

Step 5 Click Define as. The Define a Counter window opens.

Step 6 Because the counter is set to infinite capacity by default, click OK to define the counter.

Step 7 Define C_red, C_blue, and C_swap as infinite-capacity counters.

Step 8 Export and run the model to the end of the simulation.

Step 9 From the Counters menu, select Statistics Summary. The Counter Statistics window opens.

Counter statistics

As you can see, counter statistics are similar to statistics for other entities. Use these statis-
tics to answer the following questions:

1. What is the maximum number of loads (both red and blue) in the system at any time?
The maximum value of C_insystem is 47.

2. What is the average and maximum number of red loads in the system at any time?
The average value of C_red is 2.42 and the maximum value is 12.

3. What is the average and maximum number of blue loads in the system at any time?
The average value of C_blue is 10.98 and the maximum value is 41.

4. How many battery replacements occur?
The total value of C_swap is 55.

This model uses counters to perform their most basic function, that is, counting things. You
can also use a counter’s capacity. For example, you could limit how many red or blue
could be in the system at one time. For more information about counters, see the “Pr
System” chapter in volume 1 of the AutoMod User’s Manual, online.
rev 1.0 14.7

Additional Features Getting Started with AutoMod

t that
 also

alue of
ng the

never
el, you
rent

nter

e. You
 or

ber of
waps
, and
Displaying text in the Simulation window with labels
A label is text that you add to your model’s graphics. Labels can contain static text (tex
does not change during the simulation), such as the name of a work area. Labels can
contain dynamic text that is updated based on events in the simulation, such as the v
a variable or counter that is continually updated. You can update the text in a label usi
print action.

For example, you could print the total number of loads in the system to the screen whe
the counter C_insystem gets incremented or decremented. Then, as you run the mod
will always be able to see the current number of loads in the system. To print the cur
value of C_insystem to a label, use the following syntax:

print “Total in system = ” C_insystem current value to LBL_insystem

This logic prints the words “Total in system = ”, followed by the current value of the cou
C_insystem, to the label LBL_insystem.

Like other process system entities, labels are defined from the Process System palett
place them graphically in your model just as you would place a graphic for a resource
queue.

Defining labels

In example model 14.1, you need to add labels to print the current values for the num
red and blue loads in the system. You also need to print the total number of battery s
that have been completed. The labels should be red for red loads, blue for blue loads
green for the battery swaps. The labels should be placed as shown below:

Labels for example model 14.1

The red and blue
labels go here

The green
label goes
here
14.8 rev 1.0

Getting Started with AutoMod Additional Features

s.

 of

e).

t the
To define the labels for example model 14.1:

Step 1 Edit the model.

Step 2 From the Process System palette, select Labels. The Labels window opens.

Step 3 Click New to define a label.

Step 4 To define the label for red loads, name the label “LBL_red” and click OK. The new label
appears in the Labels window.

Step 5 To place the label graphically, click Edit Graphic. The Edit Label Graphics window open

Step 6 Click Place and drag to place the label in the Work Area window in the center of the top
the picture, as shown in “Labels for example model 14.1” on page 14.8.

Step 7 Select Scale All. Edit the scale value to 5, as shown below:

Step 8 Press Enter. The text size is increased.

Step 9 Change the Label Text to “Number of red loads in system” and press Enter. This changes
the label’s initial text (the text that is displayed until you print to the label for the first tim

Step 10 By default, the label’s text is red, so click Done.

Step 11 Define the following labels, place their graphics, change their color (using the Inherited
(Red) button shown above), change their scale, and edit their initial text:

Step 12 Export the model.

Now that you have defined and placed the labels, you must edit the source file to prin
current value of the counters to the labels.

Edit the scale
value to 5

Select Scale All Change the color of
blue and green labels

Edit the
initial text

Label name Color Initial text Scale

LBL_blue Blue Number of blue loads in system 5

LBL_swap Green Number of battery swaps 5
rev 1.0 14.9

Additional Features Getting Started with AutoMod

label.
_blue,

d to

wn in
Printing to labels

Whenever a counter’s value changes, you need to print the new value to the correct
The counters that track the number of red and blue loads in the system, C_red and C
are each incremented and decremented once in the model logic. Therefore, you nee
update the appropriate label after the increment and decrement actions in the model logic.
Similarly, when C_swap is incremented, the label must be updated.

To print the current value of the counters to the correct label:

Step 1 Edit the source file.

Step 2 Add the print actions for each label to the P_agvsys and P_swap procedures, as sho
bold below:

begin P_agvsys arriving

inc C_insystem by 1 /* a load enters the system */

move into Q_entry

if load type = L_red then

begin

inc C_red by 1 /* add one red */

print “Reds in system = ” C_red current value to LBL_red

move into pm:red_on

travel to pm:red_insp

use R_insp for e 3 min

travel to pm:red_drop

dec C_red by 1 /*subtract one red*/

print “Reds in system = ” C_red current value to LBL_red

dec C_insystem by 1 /*a load leaves the system */

send to die

end

else

begin

inc C_blue by 1 /* add one blue */

print “Blues in system = ” C_blue current value to LBL_blue

move into pm:blue_on

travel to pm:blue_in

move into Q_blue_in

use R_blue for n 4, .5 min

move into Q_blue_out

move into pm:blue_out

travel to pm:blue_drop

dec C_blue by 1 /*subtract one blue*/

print “Blues in system = ” C_blue current value to LBL_blue

dec C_insystem by 1 /* a load leaves the system */

send to die

end

end
14.10 rev 1.0

Getting Started with AutoMod Additional Features

 inef-
refore,
nother

 the
begin P_swap arriving

set A_index = P_swap total

wait for 480*(A_index-1)/(pm vehicles size) min

 while 1=1 do

 begin

 wait for n 480, 60 min

move into pm:swap_area

use R_swap for 15 min

inc C_swap by 1 /* count number of battery swaps */

print “Swaps = ” C_swap current value to LBL_swap

move into Q_hide

end

end

Step 3 Select Save & Quit.

Step 4 Export and run the model. The label values update whenever a load enters or leaves the sys-
tem.

Printing text to a label slows down the simulation. In our model, we are printing the string
“Number of <color> loads =” every time we update the label. Printing the entire label is
ficient, because the text part of the label does not change, only the number does. The
you could use two labels for each value: a label for the static part of the message, and a
label that is updated dynamically with the integer value of the counter. Updating only
integer value would make the model run faster.

ote
Tip

☞

rev 1.0 14.11

Additional Features Getting Started with AutoMod

nters
 table.

e the
nge of

es of
es the

 had a
the
tarts

he sys-
erflow
Collecting custom statistics with tables
The AutoMod software provides numerous statistics for every model. However, each model
and each simulation project are different, and depending on the objectives of your study, you
may need information that is not gathered automatically. Tables allow you to gather your
own statistics and sort them into frequency classes. Tables provide data such as the mean
and standard deviation for your tabulated values. You can use tables to track things such as:

• Product cycle times
• Process cycle times
• Interarrival rates
• Station idle time (or time in any state)
• Throughput over time (number of loads processed per day)

You can collect data for tables using the tabulate action. For example, to track the time in
system for red loads in a table called “T_redsystime,” use the following logic:

tabulate (ac – A_timestamp)/60 in T_redsystime

Assuming the load’s A_timestamp attribute is set to the absolute clock when the load e
the system, this logic calculates the time in system (in minutes) and tabulates it in the

Tables are similar in format to a histogram. In order to define a table, you need to defin
number of bins, or categories, of the data. You also need to describe the width, or ra
values, for each bin.

For T_redsystime, suppose there are six bins with five-minute widths, creating six rang
time: 0-5 minutes, 5-10 minutes, and so on up to 25-30 minutes. Whenever a load leav
system, its time in system is added to the appropriate bin, as shown below:

Example table for T_redsystime

The table statistics tell you the frequency for each bin range, that is, how many loads
time in system within a given five-minute range. When a value falls outside of any of
ranges, it is placed in an underflow or overflow category. In this table, the first range s
at zero, so there cannot be any underflow values. There were 50 loads with times in t
tem greater than or equal to 30 minutes, as shown by the Frequency value for the ov
range.

The range of
each bin

The number of
loads in each
bin

The percentage
of loads in each
bin

Underflow
range

Overflow
range

Defined
ranges
14.12 rev 1.0

Getting Started with AutoMod Additional Features

. For
e 5.27

ncy

n the
ntries
Categories of table statistics

Tables include two categories of statistics:

• Table statistics
• Frequency statistics

Table statistics
Table statistics refer to tabulated values. Table statistics are defined as follows:

Name The name of the table.

Entries The number of tabulated values.

Mean The mean tabulated value.

Std Dev The standard deviation of the tabulated values.

Max The largest tabulated value.

Min The lowest tabulated value.

You can display tabulated data in a histogram by defining a bar chart business graph
information about defining business graphs, see “Displaying a business graph” on pag
of the “Process System Basics” chapter.

Frequency statistics
Frequency statistics provide a frequency distribution of all entries in the table. Freque
statistics are defined as follows:

Frequency
class

The range of tabulated values being measured.

Underflow (<) The number of entries with values smaller than the lowest bin value.

Overflow (>) The number of entries with values larger than the highest bin value.

Frequency The number of tabulated values in this class.

% of Total The percent of total tabulated values in the frequency class.

Cumulative % The cumulative percent of total tabulated values since the initial frequency class. Whe
simulation has finished, the last value in this column is 100 percent. (If there are no e
in the table, the value is 0 percent.)

ote
Tip

☞

rev 1.0 14.13

Additional Features Getting Started with AutoMod

 of

tem for
re val-

t table
Defining tables

For example model 14.1, you need to calculate the time in system, in minutes, for each load
type. You also need to know the maximum and minimum times, in minutes, for loads of each
type. The best way to determine this kind of information is to use tables.

Define two tables: one that tracks the time in system, in minutes, for red loads, and another
to track time in system, in minutes, for blue loads. The tables should have 6 bins (ranges)
each, with few or no overflows (values that do not fit into the defined bins).

To define the tables in example model 14.1:

Step 1 Edit the model.

Step 2 From the Process System palette, select Tables. The Tables window opens.

Step 3 Click New to define the table to track the time in system of red loads.

Step 4 Name the table “T_redsystime.”

Step 5 Define the number of bins as “6” and the width as “5,” as shown below:

Defining the T_redsystime table

Typing a number greater than one in the Number of Tables text box creates an array
tables. You will not use arrayed tables in this example model.

Step 6 Define the lower, or starting, value of the first bin range as “0” and press Tab. The end of
the last bin range is automatically calculated as 30.

Step 7 Click OK.

Step 8 Define another table, called “T_bluesystime,” with the following values:

Number of bins:10

Bin width: 15

Start of first bin: 0

These values create 10 ranges: 0-15, 15-30, and so on up to 135-150. The time in sys
blue loads is much longer than for red loads, so the table for blue loads must span mo
ues.

Now that you have defined the tables, you must edit the source file to update the correc
whenever a load finishes.

Define the number
of bins and the bin
range

Define the lower
value of the first bin

The upper value of
the top bin is
automatically
defined

ote
Note
✎

14.14 rev 1.0

Getting Started with AutoMod Additional Features

, as
Updating tables

Whenever a red or blue load leaves the system, it decrements a counter and prints the
updated value to the screen. Now the load must also track its time in system using a load
attribute and update the table with that value before the load is sent to die.

To add each load’s time in system to a table:

Step 1 Edit the source file.

Step 2 Add the set and tabulate actions for each load type to the P_agvsys arriving procedure
shown in bold below:

begin P_agvsys arriving

inc C_insystem by 1 /* a load enters the system */

move into Q_entry

if load type = L_red then

begin

inc C_red by 1 /* add one red */

print “Reds in system = ” C_red current value to LBL_red

set A_timestamp to ac /* set the load’s entry time */

move into pm:red_on

travel to pm:red_insp

use R_insp for e 3 min

travel to pm:red_drop

dec C_red by 1 /*subtract one red*/

print “Reds in system = ” C_red current value to LBL_red

dec C_insystem by 1 /* a load leaves the system */

tabulate (ac - A_timestamp)/60 in T_redsystime

send to die

end

else

begin

inc C_blue by 1 /* add one blue */

print “Blues in system = ” C_blue current value to LBL_blue

set A_timestamp to ac /* set the load’s entry time */

move into pm:blue_on

travel to pm:blue_in

move into Q_blue_in

use R_blue for n 4, .5 min

move into Q_blue_out

move into pm:blue_out

travel to pm:blue_drop

dec C_blue by 1 /*subtract one blue*/

print “Blues in system = ” C_blue current value to LBL_blue

dec C_insystem by 1 /* a load leaves the system */

tabulate (ac - A_timestamp)/60 in T_bluesystime

send to die

end

end

Step 3 From the File menu, select Save & Quit. The Error Correction window opens, indicating that
A_timestamp is undefined.

Step 4 Define A_timestamp as a load attribute of type time.

Step 5 Export and run the model to the end of the simulation.
rev 1.0 14.15

Additional Features Getting Started with AutoMod
Viewing table statistics

After running the model, view the table statistics.

To view table statistics:

Step 1 From the Tables menu, select Statistics Summary.

Summary statistics for tables

You created these tables to determine the time in system, in minutes, for each load type; this
value can be determined from the mean value for each table. The maximum and minimum
times (in minutes) for loads of each type is also displayed in the table summary.

For information about the number of loads in each bin, you can view the frequency statistics
for an individual table:

Step 1 From the Tables menu, select Single Table. The Pick a Table window opens.

Step 2 Select T_bluesystime and click OK. The Table Statistics for the blue loads opens.

Frequency statistics for T_bluesystime

You can determine the number of loads that had times that were not within the defined
ranges by looking at the overflow category. The number of overflow values (as shown in the
Frequency column) is 62.
14.16 rev 1.0

Getting Started with AutoMod Additional Features
Reusing logic with subroutines
When writing model logic, you sometimes need to have loads do similar things in more than
one place. It can be tedious to write and edit logic that is duplicated in several places, and it
can lead to errors if not all occurrences of the logic are updated correctly. To avoid duplica-
tion and errors, you can define the logic once and reuse it in several places by defining it as
a subroutine. A subroutine is a global procedure that you can call from any process proce-
dure. Subroutines make your model smaller and easier to update.

For example, suppose you wanted to write information to a custom report, or update tables
whenever a load finishes processing. Rather than write the logic to update statistics in each
arriving procedure, you can define a subroutine to update statistics and call the subroutine
from any arriving procedure in which a load leaves the process.

A subroutine is written much like an arriving procedure:

begin S_subroutine

<actions>

end

However, you do not send loads to a subroutine. Instead, loads call the subroutine from a
procedure using the call action, as shown below:

begin P_process arriving

use R_resource for 5 min

call S_subroutine /* load does actions in subroutine */

send to die

end

When a load calls a subroutine, the load stops executing the current arriving procedure and
completes the actions in the subroutine. Then the load returns to the procedure from which
it called the subroutine and continues with the next line. In this example, the load is sent to
die.

Defining subroutines

In example model 14.1, each load type updates a counter for the total loads in system before
it dies. The loads update the tables that track time in system by load type. Suppose you want
to print the current number of loads in the system to the Message window whenever the
C_insystem counter is updated, and also add a table to track the time in system for all loads.
Because you need to add the logic to do this in two places (where red loads finish the model
and where blue loads finish the model), using a subroutine is a good approach.

To define a subroutine to print the current loads in the system and update a new table with
the total time that all loads spend in the system:

Step 1 Edit the model.

Step 2 Edit the source file.

Step 3 To define the new subroutine, type the following logic in the source file after the P_agvsys
arriving procedure:

begin S_updatesystem

dec C_insystem by 1

print “Total loads in the system = ” C_insystem current value to message

tabulate (ac - A_timestamp)/60 in T_totalsystime

end

This subroutine updates the counter C_insystem for all load types, so you need to replace
the decrement action for each load type with the call to the subroutine. This logic also prints
the current value of the counter to the Message window and tabulates the time in system for
all loads in a new table, T_totalsystime.
rev 1.0 14.17

Additional Features Getting Started with AutoMod
Step 4 Replace the dec C_insystem by 1 action for each load type in P_agavsys with a call to the
subroutine S_updatesystem, as shown in bold below:
begin P_agvsys arriving

...
print “Reds in the system = ” C_red current value to LBL_red
call S_updatesystem
tabulate (ac - A_timestamp)/60 in T_redsystime
send to die

end
else

...
print “Blues in the system = ” C_blue current value to LBL_blue
call S_updatesystem
tabulate (ac - A_timestamp)/60 in T_bluesystime
send to die

end
end

Step 5 From the File menu, select Save & Quit. The Error Correction window opens, indicating that
S_timestamp is undefined.

Step 6 Select Define as and select Subroutine from the Define as drop-down list. Click Define as.
The Define a Subroutine window opens.

