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Abstract: In the ubiquitous computing environment, context reasoning is an important issue of 

context-awareness. It is used to deduce desired or higher-level context and then to provide suitable services 

automatically. The previous context-reasoning approaches are mainly non-temporal. The reasoning is 

according to the real-time contexts without time information. However, temporal contexts are very important 

information for context-awareness. Therefore, a temporal context reasoning model (TempCRM) based on 

resource description framework (RDF) and Web ontology language (OWL) is proposed in this paper. 

TempCRM is used for inferring the dangerous level of a smart home. In a home environment, a potential 

dangerous situation is caused by a series of temporal events. A temporal event is represented as a RDF-based 

temporal context. A smart home ontology is defined for the terms and relationships used in the temporal 

context. Then, a set of reasoning rules can be defined for inferring and computing the dangerous level. In the 

simulation study, a script with dangerous situations is designed to evaluate the dangerous level generated by 

TempCRM. The result illustrates that TempCRM is useful to alarm the inhabitant and thus prevent the 

occurrence of an incident from the temporal contexts.  
 
Key Words: context-awareness, smart home, temporal context, first-order predicate logic, resource 

description framework, Web ontology language. 

 

INTRODUCTION 

 
 Home is the most important place in people’s 

daily left. Smart home is an important research area 

of ubiquitous computing. The integration of hardware 

and information technology into the home 

environment is mainly to achieve two important goals: 

entertainment and safety. For the safety goal, many 

kinds of detectors or sensors are used to alarm the 

inhabitant the occurrence of an incident, e.g., the CO 

or smoke detector, infrared detector, biosignal 

monitor of older adults, etc. Such kind of detectors or 

sensors is useful for instant incident. However, most 

of the incidents are caused by the potential dangerous 

situations. For example, the inhabitant forgets to turn 

off the gas switch causes smoke emission and is then 

detected by the smoke detector. The detectors or 

sensors are unable to find out the existence of the 

potential dangerous that is caused by a series of 

temporal events. If such a potential dangerous 

situation can be aware before the occurrence of the 

incident, it will be effective to prevent the tragedies 

and increase the safety of a home. 

The awareness of a specific situation is called 

context-awareness. It relies on the context reasoning 

to generate desired or higher-level context. For 

example, the activity in a meeting room can be 

deduced from the executed software and the number 

of peoples in the room. If the number of peoples is 

more than three and PowerPoint is executing, a 

presentation is the most likely activity in the room. In 

the previous research, Chen et al. (2004) defined an 

architecture for context reasoning, called CoBrA 

(Context Broker Architecture). CoBrA can provide an 

appropriate service or information for a user 

according to his contexts. Wang et al. (2004b) 

proposed a semantic space infrastructure. The context 

reasoning is based on the semantic Web technology. 

A context-aware service, called SituAwarePhone, was 

also implemented to illustrate the feasibility of the 

infrastructure. It can switch the mobile phone into 

silent or normal mode automatically according the 

user’s activity. Man et al. (2005) proposed a 

reasoning method for the smart meeting room. This 

method and another agent-based framework proposed 

by Chen and Finin (2004a) utilize ontology in the 

definition of context information and reasoning rules. 

However, it is still not flexible enough for the 

reasoning of complex situation. Therefore, 

Ranganathan and Campbell (2003) utilized first-order 

predicate logic for defining complex reasoning rules. 

Wang et al. (2004a) incorporated ontology and 

rule-based for deducing high-level context in a 

complex environment. 
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The above approaches are non-temporal. That 

is, the context-reasoning can deduce a high-level 

context on the specific time, and deliver suitable 

information or service for satisfying user’s demand 

automatically. However, they are unable to infer from 

a series of temporal contents. Some temporal 

representation and reasoning approaches were also 

proposed. For example, Nogueira et al. (2004) built a 

framework of contextual logic programming 

language (CxLP) for a temporal database. Zhu et al. 