Defining a subroutine

Step 7 The only parameter you can change is the Title (an optional description of the subroutine).
You do not need to specify a title, so click OK. The Error Correction window opens, indi-
cating that T_totalsystime is undefined.

Step 8 Define T_totalsystime as a table with the following bin values:

Number of bins: 10
Bin width: 15
Start of first bin: 0

Step 9 Export and run the model to completion.

Step 10 Display Table Statistics, as shown below:

T_totalsystime

The statistics for T_totalsystime are displayed.
14.18 rev 1.0

Getting Started with AutoMod Additional Features

tion,
, such

mple,

ion’s

ctions

al, or
d by
eal
ueue

uting
lcula-
t be

number
he sim-
nction
rs that
al and
 pass
Performing calculations with functions
A function is a piece of code that is passed parameters, or input data, and calculates infor-
mation. The function then sends back, or returns, the calculated information to the load exe-
cuting the function. Any time that you need to repeatedly perform calculations or determine
information, especially if it is based on the current events in the simulation, using a function
is a good approach. For example, you can use a function to determine a load’s next loca
determine how long a vehicle delays at a station, or perform mathematical operations
as finding the absolute value or square root of a number.

A function’s format is:

begin F_functionname(parameter1,parameter2,…) function

/* actions */

return <value>

end

Functions can be used anywhere that you would use a value or an entity name in the model
logic. For example, a function can replace an integer or real value, or a resource name. The
function’s return value is used in place of a constant value in the model logic. For exa
rather than increment a variable by a fixed value:

inc V_count by 1

You could use a function to calculate a value and increment the variable by the funct
return value, as shown below:

inc V_count by F_myfunction(parameter)

Because a function can be substituted anywhere that you use a value or a name, fun
can be used with many actions. You can set, increment, or decrement a variable, attribute,
or counter by a function’s return value. You can print or tabulate a function’s return
value. You can also call a function, like you call a subroutine.

Characteristics of functions

When defining a function, you must define two characteristics:

• Function type (the type of data the function is returning)
• Parameters (data being used in the function)

Function type When you define a function, you must define the function’s type, such as Integer, Re
String (just as you do when you define a variable). The type of a function is determine
the type of data you want it to return. For example, if you write a function to return a r
value, the function must be defined as type Real, and if you write a function to return a q
name, the function must be defined as type QueuePtr.

Parameters A parameter stores information that is passed into the function by the load that is exec
the function call. Loads pass the information required for the function to perform a ca
tion. For example, if you wanted to find the square root of a number, the number mus
passed as a parameter to the function. The function determines the square root of the
and returns the value of the square root. The square root value can then be used in t
ulation. The parameters passed to a function can be of different data types than the fu
itself. When you define a function, you must declare the number and type of paramete
are passed to the function. For example, a function could accept two values of type Re
one value of type Integer. There is no limit on the number of parameters that you can
to a function.
rev 1.0 14.19

Additional Features Getting Started with AutoMod

)

 use
mount

s can-

tion,

ou
When writing a function, you must include two things:

• Actions that calculate the necessary information using the input data (parameters
• A return value (the data the function is returning)

Actions When writing a function, you can use most, but not all, AutoMod actions. You cannot
any action that can cause a simulation delay, such as using a resource or waiting an a
of time. Of the actions that have been discussed in this textbook, the following action
not be used in a function:

In addition, you cannot call a subroutine from within a function and when using the clone
action, you must include a pointer to the load you want to clone.

For a complete list of actions that are illegal or that have limitations when used in a func
refer to the AutoMod Syntax Help.

Return value When you write a function, it must return a value. To return a value from a function that y
are defining in a source file, use the return action, such as:

return (timeinsys/60) /* return the time in system in minutes */

Types of functions

There are several types of functions that you can use in a model:

• User-defined functions
• Standard math library functions
• Time-specific functions
• Pre-defined AutoMod functions
• C functions (not discussed in this textbook)

• free
• get

• move
• send

• travel
• use

• wait
• wait to be ordered

ote
Help
8

14.20 rev 1.0

Getting Started with AutoMod Additional Features

ibute

 is
 next

tation
User-defined functions
A user-defined function is an AutoMod function that you write to determine information
that you need to use in the model. For example, you can determine which section of path or
conveyor a load is on, what queue it is in, where to send a load, and so on. The function
returns the desired information, which you can then use in the simulation.

For example, suppose you had a circular path with four stations on it, as shown below:

Layout for circular path

Loads use a resource at each location for processing, then continue to the next position.
Loads must use a vehicle to travel to the points in order, starting with control point cp1. After
cp4, the loads must return to cp1. You can use a function to determine the next location for
each load by passing the load’s current location to the parameter “position”:

begin F_nextloc function
inc position by 1 /* increment the load’s location to next point */
if (position > 4) then begin

set position = 1 /* after cp4, return to cp1 */
end
return position /* return the integer value of the next location */

end

This function is passed the integer value of the load’s current position via the load attr
A_position, and it returns an integer value, as shown below:

begin P_station arriving
move into pmover:cp(A_position) /* cp1 */
use R_resource for u 10,2 min
set A_position to F_nextloc(A_position) /* now cp2 */

/* set the load’s attribute to the return value of the function */
travel to pmover:cp(A_position) /* cp2 */
send to P_next

end

The comments in the procedure show the control point values that are used the first time the
procedure is executed (assuming that the value of A_position is one).

The function increments the numeric value for the location name (stored in the parameter
“position”) by one. If “position” exceeds four, it is reset to one. The next location value
then returned from the function, stored in the attribute A_position, and is used as the
location.

Each time a load completes processing at a point, the load is sent to the process P_s
and travels to the next control point on the path.
rev 1.0 14.21

Additional Features Getting Started with AutoMod

unc-
e to a
le, the

ill

aram-

raise

turn a
Standard math library functions
A standard math library function is a pre-written function that resides in either the AutoMod
or C libraries that come with the AutoMod software. Because the math functions are pre-
written, you do not need to write code for them; you only need to define them in the model
and use them.

Standard math library functions are defined as either type Real or Integer, and their param-
eters are either type Real or Integer. The following table lists some common math library
functions, their types, and parameters (parameter types are shown in parentheses):

To call one of these math library functions from an arriving procedure, you define the func-
tion as an AutoMod function, giving it the name, type, and parameter types shown in the
table above (you can name the parameters anything you want).

For example, suppose each load in a model has an attribute called A_num that you want to
raise to the third power. You would define a function, called “pow,” of type Real. The f
tion requires two parameters of type Real: the first is the base number you want to rais
power, and the second is the power to which you want to raise the base. In this examp
base number is the value in the load’s A_num attribute, and the power is 3.0.

You would define the following function, parameters, and variable in the model (you w
learn how to define a function in “Defining functions” on page 14.23):

pow The function “pow” is a math function with two parameters of type Real: “base” and
“power.”

base The first parameter is of type Real. The load’s attribute A_num value is passed to this p
eter as the base value.

power The second parameter, which is also of type Real, is the power to which you want to
A_num.

V_result A variable of type Real used to store the value that the “pow” function returns.

Once you have defined the function and its parameters, you can use the function to re
value. In this example, the return value is stored in the variable V_result using the set
action:

set V_result to pow(A_num,3.0) /* cube A_num */

print “A_num cubed =”,V_result to message

The parameters are passed to the function in parentheses and are separated by a comma. The
parameters store the base and power values, the function performs the calculation, and the
result is returned as a real number. The variable V_result is set to the return value and the
value is printed to the Message window.

Function
name

Function
type

Parameters (type) Definition

exp Real parameter 1 (Real) returns the exponential function of
parameter 1

pow Real parameter 1 (Real)
parameter 2 (Real)

returns Parameter 1 raised to the
parameter 2 power

abs Integer parameter 1 (Integer) returns the absolute value of
parameter 1

sqrt Real parameter 1 (Real) returns the square root of
parameter 1
14.22 rev 1.0

Getting Started with AutoMod Additional Features

e

forma-
 func-

sed

deter-

r and
s for
text-

ax

ne for
 load

ld be to
t con-
be tab-

o the
Time-specific functions
Time-specific functions are pre-defined AutoMod functions that allow custom processing at
particular times before, during, and after the simulation. There are four time-specific func-
tions:

• model initialization function (see “Defining the model initialization function” on pag
7.12 of the “Advanced Process System Features” chapter for more information)

• model ready function
• model snap function
• model finished function

These functions are pre-defined, meaning the parameters, return values, and other in
tion is already defined in the software. All you need to do is add the desired logic to the
tion in a source file.

Except for the model initialization function, using time-specific functions is not discus
in this textbook.

For information about time-specific functions, refer to the AutoMod Syntax Help.

Pre-defined functions
The AutoMod software contains numerous pre-defined functions that you can use to
mine information about the simulation (including the time-specific functions discussed
above). AutoMod has pre-defined functions for movement systems, such as conveyo
path mover systems. There are also pre-defined functions to create custom interface
AutoMod using ActiveX controls. Using pre-defined functions is not discussed in this
book.

For information about pre-defined functions, refer to “Functions” in the AutoMod Synt
Help.

Defining functions

Currently, there are three tables in example model 14.1: one for each part type and o
all part types combined. All three tables are updated with the time (in minutes) of each
leaving the system:

tabulate (ac - A_timestamp)/60 in T_<tablename>

Because this calculation must be done in more than one place, a good approach wou
use a function to perform the calculation. Therefore, you need to define a function tha
verts each load’s A_timestamp attribute to minutes and returns the time so that it can
ulated.

You also need to define a function to print the square of a red load’s time in system t
Message window before the load leaves the system.

To define the functions in the model:

Step 1 Edit the model.

Step 2 Edit the source file.

ote
Help
8

ote
Help
8

rev 1.0 14.23

Additional Features Getting Started with AutoMod

mp.

m of

at

 that
e table.

 Mes-
Converting time in system to minutes using a function
You will define a function to convert the time in system to minutes and replace the current
tabulate actions with the function call.

Step 1 In the source file, type the following function after any process procedure:
begin F_time function

return (ac - Timeinsys)/60 /*time in minutes*/
end

This function will be defined as type Time with one parameter, also of type Time, called
“Timeinsys.” The function is passed a load’s time in system from the attribute A_timesta
The function converts the time in system to minutes and returns the converted value.

Step 2 Find each tabulate action and replace it with a call to the function.

For example, for red loads:
tabulate (ac - A_timestamp)/60 in T_redsystime

becomes

tabulate F_time(A_timestamp) in T_redsystime

Replace the tabulate actions for the time in system of blue loads and the time in syste
all loads, as well.

Step 3 From the File menu, select Save & Quit. The Error Correction window opens, indicating th
F_time is undefined.

Step 4 Click Define and select Function from the Define as drop-down list. Click Define as.

Step 5 Name the function “F_time” and select Time from the Type drop-down list.

Step 6 To define the parameter, click New. The Define a Parameter window opens.

Step 7 Name the parameter “Timeinsys” and select Time from the Type drop-down list. Click OK.
The Define A Function window appears as shown below:

Defining the function F_time

Step 8 Export and run the model to completion.

Step 9 Compare these table statistics to those shown in “T_totalsystime” on page 14.18. Notice
you have not changed the values being tabulated, only how the values are put into th

Now you are ready to add a function to square the A_timestamp value and print it to the
sage window before sending red loads to die.

Select Time
from the
Type drop-
down list

Define one parameter of type
Time called Timeinsys
14.24 rev 1.0

Getting Started with AutoMod Additional Features

’s time
rd math
ary
the

for it;
ary.

ared,

s
Squaring a value using a math library function
The second part of the problem statement requires you to print the square of a red load
in system to the Message window before the load leaves the system. There is a standa
library function for raising a number to a power called “pow” (see “Standard math libr
functions” on page 14.22). The function “pow” requires two parameters of type Real:
base number and the power.

Because this function is a standard library function, you do not need to write the code
you only need to define its type and the correct parameters, then call it when necess

To use a math library function to print the square of a value:

Step 1 Edit the model.

Step 2 Edit the source file and type the following print action (shown in bold below) in the
P_agvsys arriving procedure for red loads:

if load type = L_red then

begin

inc C_red by 1/* a red load enters */

print “Reds in the system = ” C_red current value to LBL_red

set A_timestamp to ac

move into pm:red_on

travel to pm:red_insp

use R_insp for e 3 min

travel to pm:red_drop

dec C_red by 1/* subtract one red */

print “Reds in the system = ” C_red current value to LBL_red

call S_updatesystem

tabulate F_time(A_timestamp) in T_redsystime

 print this load A_timestamp as .2, “squared =”, pow(A_timestamp,2.0)
as .2 to message

send to die

end

This statement prints the red load’s current timestamp and the current timestamp squ
each rounded to two decimal places.

Step 4 From the File menu, select Save & Quit. The Error Correction window opens, telling you
that “pow” is undefined.

Step 5 Click Define and select Function from the Define as drop-down list. Click Define.

Step 6 Name the function “pow” and select Real from the Type drop-down list.

Step 7 To define the first parameter, click New. The Define a Parameter window opens.

Step 8 Name the parameter “base” and define it as type Real. Click OK, New.

Step 9 Define the second parameter, named “power,” also of type Real. Click OK to close the
Define a Parameter window.

Step 10 Click OK to define the function.

Step 11 Export and run the model. Watch the Message window. The time in system squared i
printed to the Message window for red loads.
rev 1.0 14.25

Additional Features Getting Started with AutoMod
Summary
This chapter has given you a brief overview of several additional features that you can use
as you develop more detailed models.

Counters can be used to track custom statistics. Counters are similar to variables, except
counters have capacity.

Data, such as text and counter values, can be printed to the screen using labels. You can
adjust the color, size, and position of labels the same way you can change the graphics for
other entities in a model.

You can tabulate user-defined statistics in tables to gather mean, standard deviation, and fre-
quency information.

Subroutines help you modularize and reuse code. Functions perform calculations and return
a value that you can use in the simulation.
14.26 rev 1.0

Getting Started with AutoMod Additional Features

rate
bles

e Sim-

and

lue

ble

.

distri-

y dis-

 values.
Exercises

Exercise 14.1

Copy your solution model to exercise 12.2 to a new directory. Edit the copied model and
define seven vehicles in the path mover system, then complete the following:

a) Generate a table with tabulated values for each load’s total time in system. Gene
additional tables that categorize each load’s total time in system by load type. All ta
must have 8 bins and not more than 5 percent of the entries in overflow.

b) Use labels to print the tabulated average time that loads spend in the system to th
ulation window. Update the printed value each time ten loads leave the system.

Run the simulation for five days.

Exercise 14.2

Copy your solution model to exercise 12.3 to a new directory. Edit the copied model
define seven vehicles in the path mover system, then complete the following:

a) Define a counter to track the total number of loads currently in the system.
b) Use labels to display the counter’s value in the Simulation window. Update the va

each time a load enters or leaves the system.
c) Generate a table with tabulated values for each load’s total time in system. The ta

must have 10 bins and not more than 5 percent of the entries in overflow.
d) Model the load’s processing and inspection activities in two separate subroutines

Run the simulation for five days.

Exercise 14.3

Create a new model and generate 10,000 random numbers for each of the following
butions:

a) Uniformly distributed values between 0 and 1.
b) Uniformly distributed values between 8 and 12.
c) Normally distributed values with a mean of 10 and a standard deviation of 0.667
d) Exponentially distributed values with a mean of 10.

Tabulate the values from each distribution in one of four tables that are distinguished b
tribution type. Do not allow more than 5 percent of the entries in overflow.

Create a business graph for each distribution that displays a bar chart of the tabulated
rev 1.0 14.27

Additional Features Getting Started with AutoMod
14.28 rev 1.0

Getting Started with AutoMod Warmup Analysis Using AutoStat

.. 15.8

.. 15.9
15.10
. 15.11
. 15.12
15.12
15.13
15.15
15.18
15.20

15.21
15.22
15.22

15.24
15.24
15.25
15.27
Chapter 15

Warmup Analysis Using AutoStat

Understanding when a warmup determination is necessary 15.4

Using graphs to determine warmup time.. 15.4

Preventing statistical inaccuracy when using random numbers 15.6

Understanding warmup parameters ... 15.7

Guidelines for setting warmup parameters .. 15.7
Setting the snap length .. 15.7
Setting the number of snaps .. 15.7
Setting the number of replications .. 15.8
Setting a warmup graph’s averaging window...

Adjusting warmup parameters .. 15.8

Determining warmup times for systems with classic warmup behavior.................. 15.9
Example 15.1: Classic warmup behavior..
Defining a warmup analysis..
Changing the seed increment ...
Defining responses ...
Viewing the warmup graph ...
Determining when the response “Average in system” warms up

Changing the Y axis scale..
Determining when the remaining responses warm up ..
Setting the model’s default warmup time ...

Determining that a system is explosive.. 15.21
Example model 15.2: Explosive warmup behavior ..
Defining the warmup analysis...
Analyzing the warmup graph for example model 15.2...