(2004) extended a context interchange framework 

(COIN) for overcoming the context heterogeneity 

problem that is complicated when the context is 

changed over time. Moldovan et al. (2005) proposed 

a model for converting the temporal event in a query 

of natural language into a logic representation in 

order to increase the performance of a question 

answering system. Although the temporal context can 

be represented in the above approaches, they still 

cannot be used for detecting and inferring the 

potential dangerous situations from a series of 

temporal events. 

In order to infer the dangerous level of a smart 

home from the temporal contexts, a temporal context 

reasoning model (TempCRM) is defined in this paper. 

In TempCRM, the semantic Web is used to represent 

the temporal contexts. The resource description 

framework (RDF) and Web ontology language (OWL) 

are two important specifications. RDF is originally 

designed as a metadata model and is used to model 

information here. OWL is used to represent terms and 

their relationships of a specific domain, i.e., ontology. 

A smart home ontology is defined in TempCRM. In 

addition, the first-order predicate logic to represent 

the temporal reasoning rules for potential dangerous 

situations caused by the usage of devices. The usage 

behaviors are different in different homes. For 

example, the usage interval of a gas stove is different 

for various homes. A probability density function is 

then defined to model the usage behavior of a device. 

The function is then used in the reasoning rules to 

generate a proper dangerous level matched with the 

usage behavior. Finally, an event script is defined for 

the simulation study of TempCRM. The result 

illustrates that TempCRM can generate expected 

dangerous level from temporal contexts and thus 

increase the safety in the home environment. 

 

MATERIALS AND METHOD 
 

In the previous research of context-awareness, 

CoBrA and Gaia are two well-known frameworks 

(Ranganathan et al., 2004; Ranganathan and 

Campbell, 2002; Roman and Campbell, 2000; Roman 

et al., 2002). CoBrA is based on the OWL and RDF 

specification and Gaia is based on the first-order  

  
 

Fig. 1: The representation of TempCRM model 

 

predicate logic. The OWL and RDF is powerful for 

context representation and reasoning. However, the 

first-order predicate logic is a simple and widely used. 

It is also easily used in the rule-based reasoning 

engine. Therefore, OWL and RDF are incorporated 

with the first-order predicate logic for temporal 

context reasoning in TempCRM as shown in Figure 

1. 

TempCRM consists of five main parts: context 

predicates, RDF-based temporal contexts, probability 

density function, smart home ontology, and temporal 

reasoning rules. Any inhabitant activities, movements, 

and the interactions with devices are deemed as 

temporal events. A temporal event is represented as a 

context predicate. A smart home ontology is defined 

for the standard terms and their relationships used in 

the home environment. A context predicate is then 

represented as RDF-based temporal contexts by 

incorporating the smart home ontology. According to 

the history temporal contexts, the usage behavior of a 

device is modeled by a probability density function. 

For a potential dangerous situation, a corresponding 

temporal reasoning rule is defined for detecting and 

computing its dangerous level. When the rules are 

executed by the reasoning engine, a final dangerous 

level is generated. The reasoning engine is executed 

under two conditions. One is executed once a new 

temporal context has been generated. It is similar to a 

general rule-based reasoning engine. The other is 

executed periodically. The dangerous level is usually 

increased as the elapsed time. The periodic execution 

can refresh the dangerous level. These parts are 

presented in details in the following subsections. 

 

Context Predicate: In TempCRM, the first-order 

predicate is used to represent the temporal events 

(Ranganathan and Campbell, 2003). The first-order 

predicate is a simple and uniform format. When a 

temporal event is occurred, it is represented as a 

predicate of a context type with four tuples, including 
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subject, verb, object, and time (SVOT). Its format is 

shown below. 

 
ContextType(<subject>, <verb>, <object>, <time>) 

 

The format is the expansion of the SVO 

(subject-verb-object) format in the previous research 

(Ranganathan and Campbell, 2003) by appending the 

time tuple. “ContextType” is the type of a temporal 

event, such as location, temperature, device, and so 

on. “<subject>” is the thing or person giving the 

context. “<verb>” is the action or relation to the 

object. “<object>” is the value of the context. 