Determining warmup times for cyclical systems.. 15.24
Example model 15.3: Cyclical warmup behavior ...
Defining the warmup analysis...
Analyzing the warmup graph for example model 15.3...

Performing more replications ..
rev 1.0 15.1

Warmup Analysis Using AutoStat Getting Started with AutoMod
Determining warmup times for systems with extreme variation15.28
Example 15.4: Extreme variation warmup behavior ...15.28
Defining the warmup analysis ...15.28
Analyzing the warmup graph for example model 15.4 ...15.29

Summary ..15.35

Exercises ...15.36
Exercise15.1...15.36
Exercise 15.2..15.36
Exercise 15.3..15.36
Exercise 15.4..15.37
Exercise 15.5..15.37
Exercise 15.6..15.37
Exercise 15.7..15.37
Exercise 15.8..15.37
Exercise 15.9..15.38
15.2 rev 1.0

Getting Started with AutoMod Warmup Analysis Using AutoStat

rinci-
move
. In
ng a
d anal-

rmup
n for

odels:

ion of
Chapter 15

Warmup Analysis Using AutoStat

As discussed in “Terminating versus non-terminating systems” on page 1.27 of the “P
ples of Simulation” chapter, when simulating a non-terminating system, you need to re
the effects of a model’s initial conditions to accurately study its steady-state behavior
AutoStat, the process of removing initial bias from a model is accomplished by defini
warmup snap for a model. Statistics gathered during the warmup snap are deleted, an
ysis is based on the subsequent snap’s statistics.

Until now, whenever you have conducted an analysis in AutoStat, you were told the wa
time for the model. But it is important that you be able to perform warmup determinatio
your own projects as a simulation analyst.

This chapter discusses how to determine the warmup time for four different types of m

• Systems with “classic” warmup behavior
• Explosive systems
• Cyclical systems
• Systems with extreme variation

For each type of system, the chapter gives guidelines for making a sound determinat
the warmup period.
rev 1.0 15.3

Warmup Analysis Using AutoStat Getting Started with AutoMod

nci-
le, if
eter-

w set

epend-
tarts
e.

alysis
 in
h
 after

alysis
armup
ics of
st accu-
 one

ot. The
n
 are
Understanding when a warmup determination is necessary
A warmup analysis is used to estimate how long it takes a system to reach steady state.
Some models require a warmup time and some do not.

As described in “Terminating versus non-terminating systems” on page 1.27 of the “Pri
ples of Simulation” chapter, terminating systems do not require a warmup. For examp
you are studying a bank, which starts empty of customers each day, or are trying to d
mine the throughput for one 8-hour cycle in a distribution center that begins with a ne
of orders each day, a warmup time is not necessary.

Non-terminating systems, on the other hand, may or may not need a warmup time, d
ing on whether you are analyzing them during steady-state behavior. If a simulation s
with the system empty and idle, then you need to determine the system’s warmup tim

If you are not concerned with steady-state analysis, but with other conditions, your an
may not require a warmup. For example, if you are studying a manufacturing system
which you are trying to understand how the system recovers from the insertion of rus
orders, or a fiberglass-manufacturing firm when studying the transition to steady state
a forced shut down, you may not need a warmup period.

Using graphs to determine warmup time
After many years of research in simulation, and several attempts to base warmup an
on a statistical test, most simulation analysts now agree that the best way to make a w
determination is to use a graph of the responses for the model. Looking at the statist
interest and determining when they represent steady state behavior is the easiest, mo
rate way to determine when a system has warmed up. AutoStat uses graphs like the
shown below to help you determine warmup time:

Warmup graph in AutoStat

Sometimes it is easy to determine when a model has warmed up and sometimes it is n
first example model in this chapter, example model 15.1, illustrates the “ideal” case, i
which the time to reach steady state is obvious. Models with an obvious warmup time
referred to in this chapter as systems with classic warmup behavior.
15.4 rev 1.0

Getting Started with AutoMod Warmup Analysis Using AutoStat

 one
ff.
at they
ted.

p
ves
ea for
deliv-
al
der-

ut it
Many models do not demonstrate an obvious warmup, however. For example, in an explo-
sive system, the utilization of one or more resources, is greater than or equal to 1 (as dis-
cussed in “Queueing theory” on page 1.30 of the “Principles of Simulation” chapter). So
or more queues grow without bound, and the corresponding responses never level o
Explosive models by definition never reach steady state, and must be changed so th
are no longer explosive before a warmup or any other type of analysis can be conduc

Some systems have cyclical behavior, for which it is more difficult to determine a warmu
time than a system with classic warmup behavior. Suppose there is a vehicle that mo
material in the facility and that every eight hours the vehicle goes to a battery swap ar
30 minutes. During the time the vehicle’s battery is being replaced, loads waiting to be
ered stack up. It may take hours to work off the backlog once the vehicle is operation
again. This cyclical behavior is the steady state operation of the system, and can be un
stood with analysis.

Some models demonstrate extreme variability, in which behavior varies widely. It takes
more analysis to perform warmup determination for models with extreme variability, b
can be done.

ρ,
rev 1.0 15.5

Warmup Analysis Using AutoStat Getting Started with AutoMod

m

an the
 set
 15.11.
Preventing statistical inaccuracy when using random numbers
In the AutoMod software, whenever you use a random number for events such as load cre-
ation rates, machine failures, processing times, and so on, AutoMod gets the random number
from a random stream of numbers. A random stream is a series of approximately 2.1 billion
numbers that are statistically random and repeatable.

When conducting statistical analysis on a model with AutoStat, you must ensure that no ran-
dom numbers are reused between replications; otherwise, the results from the runs may be
correlated, causing statistical inaccuracy.

Random number reuse is also a concern if your model uses more than one random stream,
but using multiple streams is not discussed in this textbook. All random events in this text-
book are generated from a single default random stream, stream0.

For every replication of a model, AutoStat begins using random numbers at a specific loca-
tion in the random stream called the seed. To ensure that each replication uses unique ran-
dom numbers, you must define a seed increment value, which is the offset between starting
locations in the stream for each replication.

To determine the starting location in the random number stream for a run, AutoStat starts at
the beginning of the stream and increments by the seed increment value, which is 10,000 by
default. Therefore, the first replication uses random numbers beginning at the 10,001st ran-
dom number in the stream (the first 10,000 random numbers in the stream are not used). The
second replication uses random numbers beginning at location 20,001 in the stream, and so
on.

The seed increment must be large enough so that random numbers are not reused across
replications. If each replication uses fewer than 10,000 random numbers, for example 6,000,
the default seed increment value is adequate. For a model with 6,000 random events and a
seed increment of 10,000, the first replication would use the 10,001st to 16,001st random
numbers. The second replication would use the 20,001st to 26,001st random numbers, and
so on, and none of the random numbers would be reused.

However, if there are more than 10,000 random events in a replication, some of the random
numbers used for the first run would also be used for the second run, causing the results to
be correlated. For example, if a replication uses 17,000 random numbers, the second run
would use almost 7,000 of the same random numbers that were used in the first run.

If your model is using more than the default 10,000 random numbers, you must set the seed
increment value to a larger number. To determine how many random numbers your model
is using:

1. Run the model for the desired length of time.
2. Open the report file (see “Interpreting reports” on page 5.28 of the “Process Syste

Basics” chapter), then find the Total for Random Number Streams.
3. Set the seed increment in AutoStat to a value several thousand numbers larger th

number in the report file to allow for variations in the random distributions. How to
the seed increment value is discussed in “Changing the seed increment” on page

ote
Note
✎

15.6 rev 1.0

Getting Started with AutoMod Warmup Analysis Using AutoStat

at is
ls, to
 science,
 make,
hat
al

 you
is:

ndom

ultiple
he aver-

nse
ron-
tate
ination
ts, and
e cor-

th. The
nap. It
es,
nte-
only

p
ps are
Understanding warmup parameters
A warmup analysis consists of running the model and taking short “snapshots” of wh
happening over time. The snapshots are used to graph responses, such as WIP leve
determine when the model reaches steady state. The process is as much an art as a
because there are no fixed guidelines for how long to make a snap, how many runs to
and so on; you must learn through experience. Every model is different, as well, so w
works for one model may not work for another. However, this chapter provides gener
guidelines and examples to help you get started.

Later in this chapter you will learn how to define a warmup analysis in AutoStat. First
must understand the concepts and parameters involved in defining a warmup analys

Snap Length The length of time for a reporting period.

Number of
Snaps

The number of reporting periods for each replication.

Number of
Replications

The number of times that the model is run using different random numbers for each ra
event.

Averaging
Window

When viewing a warmup graph, you can choose to average response values from m
snaps together to help smooth the graph so that you can detect a trend more easily. T
aging window value is the number of response values to average.

Guidelines for setting warmup parameters
When performing a warmup analysis, you are looking for an underlying trend in respo
values amid “noise.”A good analogy is the “signal to noise” ratio from the field of elect
ics. You must differentiate between the response variations that are normal, steady-s
behavior and the response variations that represent a warmup trend. Warmup determ
is an iterative process that involves setting parameters, making runs, viewing the resul
repeating the process until you are confident that you have determined the warmup tim
rectly. To set warmup parameters initially, use the following guidelines.

Setting the snap length

Your knowledge of the system being modeled is necessary to estimate the snap leng
snap length should be long enough so that at least one load completes during each s
is preferable to have many loads complete in each snap. Other events, such as failur
should occur in every snap, as well. For example, for a model with 10 minutes of mai
nance occurring every 230 minutes, do not use a snap length of two hours, because
every other snap contains the maintenance event.

Setting the number of snaps

The more snaps you use, the more flexibility you will have when adjusting the warmu
graph. In order to have a meaningful graph, use a minimum of 20 snaps; 30 to 50 sna
preferable.
rev 1.0 15.7

Warmup Analysis Using AutoStat Getting Started with AutoMod

inter-

se
Setting the number of replications

The number of replications to use depends on the amount of variability in the output. The
higher the variability, the more replications that are required. Start with three replications,
and increase it if there is too much variability in response values to determine a warmup
trend.

The snap length, number of snaps, and number of replications are also affected by the speed
of your computer and the time that you have available for analysis. For example, suppose
you are conducting an analysis and are using 40 snaps of length 4 hours. If it takes your com-
puter 2 hours to make one replication, and you only have 8 hours to do the warmup analysis,
you are only going to be able to make 4 replications.

Setting a warmup graph’s averaging window

All warmup graphs use a default averaging window value of 5. Increase and decrease the
value of the averaging window in small increments to try to detect a trend. First, look at the
graph with an averaging window of 1 and 2. Then use a larger value, such as 10 or 15. With
the smaller window values, the graph will show high variability. With larger window values,
the graph will smooth out so much that the first few points are in the same range as the rest
of the graph, making it impossible to detect the transient phase. Choose an averaging win-
dow value between the high and low that results in both an obvious initial phase and a uni-
form steady state.

The appropriate value of the averaging window is related to the inherent variability in the
output and the snap length. If changing the window value does not help you make a warmup
determination, it may be necessary to adjust the warmup parameters, as discussed next.

Adjusting warmup parameters
Ideally, at least two-thirds of the data in the warmup graph should show steady-state behav-
ior. If there is not enough data to make the steady state twice as long as the warmup time, or
if you cannot detect an obvious warmup time, adjust the warmup parameters as follows:

1. If there is not enough data in steady state, increase the number of snaps.
2. If you think that the model has not reached steady state, increase the run length by

increasing either the number of snaps, the snap length, or both.
3. If you suspect that the system has reached steady state but you are not sure, increase

the number of replications to reduce the variability of the graph.

When adjusting warmup parameters, use the following guidelines:

Number of
Snaps

AutoStat becomes slower as the number of snaps increases, because it must write reports
more often. Therefore, for faster analysis, use the fewest number of snaps you need. In many
instances, you should not need more than 60 snaps.

Snap Length You can adjust the snap length in the graph using the averaging window value if you have
enough snaps defined. For example, suppose that there are 50 snaps in each replication, and
each snap is 2 hours long. When the averaging window value is 1, each data point represents
1 snap, or 2 hours. If you want the snap length to be 4 hours, set the averaging window value
2 to avoid additional simulation. Remember, though, that too few points can flatten the
graph too much. In such cases, additional simulation is necessary.

Number of
Replications

As was true for confidence intervals, you can cut variability of warmup data in half by
increasing the number of replications by a factor of 4 (see “Narrowing the confidence
val” on page 8.14 of the “Basic Statistical Analysis Using AutoStat” chapter).

The remainder of this chapter uses example models to demonstrate how to apply the
guidelines when analyzing the warmup time for different types of systems.

ote
Note
✎

15.8 rev 1.0

Getting Started with AutoMod Warmup Analysis Using AutoStat

mon-

 with
 by one
oads
. The
Determining warmup times for systems with classic warmup behavior
Simulation textbooks often show warmup graphs that have a warmup trend that is easy to
detect. The first example model demonstrates such a “classic” warmup graph and de
strates how to determine a warmup time for a system with classic warmup behavior.

Example 15.1: Classic warmup behavior

In example model 15.1, loads have an interarrival rate that is exponentially distributed
a mean of one minute. Loads travel to a processing center, where they are processed
of eight workers for a time that is uniformly distributed between 0 and 12 minutes. The l
are then sent to an output queue, where they wait for one hour, then leave the system
average number of loads in the output queue equals throughput per hour.

Step 1 Import a copy of the base version of example model 15.1.

The loads travel through the system using the conveyor shown below:

Example model 15.1: layout

The logic for the model is shown below:

begin P_init arriving

while 1=1 do

begin

clone 1 load to P_process

wait for e 1 min /* interarrival time */

end

end

begin P_process arriving

move into Q_get_on

move into conv:get_on

travel to conv:work_in

move into Q_work_in

use R_work for u 6,6 min

move into Q_work_out

move into conv:work_out

travel to conv:get_off

move into Q_out

wait for 1 hr

send to die

end

Loads enter the
system here

This queue
represents
throughput
per hour

Loads are
processed by an
operator here

Q_get_on

Q_work_in Q_work_out

R_work

Q_out

get_offwork_outwork_in

get_on
rev 1.0 15.9

Warmup Analysis Using AutoStat Getting Started with AutoMod

ngth)

quate

nough
Step 2 From the Model menu, select Run AutoStat, then click Yes to build the model. The AutoStat
Setup wizard opens.

Step 3 Set up the model using the following parameters:

• Model is random
• Do not check for infinite loops
• Do not define a warmup (you will conduct an analysis to determine the warmup le
• Snap length is 2 hours (a load finishes in less than 2 hours)

Defining a warmup analysis

To define a warmup analysis:

Step 1 From the Create New Analysis of Type drop-down list, select Warmup.

Step 2 Click New. The Warmup Analysis window opens.

Warmup analysis window

Step 3 Name the analysis “Example 15.1 warmup”.

By default, the number of replications is 5 and the number of snaps is 40, which is ade
for this analysis. You need to make the snap length longer, however.

Step 4 Change the Snap Length from 0.2 hours to 2 hours.

Step 5 Click OK to close the Warmup Analysis window.

Before making runs, you must edit the seed increment value to ensure that there are e
unique random numbers.
15.10 rev 1.0

Getting Started with AutoMod Warmup Analysis Using AutoStat

age
dom
lation

s are
tions
larger.
Changing the seed increment

As discussed in “Preventing statistical inaccuracy when using random numbers” on p
15.6, when using AutoStat for any kind of analysis, you must determine how many ran
numbers your model is using and adjust the seed increment accordingly to avoid corre
between replications.

The report file for this model indicates that for an 80 hour run, 9,567 random number
used, which is too close to the default seed increment value of 10,000 to allow for varia
as you experiment with the model. Therefore, you need to make the increment value

To set the seed increment for the model to 12,500:

Step 1 From the Properties menu, select Edit Model Properties. The Model Properties window
opens.

Step 2 Change the Seed Increment to “12500,” as shown below:

Changing the seed increment value for AutoStat

Step 3 Click OK.

Step 4 From the Execution menu, select Do All Runs. While AutoStat is making runs, you can
define the responses you will use to analyze the model’s warmup behavior.

Edit the seed
increment
value to 12500
rev 1.0 15.11

Warmup Analysis Using AutoStat Getting Started with AutoMod
Defining responses
The responses you need to determine the warmup time are the average number of loads in
the system (average for the process P_Process), the average number of loads in the queue
Q_out (throughput per hour), and the utilization of the workers.

To define the responses:

Step 1 Click the Responses tab.

Step 2 Click New to create a new response of type AutoMod Response. The AutoMod Response
window opens.

Step 3 Name the response “Average in system”.

Step 4 Select the system “Proc,” the process “P_Process,” and the statistic “Ave.”

Step 5 Click OK, New to define the next response (the average number of loads in Q_out):

Step 6 Name the response “Q_out average”.

Step 7 Select the system “Proc,” the queue “Q_out,” and the statistic “Ave.”

Step 8 Click OK, New to define the next response (worker utilization):

Step 9 Name the response “Worker utilization”.

Step 10 Select the system “Proc,” the resource “R_work,” and the statistic “Util.”

Step 11 Click OK.

Now you can view the warmup graph (even if the runs have not finished).

Viewing the warmup graph
To view the warmup graph for this analysis:

Step 1 Click the Analysis tab.

Step 2 Expand the analysis for “Example 15.1 warmup” and double-click Warmup Graph. The
warmup graph is displayed.

Example model 15.1 initial warmup graph
15.12 rev 1.0

Getting Started with AutoMod Warmup Analysis Using AutoStat

e in

ads in
erage
umber

s vary
s, the
 warms
 nec-
Determining when the response “Average in system” warms up

To begin analyzing the responses to determine steady state, display only the “Averag
system” response:

Step 1 Clear the check boxes for Q_out average and Worker utilization.

Now, look at the “raw” data by setting the averaging window value to 1:

Step 2 Change the averaging window value from “5” to “1,” then press Tab. The graph is updated
as shown below:

Average in system with an averaging window of 1

When the averaging window is 1, each data point represents the average number of lo
the system for a two hour period of time (the snap length). The first data point is the av
number of loads in system for the first 2 hours. The second data point is the average n
of loads in the system between 2 hours and 4 hours, and so on.

The first response value is between 52 and 54. Starting with the second point, the value
from approximately 64 to 79. Based on this graph, it seems that after the first two hour
response value fluctuates within a stable range of values, indicating that the response
up after two hours. However, there is quite a lot of variation, so further examination is
essary.
rev 1.0 15.13

Warmup Analysis Using AutoStat Getting Started with AutoMod

 4
s). The
urs).

9. The
aph’s
Step 3 Change the averaging window value from “1” to “2,” then press Tab. The graph is updated
as shown below:

Average in system with an averaging window of 2 (Y axis scale has changed)

Each data point is now the average of two snaps. The first point is now drawn at time
hours, because it is the average of the first two 2-hour snaps (0-2 hours and 2-4 hour
second data point is the average of the second and third snaps (2-4 hours and 4-6 ho

Notice, however, the Y axis scale has changed from the previous graph’s scale of 52-7
change in scale makes it difficult to compare the two graphs. Therefore, adjust this gr
scale, as described next.
15.14 rev 1.0

Getting Started with AutoMod Warmup Analysis Using AutoStat
Changing the Y axis scale
Whenever you change the averaging window, AutoStat automatically scales the graph based
on the new high and low values. However, for warmup determination, in order to detect a
trend, all graphs need to use the same scale.

To change the Y axis scale:

Step 1 Double-click a value on the left (Y) axis. The Y Axis Properties window opens.

Step 2 Click the Scale tab.

Step 3 Define the Minimum as 52 and Maximum as 79, as shown below:

Changing the Y axis scale values

Step 4 Click OK. The graph is updated as shown below:

Average in system with an averaging window of 2 (Y axis scale adjusted)

When this graph is compared to the original graph with an averaging window of 1, you can
see that this graph is smoother. This graph makes it easier to see an initial rise in the response
value and a steady variation in the response for the remainder of the graph.
rev 1.0 15.15

Warmup Analysis Using AutoStat Getting Started with AutoMod
Step 5 Change the averaging window value from “2” to “5,” then press Tab.

Step 6 Adjust the Y scale to range from 52 to 79. The graph is updated as shown below:

Average in system with an averaging window of 5 (Y axis scale adjusted)

The graph is getting smoother.

Step 7 Change the averaging window value from “5” to “10,” then press Tab.

Step 8 Adjust the Y scale to range from 52 to 79. The graph is updated as shown below:

Average in system with an averaging window of 10 (Y axis scale adjusted)

The graph is getting very flat. It is hard to detect any variation.
15.16 rev 1.0

Getting Started with AutoMod Warmup Analysis Using AutoStat

lost.
ysis,
 at all.

odel
 hours.
d 76.

rently

 is the
state
2 and

lysis,
tem, to
ally

 esti-
Step 9 Change the averaging window value from “10” to “20,” then press Tab.

Step 10 Adjust the Y scale to range from 52 to 79. The graph is updated as shown below:

Average in system with an averaging window of 20 (Y axis scale adjusted)

When the averaging window is 20, the graph is almost a flat line. All detail has been
You can see that while small adjustments to the averaging window can help the anal
adjusting the value too much (in this case, windows of 10 and 20) eliminates any trend

Use the graph with an averaging window of 2 to determine the warmup time for this m
(see the graph on page 15.15). As discussed earlier, the warmup time appears to be 2
After the initial rise in the response value, the values fluctuate steadily between 66 an

To determine the warmup time based on the windowing average and snap length cur
being used in this graph, use the following formula:

where “Steady state time” is the time at which you believe steady state begins and “w”
averaging window value currently in use in the graph. Using the window of 2, steady
occurs at time 6 hours (the time for the second data point). The averaging window is
the snap length is also 2. So:

or

Therefore, the warmup for this response is 2 hours. When conducting a warmup ana
you must use all available responses, such as WIP levels at various points in the sys
ensure that you are getting the entire picture. One or even two responses are not usu
enough in real-world models.

Therefore, look at the remaining two responses to confirm or refine the 2-hour warmup
mate for this model.

Warmup time Steady state time w Snap length×–=

Warmup time 6 2 2×–=

Warmup time 2=
rev 1.0 15.17

Warmup Analysis Using AutoStat Getting Started with AutoMod

cted).

 time

time,
quickly
 truly
gh
Determining when the remaining responses warm up

When performing warmup determination, whatever is the longest time for any of the
responses to warm up is the warmup time you should use for the model. After analyzing the
first response, Average in system, the model appears to warm up in 2 hours. Now look at the
Q_out average response to see whether the 2 hour estimate changes.

Step 1 Select the “Q_out average” response (the “Average in system” response is already sele

Step 2 Change the averaging window value from “20” to “1,” then press Tab. The graph is updated
as shown below:

Q_out average with an averaging window of 1

The two responses are almost parallel. Therefore, you can conclude that the warmup
for the response “Q_out average” is also 2 hours.

There is one more response to check for the warmup analysis: Worker utilization.

Utilization of people and equipment should not be used by itself to determine warmup
as it almost always reaches steady state. Utilization often reaches steady-state more
than WIP levels, too, which may cause you to think the warmup time is shorter than it
is. However, utilization is a useful response for confirming information gathered throu
other responses, such as WIP levels.

ote
Note
✎

15.18 rev 1.0

Getting Started with AutoMod Warmup Analysis Using AutoStat

it is

tarts

To view the “Worker utilization” response:

Step 3 Deselect the first two responses in the Responses list.

Step 4 Select the “Worker utilization” response. The graph is updated as shown below:

Worker utilization with an averaging window of 1

The worker utilization varies between 0.67 and 0.83. There is so much variation that
hard to tell whether the response ever reaches a steady state.

Step 5 Change the averaging window value from “1” to “5,” then press Tab.

Step 6 Adjust the Y scale to range from .67 to .83. The graph is updated as shown below:

Worker utilization with an averaging window of 5 (Y axis scale adjusted)

This graph shows that the variation is predictable, indicating that resource utilization s
in steady state and continues that way. Therefore, based on the analysis of the three
responses, the warmup time for the model is 2 hours.
rev 1.0 15.19

Warmup Analysis Using AutoStat Getting Started with AutoMod

” war-
ires
Setting the model’s default warmup time

Once you have determined the warmup time for a model, set the default warmup time to that
value, so that all of your analyses use the correct warmup time.

To set the warmup time for the model to 2 hours:

Step 1 Enter the warmup time as 2 hours in the bottom of the warmup graph, as shown below:

Setting the default warmup time from the warmup graph

Step 2 Click Set Default Warmup Time. The default in the Model Properties window is updated.
Once the time is set in the model properties, all subsequent analyses will use the specified
warmup time. Statistics gathered during the initial transient warmup phase are discarded,
and all of the summary statistics and other reports show only the statistics gathered during
steady state.

You have successfully determined the warmup time for a system that exhibits “classic
mup behavior. Now you will move on to systems for which warmup determination requ
more analysis.

Set the default
warmup time here
15.20 rev 1.0

Getting Started with AutoMod Warmup Analysis Using AutoStat

er,

at can
r a

stem
 war-

t

ngth)
Determining that a system is explosive
Systems that are explosive never reach steady state. Loads continually back up in one or
more locations. You may not realize that your model has a problem like this until you start
analyzing it in AutoStat. Therefore, it is important to recognize whether response values are
indicating that steady state has been reached or whether loads are backing up.

In order to conclude that a model has warmed up to a steady state, you must review all
responses, including WIP levels at various queues throughout the system. Unless all
responses level off, the model has not reached steady state.

Models that are explosive must be made stable before you conduct statistical analyses. No
real-world system is explosive, and therefore an explosive model is not accurate. You should
not perform any analyses using an explosive model until you have made it stable.

Example model 15.2: Explosive warmup behavior

Example model 15.2 is the same process as example model 15.1. However, the time that the
workers take to process a load has been changed from:

use R_work for u 6,6 min

to:

use R_work for u 9,9 min

As illustrated in “Queueing theory” on page 1.30 of the “Principles of Simulation” chapt
resource utilization for multiple operators is calculated as:

where:

 = server utilization

 = arrival rate

 = number of servers

 = service rate

In this model, loads arrive for service at a rate of 1 per minute. There are 8 workers th
each service a load in a time that is uniformly distributed with a mean of 9 minutes, fo
service rate of 1/9 per minute. Therefore:

 = 1/[8(1/9)] = 9/8 = 1.125

In this example model, operator utilization is greater than 1, which indicates that the sy
is explosive. The model’s explosive behavior will become apparent as you conduct the
mup analysis.

Step 1 Import a copy of the base version of example model 15.2 in AutoMod.

Step 2 From the Model menu, select Run AutoStat, then click Yes to build the model. The AutoSta
Setup wizard opens.

Step 3 Set up the model using the following parameters:

• Model is random
• Do not check for infinite loops
• Do not define a warmup (you will conduct an analysis to determine the warmup le
• Snap length is 2 hours

ρ λ
cµ
------=

ρ

λ

c

µ

ρ

rev 1.0 15.21

Warmup Analysis Using AutoStat Getting Started with AutoMod

es” on

del:

here
Defining the warmup analysis

Example model 15.2 uses the same warmup analysis information that you used for example
model 15.1.

Step 1 Define a warmup analysis for example model 15.2 with a snap length of 2 hours (use the
default of 5 replications and 40 snaps).

Step 2 Set the seed increment value to 12,500.

Step 3 Define the same responses as you did for example model 15.1 (see “Defining respons
page 15.12):

• Average in system
• Q_out average
• Worker utilization

Step 4 Make all the runs.

Analyzing the warmup graph for example model 15.2

Once responses have been defined, you can begin analyzing the warmup for this mo

Step 1 Display the warmup graph for the response “Average in system.”

Step 2 Change the averaging window value from “5” to “1,” then press Tab. The graph is updated
as shown below:

Average in system with an averaging window of 1

Immediately, you can see that the response “Average in system” is growing steadily. T
is no leveling off after 80 hours of simulation.
15.22 rev 1.0

Getting Started with AutoMod Warmup Analysis Using AutoStat

 for
heck

n

all of the
 to be
Now check the utilization response:

Step 3 Deselect the “Average in system” response.

Step 4 Select “Worker utilization.” The graph is updated as shown below:

Worker utilization with an averaging window of 1

The utilization rapidly grows to 1.0, the highest utilization possible, and remains there
the entire simulation. This response is confirming that the system is explosive. Now c
the final response.

Step 5 Deselect “Worker utilization” and select “Q_out average.” The graph is updated as show
below:

Q_out average with an averaging window of 1

The Q_out average response value seems to be more steady. However, because not
responses level off, the system does not have a steady state. The model would need
examined and corrected before further analysis could be conducted.
rev 1.0 15.23

Warmup Analysis Using AutoStat Getting Started with AutoMod

ample

 the

es” on
Determining warmup times for cyclical systems
Some systems have cyclical behavior, such as cyclical down times, grouped start times for
lots, and so on. These systems have regular fluctuations that, with analysis, can be detected
and understood in a warmup analysis.

Example model 15.3: Cyclical warmup behavior

Example model 15.3 is the same process as example model 15.1. However, a break has been
defined for the workers, as shown below:

begin P_break arriving

while 1=1 do

begin

wait for 200 min /* Time between breaks */

take down R_work

wait for 40 min /* Break time */

bring up R_work

end

end

The time between breaks and the length of the breaks are both constant.

To analyze this model with a cyclical break:

Step 1 Import a copy of the base version of example model 15.3 in AutoMod.

Step 2 From the Model menu, select Run AutoStat, then click Yes to build the model. The AutoStat
Setup wizard opens.

Step 3 Set up the model using the following parameters:

• Model is random
• Do not check for infinite loops
• Do not define a warmup
• Snap length is 2 hours

Defining the warmup analysis

Example model 15.3 uses the same warmup analysis information that you used for ex
model 15.1.

Step 1 Define a warmup analysis for example model 15.3 with a snap length of 2 hours (use
default of 5 replications and 40 snaps).

Step 2 Set the seed increment value to 12,500.

Step 3 Define the same responses as you did for example model 15.1 (see “Defining respons
page 15.12):

• Average in system
• Q_out average
• Worker utilization

Step 4 Make all the runs.
15.24 rev 1.0

Getting Started with AutoMod Warmup Analysis Using AutoStat

 the
”

n page

n the
ngth is
ne of
.
 covers
Analyzing the warmup graph for example model 15.3

Once the responses have been defined, you can begin analyzing the warmup for this model:

Step 1 Display the warmup graph for the response “Average in system.”

The warmup analysis for this model and the next (example model 15.4) are based on
response “Average in system.” Analyzing the “Q_out average” and “Worker utilization
responses for both examples are left as exercises for the chapter (See “Exercises” o
15.36).

Step 2 Change the averaging window value from “5” to “1,” then press Tab. The graph is updated
as shown below:

Average in system with an averaging window of 1

The graph has pronounced peaks and valleys, which are caused by the time betwee
breaks and the break itself. The break interval spans a time of 4 hours, but the snap le
only 2 hours. Therefore, only every other snap is capturing the break. This violates o
the guidelines described in “Guidelines for setting warmup parameters” on page 15.7
Therefore, you need to adjust the snap length to be at least 4 hours so that each snap
an entire break cycle.

ote
Note
✎

rev 1.0 15.25

Warmup Analysis Using AutoStat Getting Started with AutoMod

ion.
d off.

 you
Use the averaging window value to change the snap length to 4 hours:

Step 3 Change the averaging window value from “1” to “2,” then press Tab. The graph is updated
as shown below:

Average in system with an averaging window of 2

The values vary from 61 to 97. The graph is a little smoother, but still has wide variat
The last peak is higher than the first, which indicates that the response has not levele

Step 4 Change the averaging window value from “2” to “6,” then press Tab.

Step 5 Adjust the Y scale to range from 61 to 97. The graph is updated as shown below:

Average in system with an averaging window of 6

There is a still an upward trend at the end of the graph. From the current information,
cannot make a determination.

Step 6 Close the graph.
15.26 rev 1.0

Getting Started with AutoMod Warmup Analysis Using AutoStat

when
re repli-
by
e 15

n

eaches
 from
Performing more replications
It is possible that the model has reached steady state, but you cannot be sure from the data
available. As discussed in “Guidelines for setting warmup parameters” on page 15.7,
you are not confident that the model has reached steady state, you need to make mo
cations. Increasing the number of replications by a factor of 4 reduces the variability
approximately half. You have made 5 replications so far. Therefore, you need to mak
additional replications.

Step 1 Edit the warmup analysis.

Step 2 Change the Number of Replications from 5 to 20.

Step 3 Click OK, Do These Runs. AutoStat makes 15 additional runs.

When the runs have finished, display the warmup graph:

Step 1 Display the warmup graph for the response “Average in system.”

Each point is now the average of 20 snaps, instead of 5.

Step 2 Change the averaging window value to “6,” then press Tab. The graph is updated as show
below:

Average in system with an averaging window of 6 for 20 replications

This graph has much less variation than before. Based on this response, the model r
steady state after about the third data point (16 hours). To determine the warmup time
this graph, use the warmup formula:

For this model:

Therefore, based on this response, the warmup time for the model is 4 hours.

Warmup time Steady state time w Snap length×–=

16 6 2×()– 4=
rev 1.0 15.27

Warmup Analysis Using AutoStat Getting Started with AutoMod

as
ecause

 the

es” on
Determining warmup times for systems with extreme variation
Sometimes response values for a model can vary even more widely than they did in the
cyclical example model 15.3. It can be difficult to determine a warmup time for models with
extreme variation. Example 15.4 will help illustrate how to analyze such models.