“<time>” is the occurrence time of the event. Some 

examples are listed in the following: 

 

Location(john, entering, kitchen, 12:38:41). 

Location(tv_set#1, in, living_room, 18:03:15). 

Device(gas_switch#2, is, on, 08:13:50). 

Door(entry_door#1, is, open, 02:25:17). 

Temperature(room#415, “=”, 98F, 13:45:20). 
 

It is easily to realize the context in the above 

examples. The values of subject, verb, and object are 

determined by the context type. For example, if the 

context type is “Location”, the subject could be either 

a “person” or “device”. Verb could be “in”, 

“entering”, “leaving”, and so on. Object must be an 

explicit place name. 

The time tuple represents the occurrence of the 

event. However, one important characteristic of the 

context predicates is the context persistence. It means 

a context predicate is persistence until the occurrence 

of a new predicate with the same type, subject, and 

verb. For example, two context predicates are 

generated on different time as shown below. 

 

Location(john, entering, kitchen, 12:38:41). 

Location(john, entering, living_room, 14:05:07). 

 

The context type, subject, and verb of two 

predicates are the same. The first predicate represents 

the location of John is in the kitchen from the time 

12:38:41. John’s location is persistent in the kitchen 

until the generation of the second context predicate. 

Therefore, the query of John’s location from 12:38:41 

to 14:05:06 will return kitchen. 

In addition, Boolean operators can be used to 

represent more complex context predicate, including 

conjunction (∧), disjunction (∨), and negation (¬). A 

variable can also be defined to query desired context 

predicates. It is quantified by two kinds of quantifiers: 

existential (∃) and universal (∀). The existential 

quantifier means “there exists a”, and the universal 

quantifier means “for all” or “for every”. They are 

popular used in the first-order predicate. 

 

Smart Home Ontology: In TempCRM, an ontology 

is defined in OWL specification for the terms and 

their relationships in the home environment, called 

smart home ontology. OWL is a tree structure for the 

classification of terms. The relationship between two 

terms can be easily inferred via the tree structure. 

The ontology consists of an upper-level 

context ontology and extended context ontologies 

(Wang et al., 2004a). The upper-level ontology 

provides a set of basic concepts, i.e., entities. A 

connection is established between two entities via an 

attribute (owl:DatatypeProperty) or relationship 

(owl:ObjectProperty). Besides, the relationship 

between an entity and its sub-entity of extended 

context is established via an attribute   

(owl:subClassOf). Therefore, the relationship 

between an entity of the upper-level context and an 

entity of an extended context can be established in 

such way. 

In TempCRM, four basic entities are defined 

as the upper-level context ontology for the smart 

home. It contains computing entity, location, person, 

and activity as shown on the left side of Figure 2. 

There are two extended contexts on the right side. 

The entity “Room” of the upper-level context is 

extended to a set of sub-entities of smart home 

domain, including “Living Room”, “Bath Room”, 

“Bed Room”, and so on. 

The smart home ontology represents all the 

entities, attributes, and relationships for representing 

RDF-based temporal context predicates. The 

ontology also provides legal representations for the 

predicates. For example, a “Person” entity can only 

have “name”, “sex”, “age”, “height”, and “weight” 

attributes. 

 

RDF-based Temporal Context: RDF is a 

specification formed by a set of nodes and labeled 

links between nodes. A node represents a resource, 

including the entity of smart home ontology, or the 

tuple value of a context predicate. A link represents 

attributes of a resource. 

Basically, RDF can be used to represent the 

non-temporal resources in the home environment. In 

TempCRM, RDF is used to represent the temporal 

contexts called RDF-based temporal context. A 

context predicate defined in the previous subsection 

represents the context of a temporal event. It can be 

transformed into RDF format based on the smart 

home ontology. For example, the RDF representation 

of the following context predicate is shown in Figure 

3. 