Example 15.4: Extreme variation warmup behavior

Example model 15.4 is the same process as example model 15.3. However, the break cycle
for the workers has been changed to use times that are exponentially distributed, as shown
below:

begin P_break arriving

while 1=1 do

begin

wait for e 200 min /* Time between breaks */

take down R_work

wait for e 40 min /* Break time */

bring up R_work

end

end

The exponential times cause much wider variation than the constant breaks in example
model 15.3.

To analyze example model 15.4:

Step 1 Import a copy of the base version of example model 15.4 in AutoMod.

Step 2 From the Model menu, select Run AutoStat, then click Yes to build the model. The AutoStat
Setup wizard opens.

Step 3 Set up the model using the following parameters:

• Model is random
• Do not check for infinite loops
• Do not define a warmup
• Snap length is 4 hours

Defining the warmup analysis

Example model 15.4 will use new warmup analysis information, because the model h
more variation and uses more random numbers than it did in the previous examples. B
of the greater variability in the breaks, the snaps need to be longer, as well.

Step 1 Define a warmup analysis for example model 15.4 with a snap length of 4 hours (use
default of 5 replications and 40 snaps).

Step 2 Set the seed increment value to 75,000.

Step 3 Define the same responses as you did for example model 15.1 (see “Defining respons
page 15.12):

• Average in system
• Q_out average
• Worker utilization

Step 4 Make all the runs.
15.28 rev 1.0

Getting Started with AutoMod Warmup Analysis Using AutoStat

ging

nalyz-
he

h indi-
eters”
 length
Analyzing the warmup graph for example model 15.4

Once the runs have finished, you can begin analyzing the warmup for this model:

Step 1 Display the warmup graph for the response “Average in system” with the default avera
window value of 5.

The warmup analysis for this model is based on the response “Average in system.” A
ing the “Q_out average” and “Worker utilization” responses is left as an exercise for t
chapter (See “Exercises” on page 15.36).

The graph is shown below:

Average in system with a snap length of 4 hours and an averaging window of 5

This response has large variation, and ends at a much higher level than it begins, whic
cates that steady state has not been reached. According to “Adjusting warmup param
on page 15.8, when steady state has not been reached, you need to increase the run
by either increasing the number of snaps, increasing the snap length, or both.

Step 2 Close the warmup graph.

ote
Note
✎

rev 1.0 15.29

Warmup Analysis Using AutoStat Getting Started with AutoMod

m var-
crease
For this model, increase the snap length to 12 hours:

Step 1 Edit the warmup analysis.

Step 2 Change the snap length to 12 hours.

Step 3 Click OK, Do These Runs.

Step 4 Display the warmup graph for the response “Average in system.”

Step 5 Change the averaging window value from “5” to “1,” then press Tab. The graph is updated
as shown below:

Average in system with a snap length of 12 and an averaging window of 1

The graph is still not showing a steady state. The average number of loads in the syste
ies almost as much at the end of the graph as it does at the beginning. In order to de
variability, you need to increase the run length more.

Step 6 Close the warmup graph.
15.30 rev 1.0

Getting Started with AutoMod Warmup Analysis Using AutoStat

s too
e vari-
Because the model has such wide variation, increase the number of replications to 20 to
decrease the variability by half:

Step 1 Edit the warmup analysis.

Step 2 Change the number of replications to 20.

Step 3 Click OK, Do These Runs. AutoStat makes 15 additional runs.

Step 4 Display the warmup graph for the response “Average in system.”

Step 5 Change the averaging window value from “5” to “1,” then press Tab. The graph is updated
as shown below:

Average in system with 40 replications and an averaging window of 1

The graph shows a warmup trend at the beginning, but the rest of the graph still varie
widely to make a warmup determination. More replications are necessary to reduce th
ability.

Step 6 Close the warmup graph.
rev 1.0 15.31

Warmup Analysis Using AutoStat Getting Started with AutoMod

 values

ints
ble in
Increase the number of replications to 80 to decrease the variability by half:

Step 1 Edit the warmup analysis.

Step 2 Change the number of replications to 80.

Step 3 Click OK, Do These Runs. AutoStat makes an additional 60 runs.

Step 4 Display the warmup graph for the response “Average in system.”

Step 5 Change the averaging window value from “5” to “1,” then press Tab. The graph is updated
as shown below:

Average in system with 80 replications and an averaging window of 1

The additional replications have smoothed the end of the graph so that the response
appear to fluctuate within a steady range of values after the initial peak.

Additional replications could shorten the warmup time further. However, time constra
often require that you make a determination with data such as the data currently availa
this graph.
15.32 rev 1.0

Getting Started with AutoMod Warmup Analysis Using AutoStat
The point at which analysts would say that steady state begins in this graph is subjective;
some people choose the first point that falls within the range of values of steady state, while
others choose a point that is more clearly in steady state and falls approximately in the mid-
dle of the steady state range.

For example, some analysts might designate the point at the top of the first peak in the graph
the steady state point.

Step 1 Drag the mouse over the fourth data point, as shown below:

Using the mouse to determine the warmup time

Using this point, the warmup time is calculated as hours. The 48-hour
point eliminates the initial data points that range as low as 90. The fluctuations of the
remaining portion of the graph indicate that the average loads in system range from 117 to
161.

The ToolTip
contains the
X and Y
values of the
data point

48 1 12×()– 36=
rev 1.0 15.33

Warmup Analysis Using AutoStat Getting Started with AutoMod
Other analysts, however, might feel that 48 hours is not far enough into the graph to remove
all of the initial bias and might choose a later point, such as 130 hours, as shown below:

Choosing a later warmup time

Given the point at 130 hours, the warmup time is hours. The 130
hour point eliminates more of the initial fluctuations and narrows the range of the steady
state values by 10 loads. However, the longer warmup time of 118 hours increases the time
it will take to make all other analyses, because each replication must run for 118 hours
before beginning to collect statistics.

As an analyst, you would need to decide whether to make more replications to reduce vari-
ability further, or use one of the points in this graph as your warmup time. The speed of your
computer and the time you have available for completing all of your analyses may be decid-
ing factors in which approach you choose.

For larger models, making large numbers of runs may not be possible, given the time avail-
able, unless you make runs on more than one CPU. Making runs on multiple CPUs is dis-
cussed in the AutoStat online help.

130 1 12×()– 118=

ote
Tip

☞

15.34 rev 1.0

Getting Started with AutoMod Warmup Analysis Using AutoStat

r-

t be
eter-

rned

ak-
ject,

assic”
 war-

 for sta-
Summary
This chapter illustrates how to determine warmup times using the AutoStat software. Proper
warmup determination is important for statistical analysis of systems that do not begin in
steady state.

To conduct a warmup determination, you use a combination of several parameters: the num-
ber of replications, the snap length, the number of snaps, and the averaging window value.

This chapter discusses how to determine the warmup time for four different types of models:

• Systems with “classic” warmup behavior, for which the warmup time is easily dete
mined.

• Explosive systems, for which the model never warms up. Explosive systems mus
stabilized so that they are not explosive before any analyses, including warmup d
mination, are conducted or the results will be invalid.

• Cyclical systems, which illustrate a predictable level of variation that can be disce
with analysis.

• Systems with extreme variation, which require a large number of replications. If m
ing a large number of replications is not possible due to time constraints of the pro
making runs on multiple computers or CPUs can help.

Given enough analysis time, any system that reaches steady state could exhibit a “cl
warmup graph. In reality, time for analysis is finite; therefore, being able to determine
mup trends for different types of graphs is necessary for accurate modeling.

This chapter also discusses the importance of ensuring unique random number seeds
tistically sound analyses.
rev 1.0 15.35

Warmup Analysis Using AutoStat Getting Started with AutoMod

value,

 uni-
eue,
mly

 pro-
istrib-

e fol-

value,

expo-
eue,
th a

nses.

value,
ur deter-
Exercises

Exercise15.1

Create a new model in which loads arrive in the system with an interarrival time that is uni-
formly distributed between 20 and 30 minutes. The loads enter an infinite-capacity queue,
in which they are processed by a drill with a capacity of 2. It takes the drill a time that is
uniformly distributed between 21 and 33 minutes to process each load.

After being drilled, the loads move into an infinite-capacity queue, in which they are pro-
cessed by a grinder with a capacity of 4. It takes the grinder a time that is uniformly distrib-
uted between 36 and 60 minutes to process each load.

After building the model, perform a warmup analysis. Base the warmup analysis on the fol-
lowing responses:

• The average queue size for the drill
• The average queue size for the grinder
• The average number of loads in the system

Record the number of replications, number of snaps, snap length, averaging window
and seed increment used to make your determination.

Exercise 15.2

Create a new model in which loads arrive in the system with an interarrival time that is
formly distributed between 20 and 30 minutes. The loads enter an infinite-capacity qu
in which they are processed by a drill with a capacity of 2. It takes the drill a time unifor
distributed between 21 and 33 minutes to process each load.

After being drilled, the loads move into a queue with a capacity of 5, in which they are
cessed by a grinder with a capacity of 4. It takes the grinder a time that is uniformly d
uted between 36 and 60 minutes to process each load.

After building the model, perform a warmup analysis. Base the warmup analysis on th
lowing responses:

• The average queue size for the drill
• The average queue size for the grinder
• The average number of loads in the system

Record the number of replications, number of snaps, snap length, averaging window
and seed increment used to make your determination.

Exercise 15.3

Create a new model in which loads arrive in the system with an interarrival time that is
nentially distributed with a mean of 15 minutes. Loads move into an infinite-capacity qu
in which they are serviced by a machine for a time that is exponentially distributed wi
mean of 10 minutes.

After building the model, perform a warmup analysis. Determine the appropriate respo

Record the number of replications, number of snaps, snap length, averaging window
and seed increment used for your analysis, as well as the responses used to make yo
mination.
15.36 rev 1.0

Getting Started with AutoMod Warmup Analysis Using AutoStat

tes.

he

value,

ses

d on
up

ses

d on
up

odel?
Exercise 15.4

Create a new model in which loads arrive in the system with an interarrival time that is uni-
formly distributed between 5 and 25 minutes. Loads move into an infinite-capacity queue,
in which they are serviced by a machine with a capacity of 1 for a time that is uniformly
distributed between 3 and 21 minutes.

The machine’s time between failures is uniformly distributed between 40 and 70 minu
The time to repair the machine is uniformly distributed between 2 and 8 minutes.

After building the model, perform a warmup analysis. Base the warmup analysis on t
average number of jobs in the system.

Record the number of replications, number of snaps, snap length, averaging window
and seed increment used to make your determination.

Exercise 15.5

Copy the final version of example model 15.3 to a new directory. Define the two respon
that were not analyzed in the chapter:

• Q_out average
• Worker utilization

Make the runs for the defined warmup analysis. Determine the model’s warmup base
these responses and the “Average in system” response (described in “Analyzing the warm
graph for example model 15.3” on page 15.25).

Record the averaging window value used to make your determination.

Exercise 15.6

Copy the final version of example model 15.4 to a new directory. Define the two respon
that were not analyzed in the chapter:

• Q_out average
• Worker utilization

Make the runs for the defined warmup analysis. Determine the model’s warmup base
these responses and the “Average in system” response (described in “Analyzing the warm
graph for example model 15.4” on page 15.29).

Record the averaging window value used to make your determination.

Exercise 15.7

Why might two simulation analysts determine different warmup times for the same m

Exercise 15.8

There are two alternatives to conducting warmup determination:

1. Running an extremely long simulation.

2. Setting the system’s initial values to approximate steady state.

Why is warmup analysis used more often than these methods?
rev 1.0 15.37

Warmup Analysis Using AutoStat Getting Started with AutoMod

d to
t they

28.
Exercise 15.9

The warmup procedure used in this chapter is called Welch’s Method and is attribute
P.D. Welch. Look at one or more of the following or other sources and summarize wha
say about this technique:

Alexopoulos, C., and A.F. Seila [1998], “Output Data Analysis,” in Handbook of Simula-
tion, J. Banks, ed., John Wiley, New York, pp. 238-242.

Banks, J., J.S. Carson, II, B.L. Nelson, D.M. Nicol [2000], Discrete-Event System Simula-
tion, Prentice-Hall, Upper Saddle River, NJ, pp. 451-458.

Law, A.M. and W.D. Kelton [2000], Simulation Modeling and Analysis, 3rd Ed., New York:
McGraw-Hill.

Welch, P.D. [1983], “The Statistical Analysis of Simulation Results,” in The Computer Per-
formance Modeling Handbook, S. Lavenberg, ed., Academic Press, New York, pp. 268-3
15.38 rev 1.0

Getting Started with AutoMod References

ics

tion,”

.E.

d
-114.
References
Balci, O. (1988) “The Implementation of Four Conceptual Frameworks for Simulation
Modeling in High-level Languages,” in Proceedings of the 1988 Winter Simulation Confer-
ence, eds., M.A. Abrams, P.L. Haigh, J.C. Comfort, Institute of Electrical and Electron
Engineers, Piscataway, N.J., pp. 287-295.

Balci, O. (1998) “Verification, Validation, and Testing,” chapter 10 in Handbook of Simu-
lation: Principles, Methodology, Advances, Applications, and Practice, ed., Jerry Banks,
John Wiley & Sons, New York.

Banks, J., ed. (1998) Handbook of Simulation: Principles, Methodology, Advances, Appli-
cations, and Practice, John Wiley, New York.

Banks, J. and J. Dai (1997) “Simulation Studies of Multiclass Queueing Networks,” IIE
Transactions, March.

Banks, J., J.S. Carson II, and D. Goldsman (1998) “Discrete-Event Computer Simula
in Handbook of Statistical Methods for Engineers and Scientists, 2nd Ed.,
ed. H.M. Wadsworth, McGraw-Hill, New York.

Banks, J., J.S. Carson II, B.L. Nelson, and D.M. Nicol, (2000), Discrete-Event System Sim-
ulation, 3rd Ed., Prentice-Hall, Upper Saddle River, NJ.

Banks, J. and V. Norman (1995) “Justifying Simulation in Today’ s Manufacturing Environ-
ment,” IIE Solutions, November.

Carson, J.S. (1993) “Modeling and Simulation World Views,” in Proceedings of the 1993
Winter Simulation Conference, eds., G.W. Evans, M. Mollaghasemi, E.C. Russell, and W
Biles, Institute of Electrical and Electronics Engineers, Piscataway, N.J., pp. 18-23.

Knuth, D.W. (1969) The Art of Computer Programming, vol. 2: Semi-Numerical Algo-
rithms, Addison-Wesley, Reading, Mass.

Law, A.M. and W.D. Kelton (2000) Simulation Modeling and Analysis, 3rd Ed., McGraw-
Hill, New York.

Little, J.D.C. (1961) “A Proof for the Queueing Formula L = λw,” Operations Research,
Vol. 16, pp. 651-65.

Pidd, M. (1998) Computer Modelling for Discrete Simulation, 4th Ed., John Wiley & Sons,
Chichester, England.

Sargent, R.G. (1992) “Validation and Verification of Simulation Models,” in Proceedings
of the 1992 Winter Simulation Conference, eds., J.J. Swain, D. Goldsman, R.C. Crain, an
J.R. Wilson, Institute of Electrical and Electronics Engineers, Piscataway, N.J., pp. 104

Schriber, T.J. (1991) An Introduction to Simulation Using GPSS/H, John Wiley & Sons,
New York.