 

Device(gas_switch#1, is, on, 18:38:41). 
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Fig. 3: RDF representation of a context predicate 

 

The above representation is based on the 

SVOT format. It is only represents the primary 

information of a temporal event. It lacks the actor of 

the event. The lack of such information may 

influence the reasoning process in some cases. 

The actor of the event is able to acquire via 

sensor or visual monitoring technique. For example, 

Philipose et al. (2004) designed a wearable glove 

with a RFID reader. It enables the system know the 

object touched by the user from the attached RFID 

tag. Peursum et al. (2004) proposed a method for 

smart-home monitoring system. The method can 

label the location of objects, such as chairs or floors 

from the captured video. It is also easily to know the 

actor of an object. 

If the additional information of an event is 

available when the event occurs, the RDF 

specification can represent the temporal event in a 

sophisticated way. For the above example, if the actor 

is John, he is in the kitchen according to a previous 

event. The context predicate is shown below. Then, 

the RDF-based temporal context of the turning on of 

the gas switch is represented in the Figure 4. 

 

Location(john, in, kitchen, 18:30:05). 

The RDF-based temporal context can represent 

not only the basic non-temporal resources or context 

predicates, but also the relationship among context 

predicate for a temporal event. The relationship is 

very important to allow the reasoning engine to detect 

the dangerous situation in the reasoning process. 

 

Probability Density Function of Device Status: 

Different home may have different usage behaviors 

of devices. For example, the usage times of a gas 

stove are diverse in different home. The usage 

behavior should be incorporated into the reasoning 

process in order to generate feasible the reasonable 

results. A probability density function is used to 

model the usage behaviors of devices. The functions 

are used in the temporal reasoning process for 

generating a reasonable dangerous level. 

Fig. 2: The definition of upper level context ontology and domain ontology 
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Fig. 4: An example of RDF-based temporal context 
 

In TempCRM, we only focus on the usage 

behaviors of devices since a dangerous situation is 

usually caused by devices, such as gas stove, water 

heater, and so on. The status of a device is considered 

separately since the corresponding behavior is 

different. For one status of a device Di, a normal 

distribution is used to model its behavior currently. 

Therefore, its average interval (µi) and standard 

deviation (σi) is computed from the history temporal 

contexts. When Di enters the status, the elapsed time 

for the status is denoted as TE. The probability 

corresponding to TE can be computed using the 

probability density function, denoted as )(TEf
iD

 , 

as shown in Eq. (1). 
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In general, most of the dangerous situation 

occurs when the TE lager than the average interval (µi) 

marked by the grey area in the figure. Besides, the 

dangerous level is expected between zero and one. 

The level zero means no dangerous. Oppositely, the 

level one means extreme dangerous. The expected 

level is the reverse of the normal distribution. 

Therefore, the probability density function is 

transformed into the function of dangerous level with 

respect to TE, denoted as )(TEDL
iD

, as shown in Eq. 

(2). 
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When TE is larger than the status interval µi, 

the dangerous level is increased from zero. If the 

status deviation σi of Di is small, the dangerous level 

is increased rapidly. )(TEDL
iD

 is used in the 

reasoning process when necessary. 

 

Temporal Reasoning Rules: Temporal reasoning  

 

P1. 

P2. 

P3. 

P4. 

P5. 

P6. 

P7. 

 

ComputeDangerousLevel(CT, Level) :- 

∃Device D (DeviceType(D, gas_switch) ∧ 

Device(D, is, on, TS) ∧ 

Location(D, in, Place, _) ∧ 

¬∀Person P (Location (P, in, Place, _)) ∧ 

GetElapsedTime (TS, CT, TE) ∧ 

ComputeLevel(D, on, TE, Level)). 

 

 

Fig. 5: The rule for inferring and computing the 

dangerous level of forgetting to turn off the gas 

switch 

 

rules are used to detect and compute the level of 

potential dangerous situations. Basically, the 

reasoning engine executes the rules periodically, e.g., 

every 30 seconds or one minute. However, the engine 

execution also be activated when a temporal event is 

occurred. The periodical execution keeps the update 

of dangerous level. The event-driven execution can 

update the dangerous level immediately. 