Welch, P.D. (1983) “The Statistical Analysis of Simulation Results,” in The Computer Per-
formance Modeling Handbook, ed. S. Lavenberg, Academic Press, Orlando, Fla.
rev 1.0 R.1

References Getting Started with AutoMod
R.2 rev 1.0

Getting Started With AutoMod Index
Index
Symbols
% of Total, in table frequency statistics 14.13
.arc 3.4
.dir 3.4
.m 3.11

A
absolute clock 4.10

See also simulation time
absolute time 5.24
ac. See absolute clock
accumulating sections 9.14

defining 9.21
actions

bring up
motors 9.38
resources 5.16

choose 7.29
clone 7.19
create 7.13
create vs. clone 7.20
decrement 7.8
free 5.6
get 5.6
in functions 14.20
in resource cycles 5.19
increment 7.8
move

in queues 5.12
on conveyors 6.21
on vehicles 12.5

order 13.5
read 7.24
return 7.13
send 4.14
set 7.7
tabulate 14.12
rev 1.0
take down
motors 9.38
resources 5.16

terminate 7.26
travel

on conveyors 6.21
on vehicles 12.5

use 5.6
wait 4.5
wait to be ordered 13.5

actions, in functions 14.20
activities and delays 1.8
activity scanning method 1.9
ad hoc simulation 1.4–1.6
ad hoc simulation table 1.4
AGV. See automated guided vehicles
ahead transfers 9.26
airports 1.13
alarms, setting 5.37
aligning arrays

using load attributes 7.22, 9.7
using procindex 5.40
using the index attribute 7.30

alternate selection
queues 5.47
resources 5.47
stations 6.22

AMHS. See automated material handling systems
analysis, output 1.24
animation, toggling 2.9
.arc directory 3.4

printing to 4.14
reading from 7.24

archived models 2.24, 3.5
See also exported models, exporting

arcs
copying 11.13
drawing 11.11–11.12

arithmetic operators 4.11
I.1

Index Getting Started With AutoMod
arrays 5.38–5.46
aligning

using load attributes 7.22, 9.7
using procindex 5.40
using the index attribute 7.30

nextof distribution 5.47
order lists 13.10
placing graphics for 5.43
processes 5.42
queues 5.42
using procindex 5.40
variables 7.10
vs. multiple-capacity resources 5.46

arriving procedures 3.7
characteristics 4.5

AS/RS. See Automated Storage/Retrieval Machines
at end, syntax 7.25
attributes 1.7

See also load attributes
capacity 7.30
control points 11.19
conveyors 9.16

sections 9.18–9.25
transfers 9.30–9.33

current loads 13.7
defining 7.10–7.13
entity 7.30
loads 7.5–7.11
paths 11.14–11.18
properties of 7.5
total 12.16
vehicles size 12.16
vs. variables 7.5

automated guided vehicles 3.8, 11.3
automated material handling systems 1.13
Automated Storage/Retrival Machines 3.8
AutoMod 1.13

applications 1.13
closing 2.20
considerations 2.20
edit environment 2.4
file system 3.4
importing a model 2.5
opening 2.3
running a model 2.7
simulation environment 2.7
syntax help 3.11
syntax. See syntax

AutoMod response, in AutoStat 8.12
AutoMod, factor type in AutoStat 10.6
automotive 1.13
I.2
AutoStat 8.3
calculating confidence intervals in 8.4–8.5
combination responses 8.18
comparing scenarios 10.13
custom run control 8.16
defining responses 8.12
Do All Runs 8.11
Do Runs Until 8.11
Do Some Runs 8.11
editing model properties 8.9
factors 10.4

defining 10.6–10.7
file system 8.9
financial analysis 10.14
making runs 8.11
Parallel Execution 8.11
responses 8.13

defining 10.10, 10.18
runs 8.14, 10.27

increasing length of 8.15
increasing number of 8.14

Setup wizard 8.6–8.9
single scenario analysis 8.10
snap length, in Setup wizard 8.8
varying multiple factors 10.19–10.26

defining factors 10.19
graphs 10.24–10.26

varying one factor 10.8–10.18
viewing

combination response statistics 10.18
confidence intervals 8.13
graphs 10.12
response statistics 10.10–10.11
summaries 8.17

weights 10.15
Av_Time

in counter statistics 2.19
in order list statistics 13.18
in process statistics 2.15
in queue statistics 2.16
in resource statistics 2.17

Av_Wait
in counter statistics 2.19
in queue statistics 2.16
in resource statistics 2.17

Average
in counter statistics 2.19
in order list statistics 13.18
in process statistics 2.15
in queues 2.16
in resources 2.17
in section statistics 6.27

Average Capacity Lost, in vehicle statistics 2.18
average time in system

calculating from reports 5.30
defining in a response 8.18
rev 1.0

Getting Started With AutoMod Index
Average Time/Ent, in section statistics 6.27
Average Time/Trip, in vehicle statistics 2.18
Averaging Window 15.7
Axis Display, in View Control window 2.12

B
back orders, in order lists 13.7
Back, in world coordinates 2.12
bar graphs

in AutoMod 5.25
in AutoStat 8.13

base version, for example models 3.6
base, function in AutoMod 14.22
battery replacement 12.17–12.18
BEdit 3.13

creating source files 4.16
defining entities 4.17

bell curve, in normal distributions 4.7
blocks 12.23

See also collision control, deadlock avoidance
Bottom, in world coordinates 2.12
breakpoint 5.37
breaks 5.16
bring up action

motors 9.38
resources 5.16

business graphs 5.25–5.27
displaying 5.27
timeline 5.27

C
capacity

of control points, setting 11.20
of counters 14.4

setting 14.7
statistics 2.19

of queues
setting 5.13
statistics 2.16

of resources 5.6
setting 5.9
statistics 2.17

of vehicles, setting 11.22
capacity, entity attribute 7.30
cell files, importing 5.11
checking process. See verification and validation
Child Windows on Top, in View Control window 2.11
choose action 7.29
classic warmup behavior 15.4

determining 15.9–15.20
clock information 5.28
clock, absolute 4.10

See also simulation time
clone action 7.19

vs. create action 7.20
rev 1.0
collision control 12.23
with blocks 12.23–12.25
with control points 11.21

color
of loads 6.25
of resources 5.10

combination factors 10.6
combination responses 8.12, 10.15–10.18

defining 8.18
defining equations 10.16
defining variables 10.15
weighted terms 8.19–8.20

commands, keyboard 2.13
comments 2.25
comparing scenarios in AutoStat 10.13
concurrent processing 7.23
conditional syntax 5.41
conditions

if...then...else 5.41
while...do 5.17

confidence intervals 1.25–1.26
calculating 8.4–8.5
importance of 8.4–8.5
interpreting 10.13
minimum replications 8.10
narrowing 8.14
replication-deletion 8.5
viewing in AutoStat 8.13

congestion, statistics for vehicles 2.18
Connected tool

conveyor systems 6.8
path mover systems 11.5

constant distributions 4.10
constant strings 4.12
continuous models 1.7
Continuous tool

conveyor systems 6.8
path mover systems 11.5

control points 11.4
capacity, setting 11.20
changing attributes 11.19

Control Point Capacity 11.19
Control Point Release 11.19

moving into 12.5
placing 11.19
properties 12.8
release values, setting 11.21
scheduling lists 12.7–12.13
starting locations, defining as 12.12
statistics 12.22
traveling to 12.5

Control, in resource cycles 5.19
Conveyor palette 6.8
I.3

Index Getting Started With AutoMod
conveyors
aligning using load attributes 9.7–9.8
attributes

accumulating sections 9.21
changing 9.16–9.25
characteristics 9.16
moving space 9.22–9.23
section width, defining 9.19, 9.20
stopping space 9.24–9.25
techniques 9.25
templates, editing 9.18
velocity 9.21

indexing 9.34, 9.41
leading edge 9.22
motors 9.34–9.41

creating 9.36
failures, modeling 9.38

moving loads on 6.21
sections 6.4

accumulating 9.14, 9.21
assigning motors to 9.37
changing direction 6.16
connecting 6.14
copying 6.15
drawing 6.10–6.18
filleting 6.13
length 6.17
moving 6.17
moving loads on 6.21
moving space 9.22–9.23
non-accumulating 9.14
ramped 6.18
stopping space 9.24–9.25
velocity 9.21
width 9.20

slugging 9.34
modeling using motors 9.39–9.40
modeling using order lists 13.11–13.15

stations 6.4, 6.19
selecting alternately 6.22

transfers 6.4, 9.26
ahead 9.26
angles 9.26
attributes, editing 9.30
induction space 9.31–9.32
reverse 9.26, 9.28
side 9.26, 9.28
times 9.33
types of 9.26

types of 9.14
counters 14.4–14.7

capacity 14.4
defining 14.5
limitations 14.4
statistics 2.19, 14.7
tracking loads with 14.5
uses of 14.4
I.4
CPU time 5.28
crab movement, setting 11.17
create action 7.13

vs. clone action 7.20
Create Views, in View Control window 2.12
creation frequency, and attributes 9.6
creation rate for loads, changing 2.23
creation specification 3.9
Cumulative, in table frequency statistics 14.13
Cur

in counter statistics 2.19
in order list statistics 13.18
in process statistics 2.15
in queue statistics 2.16
in resource statistics 2.17

Current Contents, in section statistics 6.27
current loads, attribute 13.7
Current, in Measurement window 6.6
custom run control, in AutoStat 8.16
cycle time 5.30

See also average time in system
cyclical behavior 15.5

determining 15.24–15.27

D
data

converting values 7.25
distribution 1.18
empirical distribution of 1.19
files

delimiters 7.32
printing to 4.14
reading from 7.24

location, defining 7.24
multiple-column files, reading 7.31
unavailability of 1.20

Data file cell, factor type in AutoStat 10.6
deadlock avoidance 12.23

with blocks 12.26–12.28
with control points 11.20

decrement action 7.8
defining

AutoStat responses 10.10, 10.18
entities 4.17
labels 14.8–14.9
motors 9.36
order lists 13.9
queues 5.13
resources 5.8
simulation length 4.20
subroutines 14.17
tables 14.14
vehicles 11.22
views 2.12

definite delays 13.4
delay 1.8
rev 1.0

Getting Started With AutoMod Index
delays, types of
definite 13.4
indefinite 13.4
state-based 13.4

deletion 1.29
delimiters 7.32
Delta, in Measurement window 6.6
deterministic models 8.7
.dir directory 3.4
direction

of conveyors 6.16
of paths 11.16

directory structure
in AutoMod 3.4
in AutoStat 8.9

discrete-event
model 1.8
simulation 1.6

discrete-event model
event times 1.7

display step, changing 2.9
distance, measuring 6.4
distributions 4.5–4.10

constant 4.10
exponential 4.6
nextof 5.47, 7.13
normal 4.7
oneof 7.27
triangular 4.8
uniform 4.9

Do All Runs, in AutoStat 8.11
Do Runs Until, in AutoStat 8.11
Do Some Runs, in AutoStat 8.11
down time

bring up action
motors 9.38
resources 5.16

dummy loads 5.16
resource cycles 5.19–5.23
scheduling when resource is idle 5.33–5.36
take down action

motors 9.38
resources 5.16

Down, in resource statistics 5.24
drawing tools

conveyor 6.8
path mover 11.5

dummy
loads 5.16, 5.17
queues 12.17
resources 13.15
variables 7.31, 10.16

dynamic models 1.7
rev 1.0
E
edit environment 2.4
Edit Graphics, in path mover systems 11.22
Edit Label Graphics window 14.9
Entire data file, factor type in AutoStat 10.6
entities 1.7

aligning using load attributes 7.22, 9.7–9.8
allocation 2.6
alternate selection 5.47
arrays 5.38–5.46

graphics 5.43
nextof distribution 5.47

counting 2.5
defining 4.17
displaying allocation 2.6
entity limit status window 2.5–2.6
limits 2.5–2.6
loads 1.7
naming conventions 3.12
random selection 7.28
resource 1.8
types of 1.7

Entries
in section statistics 6.27
in table statistics 14.13

environments
edit 2.4
simulation 2.7

event scheduling method 1.9
event times 1.7
events 1.6–1.7
example models 3.6
executable models 3.5
exercise solutions

archiving a model in the Zip format 3.14
submitting 3.14

experimentation 1.24
explosive behavior 15.5
explosive systems 1.30

determining 15.21–15.23
exponential distributions 4.6
exported models 3.5
exporting 2.24
extreme variability 15.5

determining 15.28–15.34

F
factor, navigation. See navigation factor
factors, in AutoStat 10.4

defining 10.6–10.7
FIFO. See first-in, first-out
I.5

Index Getting Started With AutoMod
files
Automod system 3.4
AutoStat 8.9
cell 5.11
delimiters 7.32
exporting 2.24, 3.5
importing 2.5
location, defining 7.24
model directory 3.4
multiple-column, reading 7.31
printing to 4.14
reading from 7.24
saving 3.5
saving vs. exporting 3.5

Fillet tool
conveyor systems 6.8
path mover systems 11.5

final version, for example models 3.6
financial analysis, example 10.4–10.5
first-in, first out 5.16
forward direction of travel, for paths 11.26
free action 5.6
frequency statistics 14.13
frequency, and load creation rates 9.6
Friction, in View Control Window 2.11
Front, in world coordinates 2.12
functions 14.19–14.25

actions in 14.20
AutoMod 14.21
characteristics 14.19
considerations 14.19
converting times in 14.24
create action 7.13
defining 14.23
illegal actions 7.12, 14.20
library 14.22
limitations 7.12
model initialization 7.12
parameters 7.13, 14.19
pre-defined 14.23
return action 7.13
squaring values 14.25
standard library 14.22
time-specific 14.23
types of 14.19, 14.20
user-defined 14.20, 14.21
uses of 14.19

G
generation limit, for loads 4.19
get action 5.6
graphics

See also cell files
and arrayed entities 5.43
colors 5.10, 5.13
importing 5.11
labels 14.8–14.11
I.6
loads 6.25
queues 5.13
resources 5.10
vehicles 11.25

graphs
business 5.25–5.27
displaying 5.27
timeline 5.27
viewing in AutoStat 10.12
viewing multiple factor 10.24–10.26
warmup 15.4–15.5

grid
sizing 2.12
snapping to 6.6
spacing 6.5
using 6.4

guide paths. See paths
guidelines for validation 1.22–1.23
guidelines for verification 1.21–1.22

H
help

AutoMod syntax 3.11
AutoStat software 8.6

I
if...then...else condition 5.41
importing files 2.5

graphics 5.11
increment action 7.8
increment, seed

changing 15.11
indefinite delays 13.4

order action 13.5
index, entity attribute 7.30
indexing conveyors 9.34

modeling 9.41
induction space 9.31–9.32
infinite loops 8.7

avoiding 7.17–7.18
terminating 7.18

initial conditions. See transient phase
initial value, in variables and load attributes 7.7
input data, for random numbers 1.18

K
keyboard commands 2.13

L
labels 14.8–14.11

defining 14.8–14.9
printing to 14.10–14.11
tips 14.11

Last, in Measurement window 6.6
LCG. See linear congruential generator
leading edge 9.22
rev 1.0

Getting Started With AutoMod Index
Left Side, in world coordinates 2.12
length

of loads 6.25, 9.27
of sections 6.17

Length, in Measurement window 6.6
linear congruential generator 1.17
lines 1.30
lists

named 12.7
defining 12.12–12.13

order
back ordering on 13.7
current loads attribute 13.7
defining 13.8–13.10
delaying loads 13.5
filled 13.7
order action 13.5
removing loads from 13.5–13.6
setting priority 13.15–13.17
slugs, with one lane 13.11–13.12
slugs, with two lanes 13.13–13.15
statistics 13.18
syntax 13.5
wait to be ordered action 13.5

park 12.7
defining 12.11

scheduling 12.7–12.13
copying 12.11
editing 12.19

work 12.7
defining 12.9–12.10
editing 12.19

literal string. See constant string
load attributes 1.7

aligning entities 7.22, 9.7–9.8
assigning creation frequency with 9.6
defining 7.10–7.13
vs. variables 7.5

Load Pick Up Time, in path mover systems 11.22
Load Set Down Time, in path mover systems 11.22
Load Status window 5.45
loads

arrriving procedures 4.5
attributes. See load attributes
changing creation rate 2.23
characteristics 3.9
claimed vs. completed 5.32
cloning 7.19
color of 3.9, 6.25
creating 3.9, 4.18–4.19, 7.13
dummy 5.16, 5.17
generation limit for 4.19
graphics 6.25
in Space 3.10
in status window 5.45
length 6.25
modeling trucks 9.11–9.13
rev 1.0
moving 5.12
naming 3.9
orientation 9.27–9.28
placing graphics of 6.25
printing ID number and type 4.12
properties of 3.10
sending to a process 4.14
sending to die 4.14
shape of 3.9
size of 3.9, 6.25
sorting by type on conveyors 9.14
statistics 5.32
territories and space 3.10
tracking with counters 14.5
trucks, modeling 9.11–9.13
types of 3.9
waking idle vehicles 12.8
width 6.25

logic 3.13
creating files 4.16
finite loops 7.15–7.16
infinite loops 7.17–7.18
repeating 5.17
repeating indefinitely 7.14
using to model down times

motors 9.38
resources 5.16–5.18

See also source files, syntax
loops

avoiding infinite 7.17–7.18
finite 7.15–7.16
repeating indefinitely 7.14
terminating infinite 7.18

M
.m extension 3.11
maintenance 5.16
math functions, in AutoMod 14.22
mathematical calculations 4.11

printing 4.13
mathematical models 1.6
Max

in counter statistics 2.19
in order list statistics 13.18
in process statistics 2.15
in queue statistics 2.16
in resource statistics 2.17
in section statistics 6.27
in table statistics 14.13

Mean
in table statistics 14.13

mean time before failure 5.21
mean time to repair 5.21
Measurement window 6.6
measuring distances 6.4
Message window, in simulation environment 2.7
methods of simulation 1.9–1.10
I.7

Index Getting Started With AutoMod
Min
in counter statistics 2.19
in order list statistics 13.18
in process statistics 2.15
in queue statistics 2.16
in resource statistics 2.17
in table statistics 14.13

model directory 3.4
model initialization function 7.12
model scenarios, experimenting with 10.4
modeling concepts 1.6–1.8
modeling down times using logic

motors 9.38
resources 5.16–5.18

modeling resource unvailability 5.16–5.23
models

See also simulations
archived 3.5
characteristics 1.6
considerations 1.18–1.20
continuous 1.7
copying 2.20
deterministic 8.7
dynamic 1.7
editing 2.21
executable 3.5
exporting 2.24
importing 2.5, 3.5
mathematical 1.6
new 4.15
running 2.7
saved 3.5
saving 3.5
static 1.7
two-process 4.4

Motor tool 6.8
motors 9.34

assigning to conveyor sections 9.37
creating 9.36
failures, modeling 9.38

mouse
tracking 6.6
zooming 2.10

move action
in queues 5.12
on conveyors 6.21
on vehicles 12.5

movement systems, path mover 3.8
moving

loads in queues 5.12
loads on conveyors 6.21
loads on vehicles 12.5
sections 6.17

moving space 9.22–9.23
I.8
MTBF. See mean time before failure
MTTR. See mean time to repair
multiple selection 11.13
multiple-capacity resources 5.46

vs. arrays 5.46

N
Name

in counter statistics 2.19
in order list statistics 13.18
in process statistics 2.15
in queue statistics 2.16
in resource statistics 2.17
in table statistics 14.13

named lists 12.7
defining 12.12–12.13

naming conventions for source files 3.11
navigation factor 11.18
new load type, syntax 7.20
nextof distribution 5.47, 7.13

with arrays 5.47
nlt. See new load type
non-accumulating sections, in conveyors 9.14
non-terminating systems 1.28
normal distributions 4.7
null value, in variables and load attributes 7.7
Number of Replications 15.7
Number of Snaps 15.7
Number of Vehicles, in path mover systems 11.22
numbered run 8.9

O
oneof distribution 7.27
order action 13.5
order lists 13.5

arrays 13.10
back orders, syntax 13.7
current loads attribute 13.7
defining 13.8–13.10
delaying loads on 13.5
filled 13.7
removing loads from 13.5–13.6
setting priority 13.15–13.17
slugs, with one lane 13.11–13.12
slugs, with two lanes 13.13–13.15
statistics 13.18
syntax 13.5

orientation
of loads 9.27–9.28
of vehicles 11.26–11.28

Orthogonal, in View Control window 2.11
output analysis 1.24
Overflow, in table frequency statistics 14.13
rev 1.0

Getting Started With AutoMod Index
P
palettes

Conveyor 6.8
Path Mover 2.26, 11.5
Process System 2.21

Parallel Execution, in AutoStat 8.11
parallel lines. See arrays
parameters 14.19
parameters, warmup 15.8
park lists 12.7

defining 12.11
path mover control points 11.19
Path Mover palette 2.26, 11.5
path mover statistics 12.14–12.15
path mover systems 11.3

arcs
copying 11.13
drawing 11.11–11.12

blocks 12.23
characteristics 3.8
components 11.4
control points 11.19

See also control points
capacity, setting 11.20
release values, setting 11.21

creating 11.8–11.25
filleting paths 11.10
loads, moving 12.5
navigation factor, setting 11.18
opening 2.26
properties 11.4
scheduling lists 12.7
straight paths 11.9
vehicles

See also vehicles
attributes, defining by load type 11.23–11.24
crab path transfers 11.28
defining 11.22–11.25
graphics, placing 11.25
normal path transfers 11.26–11.27
orientation 11.26–11.28

paths
crab 11.15, 11.17
direction 11.16
filleting 11.10
forward direction of travel 11.26
limiting vehicles on 11.20
navigation factor 11.15
normal 11.15
one-directional 11.14
placing control points on 11.19
spur 11.14
straight 11.9
two-directional 11.14
types of 11.14
vehicle orientation on 11.26–11.28
rev 1.0
Percent Of Total Time, in vehicle statistics 2.18
Perspective, in View Control window 2.11
Photoeye tool, in conveyor systems 6.8
pie charts, in AutoMod 5.25
Point tool, in path mover systems 11.5
pointers, types of

LoadTypePtr 7.6
QueuePtr 7.6
ResourcePtr 7.6

pow, function in automod 14.22
power & free 3.8
power, function in AutoMod 14.22
pre-defined functions 14.23
pre-loading 1.28
printed values, rounded 4.13
printing 4.12–4.14

constant strings 4.12
load ID and type 4.12
mathematical calculations 4.13
model logic 3.15
rounding printed values 4.13
to a file 4.14
to a file in the archive directory 4.14
to labels 14.10–14.11
to the Message window 4.12

priority, in order lists 13.15–13.17
process statistics 5.29–5.30
process system 3.7

arriving procedure 3.7
creating 4.15
naming 3.7
sending loads to 4.14
statistics 2.15, 4.20

Process System palette 2.21
processes

arrays 5.42
defining 4.17
sending loads to 4.14

processing capacity 5.6
processing time 5.16
process-interaction method 1.9
procindex 5.40

Q
queueing theory 1.30–1.31
queues 5.12–5.15

and resources 5.12
arrays 5.42
characteristics 2.16
colors in graphics 5.13
defining 5.13
explanation of summary statistics 2.16
fewest loads, choosing 7.29
graphics 5.13–5.15
I.9

Index Getting Started With AutoMod
queues (continued)
moving loads into 5.12
placing graphics 5.13–5.15
separating waiting and processing 5.12
statistics 5.31

R
ramped sections 6.18
random numbers 1.17–1.18

considerations 1.18
random selection

with entities 7.28
with values 7.27

random streams 15.6
considerations 15.6
seed 15.6
seed increment 15.6

random variate 1.17
read action 7.24
reading data from files 7.24–7.25

in the archive directory 7.24
multiple-column data files 7.31
reading position 7.25
specifying a delimiter 7.32

real time, in simulation 5.28
relative time 5.24
release values, setting 11.21
repeating logic 5.17
replication-deletion 8.5

See also deletion
replications 8.5
reports 5.28–5.32

absolute time 5.24
considerations 5.28
interpreting 5.28–5.32
process statistics 5.29–5.30
relative time 5.24
version and clock information 5.28

resource cycles 5.19–5.23
attaching to resource 5.23, 5.36
creating 5.21–5.22
down times when resource is idle 5.33–5.36

resources 5.6–5.10
actions 5.7
and queues 5.12
attaching a resource cycle 5.23, 5.36
breakpoint 5.37
capacity 5.6
characteristics 1.8
claiming and releasing 5.6
colors in graphics 5.10
considerations 5.7
defining 5.8
down times 5.16–5.23

scheduling when idle 5.33–5.36
examples 1.8
explanation of statistics 2.17
I.10
failure 5.16
free action 5.6
get action 5.6
graphics 5.10
placing graphics 5.10
statistics 5.32
unavailability 5.16–5.23
use action 5.6
verifying down times 5.24

Resources window 5.8
responses

defining 8.12
results 8.13

responses, combination 10.15–10.18
defining equations 10.16
defining variables 10.15

return action 7.13
return value, in functions 14.19, 14.20
reverse transfers 9.26, 9.28
Right Side, in world coordinates 2.12
Rotate 2.11
rotating views 2.11
round-robin 5.47
run control 2.22
Run Results, in AutoStat 8.13
running a model 2.7

See also simulation environment
runs 8.11

increasing length of in AutoStat 8.15
increasing number of in AutoStat 8.14
numbered 8.9
replications 8.5

Runs Used, in AutoStat 8.13

S
saved models 3.5
scaling 2.11
scheduling lists 12.7

copying 12.11
editing 12.19
named lists 12.7
park lists 12.7
work lists 12.7

screen 2.12
Section, in conveyor statistics 6.27
sections 6.4

accumulating 9.14, 9.21
changing direction 6.16
connecting 6.14
copying 6.15
drawing 6.10–6.18
filleting 6.13
length 6.17
moving 6.17
moving space 9.22–9.23
non-accumulating 9.14
ramped 6.18
rev 1.0

Getting Started With AutoMod Index
stopping space 9.24–9.25
velocity 9.21
width 9.20

seed 15.6
seed increment 15.6

changing 15.11
Select tool

conveyor systems 6.8
path mover systems 11.5

selection, multiple 11.13
semiconductors 1.13
send action 4.14
sequential selection. See round-robin
set action 7.7
set limits 2.12
Setup wizard 8.6–8.9
shortcuts 2.13

animation toggling 2.9
display step 2.9
pause and continue 2.9
zooming 2.10

side transfers 9.26, 9.28
simulation study, steps in 1.14–1.16
simulation systems

non-terminating 1.28
terminating 1.27

simulation time 4.10, 5.28, 7.21
Simulation window, in Simulation environment 2.7
simulations 1.3

ad hoc 1.4–1.6
advantages of 1.10–1.11
alarms 5.37
animating 2.9
changing length of 2.22
considerations 7.23
continuing 2.9
defining length of 4.20
disadvantages of 1.12
methods 1.9–1.10
pausing 2.9
simulation environment 2.7
stopping 7.26
terminating 7.26

Single Arc tool
conveyor systems 6.8
path mover systems 11.5

Single Line tool
conveyor systems 6.8
path mover systems 11.5

single scenerio analysis 8.10
single statistic 2.14
slug 9.34
slugging conveyors 9.34

modeling using motors 9.39–9.40
modeling using order lists 13.11–13.15
rev 1.0
snap
characteristics 2.22
length 2.22, 15.7

snap to grid 6.6
solid view 2.11
source files 2.25

characteristics 3.11
comments 2.25
creating 4.16
editing 2.25
.m extension 3.11
naming conventions 3.11

Space, queue 3.10
spacing, grid 6.5
Specifications by Load Type 11.23
squaring values, using functions 14.25
standard deviation, in table statistics 14.13
standard library functions 14.22
startup configuration 2.13
State, in resource statistics 2.17
state-based delays 13.4
static models 1.7
Station tool, in conveyor systems 6.8
stations 6.4, 6.19

selecting alternately 6.22
statistical confidence 1.25
statistics

average time in system 5.30
business graphs 5.25–5.27
control points 12.22
counters 14.7
displaying 2.14, 5.24
displaying business graphs 5.27
displaying counter 2.19
down statistics for resources 5.24
frequency 14.13
order lists 13.18
path mover 12.14–12.15
process system 2.15, 4.20
processes 2.15, 5.29–5.30
queues 2.16, 5.31
resources 5.32
single 2.14
single resource 5.24
sorting 2.14
summary 2.14
tables 14.13
tracking with variable and load attributes 7.21
vehicles 2.18
viewing in reports 5.28–5.32

Status window, in simulation environment 2.7
steady-state 8.7

See also non-terminating systems
characteristics 1.30

steps in a simulation study 1.14–1.16
I.11

Index Getting Started With AutoMod
stochastic systems 1.24
stopping space 9.24–9.25

techniques 9.25
subroutines 14.17–14.18

advantages 14.17
defining 14.17

summaries
resources 2.17
viewing in AutoStat 8.17

swamping 1.28
syntax 3.11

absolute clock 4.10
actions

bring up 5.16, 9.38
choose 7.29
clone 7.19
create 7.13
create vs. clone 7.20
decrement 7.8
increment 7.8
move 5.12
order 13.5
read 7.24
return 7.13
send action 4.14
set 7.7
tabulate 14.12
take down 5.16, 9.38
terminate 7.26
travel 6.21
use 5.6
wait 4.5
wait to be ordered 13.5

at end (data files) 7.25
attributes

capacity 7.30
current loads 13.7
procindex 5.40
total 12.16
vehicles size 12.16

BEdit 3.13
conditions

if...then...else 5.41
while...do 5.17

creating source files 4.16
defining entities 4.17
distributions. See distributions
help 3.11
.m extension 3.11
mathematical calculations 4.11
modeling down times with

motors 9.38
resources 5.16–5.18

naming conventions 3.12
new load type 7.20
printing 3.15
send to die 4.14
I.12
sending loads to a process 4.14
units of time measurement 4.10
wait action 4.5

system conditions, delaying 1.8
system state variables 1.7
systems

See also specific system
explosive 1.30
movement 3.8
naming 3.8
non-terminating 1.28
path mover 3.8
process 3.7
stochastic 1.24
terminating 1.27
types of 3.7

T
tables 14.12–14.16

defining 14.14
statistics 14.13
updating 14.15
uses of 14.12
viewing statistics 14.16

tables, ad hoc simulation 1.4
tabulate action 14.12
take down action

motors 9.38
resources 5.16

terminate action 7.26
terminating systems 1.27
territories and space 3.10
text editor 3.13

printing from 3.15
text files, printing to 4.14
three-phase method 1.10
time

absolute 5.24
relative 5.24
time-specific functions 14.23
units of measurement 4.10

timeline graphs 5.27
Top, in World coordinates 2.12
Tot_Back_ Ordered

in order list statistics 13.18
Total

in counter statistics 2.19
in order list statistics 13.18
in process statistics 2.15
in queue statistics 2.16
in resource statistics 2.17

Total Capacity, in vehicle statistics 2.18
total, attribute 12.16
tracking loads with counters 14.5
tracking the mouse 6.6
transfer angle 9.26
rev 1.0

Getting Started With AutoMod Index
transfers
ahead 9.26
attributes, editing 9.30
in conveyor systems 6.4, 9.26
in path mover systems 11.4
inductions space 9.31–9.32
reverse 9.26, 9.28
side 9.26, 9.28
times 9.33
types of 9.26

transient phase 1.28
deletion 1.29
preloading 1.28
swamping 1.28

translate 2.11
travel action

on conveyors 6.21
on vehicles 12.5

triangular distributions 4.8
Trips Made, in vehicle statistics 2.18
trucks 9.11–9.13
two-phase approach. See activity scanning
two-process model 4.4
types of models

archived 3.5
executable 3.5
saved 3.5

U
Underflow, in table frequency statistics 14.13
uniform distributions 4.9
units of time measurement 4.10
use action 5.6
user-defined functions 14.20, 14.21
Util

in counter statistics 2.19
in queue statistics 2.16
in resource statistics 2.17

V
V_result, function in AutoMod 14.22
validation, guidelines 1.22–1.23
value

initial 7.7
null 7.7

values
converting data 7.25
returning from functions 14.20

variables
arrays 7.10
attributes 1.7
defining 7.10–7.13
discrete-event 1.8
displaying value of 7.26
dummy 7.31, 10.16
properties of 7.4
rev 1.0
random 1.17
system state 1.7
types of 7.6
vs. load attributes 7.5

Vary multiple factors, in analyses 10.4
Vary one factor, in analyses 10.4
Vehicle Capacity, in path mover systems 11.22
Vehicle Start List, in path mover systems 11.23
Vehicle Type, in path mover systems 11.22
vehicles

and control points, considerations 12.8
attributes, defining by load type 11.23–11.24
battery replacement 12.17–12.18
blocks 12.23
changing number of 2.26
congestion 2.18
controlling in path mover systems 12.7
crab path transfers 11.28
defining 11.22–11.25
explanation of statistics 2.18
graphics, placing 11.25
in path mover systems 11.4
modeling trucks 9.11–9.13
normal path transfers 11.26–11.27
orientation 11.26–11.28
waking idle with loads 12.8

vehicles size, attribute 12.16
Vehicles tool, in path mover systems 11.5
velocity of sections 9.21
verification and validation 1.21–1.23
verification, guidelines 1.21–1.22
version information 5.28
View Control icon 2.11
views 2.10–2.13

saving configuration of 2.13

W
wait action 4.5
wait to be ordered action 13.5
Wait, in resource statistics 5.24
warehousing/distribution centers 1.13
warmup 8.7

classic behavior 15.4
considerations 15.4
cyclical behavior 15.5
defining analysis 15.10
explosive behavior 15.5
extreme variability 15.5

warmup analysis 15.4
averaging window 15.8
classic behavior 15.9–15.20
cyclical systems 15.24–15.27
explosive systems 15.21–15.23
extreme variation 15.28–15.34
guidelines 15.34
replications 15.8
I.13

Index Getting Started With AutoMod
warmup graphs 15.4–15.5
viewing 15.12
Y axis, changing 15.15–15.17

warmup parameters
adjusting 15.8
challenges 15.7
guidelines 15.7–15.8
number of snaps 15.7
snap length 15.7

warmup time, setting 15.20
weight, in combination responses 8.19–8.20, 10.15
When, in resource cycles 5.19
while...do condition 5.17
width

of loads 6.25, 9.27
of sections 9.20

Width, attribute in conveyors 9.20
windows

Define a Creation Spec 2.23, 4.19
Define Snap Control 2.22, 4.20
Edit A Load Type 2.23
Edit Label Graphics 14.9
Entity Allocation 2.6
Entity Limit Status 2.5
Error Correction 4.17
Guide Path 11.14
Load Status 5.45
Loads 4.18
Measurement 6.6
Model Properties 8.9
Resources 5.8
Run Control 2.22
View Control 2.11
Work Area 2.4

windows, keeping on top 2.11
windows, saving configuration of 2.13
WIP. See work-in-progress
wireframe view 2.11
Work Area window 2.4
work lists 12.7

defining 12.9–12.10
editing 12.19

work-in-progress 1.30

Z
Zip format, archiving in 3.14
zooming 2.10
I.14
 rev 1.0

	Contents
	Chapter 1: Principles of Simulation
	Definition of simulation
	Example 1.1: Ad hoc simulation
	Setting up an ad hoc simulation table
	Analyzing the simulation results

	Modeling concepts
	Models and events
	System state variables
	Entities and attributes
	Resources
	Queues
	Activities and delays
	Discrete-event simulation models

	Simulation modeling methods
	Process-interaction method
	Event scheduling method
	Activity scanning method
	Three-phase method

	Advantages and disadvantages of simulation
	Advantages
	Disadvantages

	Applications of AutoMod
	Steps in a simulation study
	Random number and random variate generation
	Input data
	Assuming randomness away
	Fitting a distribution to data
	Using the empirical distribution of the data
	What to do when no data is available

	Verification and validation
	Verification
	Validation

	Experimentation and output analysis
	Statistical confidence
	Example 1.2: Confidence intervals

	Terminating versus non-terminating systems
	Terminating systems
	Non-terminating systems
	Swamping
	Pre-loading
	Deletion

	Queueing theory
	Summary
	Exercises
	Exercise 1.1
	Exercise 1.2
	Exercise 1.3
	Exercise 1.4
	Exercise 1.5
	Exercise 1.6
	Exercise 1.7

	Chapter 2: Using the Software
	Opening the AutoMod software
	The edit environment

	Importing a model
	Counting the number of entities in your model
	Displaying entity allocation

	Running a model
	The simulation environment

	Example model 2.1: Load inspection and processing in an AGV system
	Pausing and continuing a simulation
	Changing the display step
	Toggling the animation on and off
	Changing the view
	Centering and zooming
	Rotating the picture
	Using keyboard shortcuts

	Saving the configuration of windows and views

	Displaying statistics
	Displaying process system summary statistics
	Displaying queue summary statistics
	Displaying resource summary statistics
	Displaying vehicle statistics
	Displaying counter summary statistics
	Closing the AutoMod software
	Closing the simulation environment
	Closing the edit environment

	Copying a model
	Editing a model
	Changing the length of a simulation
	Changing the load creation rate
	Exporting a model
	Running the revised model
	Editing a source file
	Commenting model logic

	Opening a path mover system
	Changing the number of vehicles

	Summary
	Exercises
	Exercise 2.1
	Exercise 2.2
	Exercise 2.3
	Exercise 2.4
	Exercise 2.5

	Chapter 3: AutoMod Concepts
	The AutoMod file system
	Exporting versus saving a model
	Archived (exported) models
	Saved models
	Executable models

	Using the example models
	Systems
	The process system
	Movement systems
	System naming conventions

	Loads
	Territories and space
	Source files
	AutoMod syntax
	AutoMod Syntax Help
	Entity naming conventions
	Using BEdit

	Submitting exercise solutions
	Archiving a model in the Zip format
	Printing the model logic

	Summary
	Exercises
	Exercise 3.1

	Chapter 4: Introduction to AutoMod Syntax
	Example 4.1: A two-process model
	Logic for example model 4.1

	Arriving procedures
	The wait action
	Distributions
	Exponential distribution
	Normal distribution
	Triangular distribution
	Uniform distribution
	Calculating a uniform distribution’s mean and offset

	Constant distribution

	Units of time measurement
	Obtaining the current simulation time
	Performing mathematical calculations in logic
	The print action
	Printing constant strings
	Printing a load’s ID number and load type
	Printing the result of a mathematical calculation
	Rounding printed values

	Printing to a file
	Printing to a file in the model’s archive directory

	The send action
	Sending loads to a process
	Sending loads to die

	Creating example model 4.1
	Creating a new model
	Creating the process system
	Writing the model logic
	Defining unknown entities

	Creating new loads
	Limiting the number of loads created

	Defining the length of a simulation
	Displaying process system statistics

	Summary
	Exercises
	Exercise 4.1
	Exercise 4.2
	Exercise 4.3
	Exercise 4.4
	Exercise 4.5
	Exercise 4.6

	Chapter 5: Process System Basics
	Example 5.1: Producing widgets at Acme, Inc.
	Running the example model

	Resources
	Claiming and releasing resources
	Determining which actions to use when claiming resources

	Defining a resource
	Placing resource graphics
	Importing graphics

	Queues
	Moving loads into queues
	Separating waiting and processing queues

	Defining a queue
	Placing queue graphics

	Modeling resource unavailability
	Modeling down times using logic
	Using “dummy” loads to execute down time processes
	Writing repeating logic to model down times

	Modeling resource down times using resource cycles
	Replacing the P_down arriving procedure
	Creating a resource cycle
	Attaching a resource cycle to a resource

	Verifying down times for resources
	Creating business graphs to view statistics
	Displaying a business graph

	Interpreting reports
	Version and clock information
	Process statistics
	Calculating the average time in system

	Queue statistics
	Resource statistics
	Determining how many loads a resource has completed

	Scheduling down times for when a resource is idle
	Example 5.2: Modeling a planer
	Defining a resource cycle that delays until idle
	Attaching the resource cycle to the planer
	Setting an alarm to pause the simulation at a specific time

	Modeling similar processes using arrayed entities
	Example 5.3: Grinding operation
	Modeling example 5.3 using individual entities

	Using procindex to align arrayed entities
	Writing conditional syntax using if...then...else
	Creating example model 5.3
	Placing graphics for arrayed entities
	Defining the load creation specification
	Defining the run control
	Running the example model

	Determining when to use arrays versus multiple-capacity resources

	Selecting entities alternately using the nextof distribution
	Using the nextof distribution with arrayed entities

	Summary
	Exercises
	Exercise 5.1
	Exercise 5.2
	Exercise 5.3
	Exercise 5.4
	Exercise 5.5
	Exercise 5.6
	Exercise 5.7
	Exercise 5.8
	Exercise 5.9
	Exercise 5.10

	Chapter 6: Introduction to Conveyors
	Conveyor systems
	Measuring distances in the Work Area window
	Using the drawing grid
	Using the Measurement window

	Conveyor drawing tools
	Example 6.1: Drawing a conveyor system
	Creating example model 6.1
	Creating the conveyor system
	Drawing conveyor sections
	Drawing to scale
	Filleting two paths
	Connecting sections using Snap to End
	Copying conveyor sections
	Changing section direction
	Editing section length
	Moving sections

	Creating ramped sections

	Placing stations
	Moving loads through the conveyor system
	Alternately selecting stations
	Defining the example model logic

	Placing queue and resource graphics
	Placing load graphics

	Running the model
	Displaying section statistics
	Summary
	Exercises
	Exercise 6.1
	Exercise 6.2
	Exercise 6.3
	Exercise 6.4

	Chapter 7: Advanced Process System Features
	Storing information in variables and load attributes
	Defining variables
	Defining load attributes
	Determining when to use variables versus load attributes
	Defining variable and load attribute types
	Setting variable and load attribute values
	Incrementing or decrementing the value of a variable or load attribute

	Example 7.1: Processing widgets by part type
	Defining variables and load attributes in example model 7.1
	Defining the model initialization function
	Actions that are illegal in functions
	Returning a value from a function
	Creating new loads in the model logic

	Writing repeating logic
	Writing logic that repeats indefinitely
	Writing logic that repeats a limited number of times
	Avoiding infinite loops
	Infinite loops in continuously repeating loops
	Infinite loops in finite loops
	Ending a simulation using the Windows Task Manager

	Cloning loads in the model logic
	Assigning a new load type to cloned loads

	Determining which method to use when generating new loads
	Tracking custom statistics using variables and load attributes
	Aligning entities using load attributes
	Understanding concurrent processing in a simulation
	Reading data from files
	Defining a file’s location
	Determining the reading position in a file
	Reading to the end of a file
	Converting data values

	Terminating a simulation
	Displaying variable values during a simulation
	Selecting randomly using the oneof distribution
	Randomly selecting from a series of values
	Randomly selecting from a series of entities

	Example 7.2: Choosing a queue based on the fewest loads
	Determining which queue contains the fewest loads
	Aligning arrayed entities using the “index” attribute
	Using entity attributes

	Example 7.3: Generating loads from a data file
	Reading multiple-column data files
	Specifying a delimiter when reading from a file

	Summary
	Exercises
	Exercise 7.1
	Exercise 7.2
	Exercise 7.3
	Exercise 7.4
	Exercise 7.5

	Chapter 8: Basic Statistical Analysis Using AutoStat
	Why use AutoStat?
	Calculating confidence intervals
	Example 8.1: Why confidence intervals are important
	How AutoStat calculates confidence intervals

	Performing statistical analysis with AutoStat
	Opening a model in AutoStat
	Using the AutoStat Setup wizard
	Is the model random or deterministic?
	Do you want to stop runs that may be in an infinite loop?
	Does the model require time to warm up?
	What is the estimated warmup time?
	Do you want to create the warmup analysis?
	What is the snap length for collecting statistics?

	Editing model properties
	The AutoStat file system

	Defining a single scenario analysis
	Making runs
	Defining responses
	Defining an AutoMod response

	Displaying the results
	Viewing confidence intervals
	Narrowing the confidence interval
	Making more runs
	Making longer runs

	Viewing summary statistics

	Defining a combination response
	Weighting terms in a combination response

	Summary
	Exercises
	Exercise 8.1
	Exercise 8.2
	Exercise 8.3
	Exercise 8.4
	Exercise 8.5

	Chapter 9: Modeling Complex Conveyor Systems
	Example 9.1: Transporting multiple load types on a conveyor
	Assigning load creation frequency using load attributes
	Aligning conveyor and process system entities using load attributes
	Example 9.2: Sorting load types in a conveyor system
	Modeling the arrival and unloading of trucks
	Reading load quantities from a data file
	Creating loads for each truck

	Sorting loads by type
	Modeling different types of conveyors
	Example 9.3: Accumulating and non-accumulating sections

	Changing conveyor attributes
	Example 9.4: Customizing a conveyor system
	Editing attributes in section templates (types)
	Editing individual section attributes
	Defining section width
	Defining section accumulation
	Defining section velocity
	Defining section moving space
	Defining section stopping space

	Modeling transfers
	How a transfer’s angle determines its type
	Determining load orientation on a conveyor
	Load orientation after an ahead transfer
	Load orientation after a side transfer
	Load orientation after a reverse transfer

	Preparing example model 9.4
	Editing transfer attributes
	Defining transfer induction space
	Defining transfer times

	Modeling motors
	Example 9.5: Modeling slugging and indexing conveyors
	Defining motors
	Assigning motors to conveyor sections

	Modeling motor failures
	Modeling slugging conveyors
	Modeling indexing conveyors

	Summary
	Exercises
	Exercise 9.1
	Exercise 9.2
	Exercise 9.3
	Exercise 9.4

	Chapter 10: Intermediate Statistical Analysis
	Experimenting with model scenarios
	Example 10.1: Performing a financial analysis
	Compiling and setting up example model 10.1

	Defining factors in AutoStat
	Defining processing time as a factor

	Varying one factor in an analysis
	Defining average WIP as a response
	Viewing statistics for WIP levels
	Viewing a line graph
	Comparing all scenarios to one scenario
	Analyzing financial payback
	Defining a combination response to show total cost
	Calculating equipment costs and scenario differences with an equation
	Defining the cost equation in a combination response

	Viewing the summary statistics for the Total Cost response

	Varying multiple factors in an analysis
	Defining conveyor speed as a factor
	Defining a vary multiple factors analysis
	Defining a combination response to show the revised total cost
	Viewing a bar graph for the Revised Total Cost response
	Viewing the multiple factor graph

	Determining which runs your analysis is using
	Summary
	Exercises
	Exercise 10.1
	Exercise 10.2
	Exercise 10.3
	Exercise 10.4
	Exercise 10.5
	Exercise 10.6

	Chapter 11: Introduction to Path Mover Systems
	Path mover systems
	Path mover drawing tools
	Example 11.1: Drawing a path mover system
	Creating example model 11.1
	Creating the path mover system
	Drawing paths
	Drawing straight paths
	Filleting paths
	Drawing arcs
	Copying arc paths

	Modeling different types of paths
	Setting the direction of travel on paths
	Setting crab movement on paths
	Setting the navigation factor of paths

	Placing control points
	Changing control point attributes
	Setting control point capacity
	Setting control point release values

	Defining vehicles
	Specifying vehicle attributes by load type
	Placing vehicle graphics

	Determining vehicle orientation on a path
	Determining vehicle orientation after a transfer to a normal path
	Determining vehicle orientation after a transfer to a crab path

	Summary
	Exercises
	Exercise 11.1
	Exercise 11.2

	Chapter 12: Modeling Complex Material Handling Systems
	Example 12.1: Drawing a path mover system
	Moving loads through a path mover system
	Defining the model logic in example model 12.1

	Controlling vehicles in a path mover system
	How loads waken idle (parked) vehicles in a system
	Defining locations where vehicles can search for work
	Copying scheduling lists

	Defining locations where vehicles can search for parking
	Defining vehicle starting locations

	Interpreting statistics in example model 12.1
	Example 12.2: Modeling battery replacement
	Using process attributes and system attributes
	Defining the model logic in example model 12.2
	Editing work lists
	Defining a work and park list for the swap area

	Interpreting statistics in example model 12.2
	Displaying control point statistics

	Blocking vehicle movement
	Example 12.3: Blocking vehicle collisions
	Placing blocks in example model 12.3

	Example 12.4: Blocking vehicle deadlocks
	Placing blocks in example model 12.4

	Summary
	Exercises
	Exercise 12.1
	Exercise 12.2
	Exercise 12.3
	Exercise 12.4

	Chapter 13: Indefinite Delays
	Delay types
	Creating indefinite delays
	Causing loads to wait on an order list
	Ordering loads off an order list
	Backordering loads

	Using the attribute “current loads”
	Example 13.1: Modeling an assembly and packaging operation
	Defining the order list in example model 13.1

	Modeling slugging conveyors using order lists
	Example 13.2: Creating slugs on one entrance lane
	Modeling example 13.2 using order lists

	Example 13.3: Creating slugs on two entrance lanes
	Modeling example 13.3 using order lists

	Sorting loads by priority
	Example 13.4: Modeling load priority
	Defining the order list in example model 13.4
	Displaying order list statistics

	Summary
	Exercises
	Exercise 13.1
	Exercise 13.2
	Exercise 13.3
	Exercise 13.4
	Exercise 13.5

	Chapter 14: Additional Features
	Collecting custom statistics and controlling capacity with counters
	Example 14.1: Tracking the number of red and blue loads in the system
	Defining counters

	Displaying text in the Simulation window with labels
	Defining labels
	Printing to labels

	Collecting custom statistics with tables
	Categories of table statistics
	Table statistics
	Frequency statistics

	Defining tables
	Updating tables
	Viewing table statistics

	Reusing logic with subroutines
	Defining subroutines

	Performing calculations with functions
	Characteristics of functions
	Types of functions
	User-defined functions
	Standard math library functions
	Time-specific functions
	Pre-defined functions

	Defining functions
	Converting time in system to minutes using a function
	Squaring a value using a math library function

	Summary
	Exercises
	Exercise 14.1
	Exercise 14.2
	Exercise 14.3

	Chapter 15: Warmup Analysis Using AutoStat
	Understanding when a warmup determination is necessary
	Using graphs to determine warmup time
	Preventing statistical inaccuracy when using random numbers
	Understanding warmup parameters
	Guidelines for setting warmup parameters
	Setting the snap length
	Setting the number of snaps
	Setting the number of replications
	Setting a warmup graph’s averaging window

	Adjusting warmup parameters
	Determining warmup times for systems with classic warmup behavior
	Example 15.1: Classic warmup behavior
	Defining a warmup analysis
	Changing the seed increment
	Defining responses
	Viewing the warmup graph
	Determining when the response “Average in system” warms up
	Changing the Y axis scale

	Determining when the remaining responses warm up
	Setting the model’s default warmup time

	Determining that a system is explosive
	Example model 15.2: Explosive warmup behavior
	Defining the warmup analysis
	Analyzing the warmup graph for example model 15.2

	Determining warmup times for cyclical systems
	Example model 15.3: Cyclical warmup behavior
	Defining the warmup analysis
	Analyzing the warmup graph for example model 15.3
	Performing more replications

	Determining warmup times for systems with extreme variation
	Example 15.4: Extreme variation warmup behavior
	Defining the warmup analysis
	Analyzing the warmup graph for example model 15.4

	Summary
	Exercises
	Exercise15.1
	Exercise 15.2
	Exercise 15.3
	Exercise 15.4
	Exercise 15.5
	Exercise 15.6
	Exercise 15.7
	Exercise 15.8
	Exercise 15.9

	References
	Index