A potential dangerous situation is consequence 

of a series of temporal events. An example is used to 

illustrate how to define a reasoning rule for a 

dangerous situation. The example is the potential 

dangerous of forgetting to turn off the gas switch. 

Suppose an inhabitant turns on the gas switch of a gas 

stove. But he does not stay at the location of the gas 

stove. The dangerous level is increased when the 

elapsed time is larger than the average usage interval 

of the gas switch. This reasoning rule represented in 

first-order predicate is shown in Figure 5. 

The predicate P1, “ComputeDangerousLevel”, 

represents the reasoning of dangerous level (Level) at 

the current time (CT). The predicate P2 represents the 

checking of all devices (D) where the type is 

“gas_switch”. Then, the device D is checked whether 

its status is “on” at a specific time (TS) in the 

predicate P3. The location of D is also retrieved and 

stored into the variable Place in the predicate P4. In 

the predicate P5, reasoning engine tries to find out a 

person (P) where stays at the same Place of the 

device D. There is a negation operator means this 

predicate is true when no person P stays at the same 

Place of D. If P5 is true, the elapsed time TE from TS 

to CT is computed in the predicate P6. In the last 

predicate, the probability density function of the “on” 

status of D is used to compute the Level according the 

TE. 

The above rule is operated on RDF-based 

temporal contexts. A graph similar to that in the 

previous research of Forstadius et al. (2005) is used 

to illustrate the reasoning process as shown in Figure 

6. Only the query predicates from P2 to P5 are 

marked in the graph. They are responsible to unify 
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the temporal contexts. The rule consists of two 

conditions. There are three predicates in the first 

condition. For the predicate P2, it tries to unify a 

device resource where its “type” is “Device” and its 

“deviceType” is “gas_switch”. The name of unified 

resource is stored in a variable “D”. The variable “D” 

is then used in the unification of the predicate P3 and 

P4. After the first condition is unified successfully, 

the variable “Place” is used in the unification of the 

second condition. If the four anonymous resources 

can be unified successfully, the variables “D”, “TS”, 

and “on” is used to compute the dangerous level in 

the predicate P6 and P7. 

According to the above reasoning process, 

when any inhabitant enters the location of the device, 

the predicate P5 is fail and then caused the fail of this 

rule. The dangerous level equals the default value 

zero which means there is no dangerous. When no 

inhabitant at the location, the dangerous level is 

computed based on the elapsed time. 

The smart home ontology is used in the 

reasoning process. For example, it is used in the 

predicate P2 to allow this rule applying to any kinds 

of gas switch. It is unnecessary to define rules for 

individual devices with the same type. 

In the home environment, it is possible to 

encounter more than one potential dangerous 

situation at a specific time. A final dangerous level at 

the time CT is denoted as FinalDL(CT). When there 

are more than one dangerous levels at the time CT, 

FinalDL(CT) equals the maximum dangerous level as 

shown in Eq. (3). That is, the final dangerous level is 

the level of the most emerging situation. 

 
( )

),(lgerousLeveComputeDan                         

 all among  Maximum

LevelCT

LevelCTFinalDL =  (3) 

 

In advance, the numeric value of FinalDL(CT) 

is not clear enough to inhabitants, especially older 

adults. Therefore, the numeric value is mapped into 

three modes, including normal, warning, and 

emergent modes. In TempCRM, two values, Tw and 

Te, are defined to determine the thresholds entering 

warning or emergent mode, respectively. They can be 

adjusted by the inhabitant. A conservative inhabitant 

can assign lower thresholds to receive more warnings 

of potential dangerous situations. 

 

SIMULATION STUDIES 

 

A simulation was designed to valid the 

operation of TempCRM. The simulation is based on a 

series of temporal events. These events were 

designed to cause three potential dangerous situations. 

All the reasoning rules, smart home ontology, and 

related RDF-based temporal contexts were 

implemented in Prolog language. The dangerous 

levels were computed and recorded periodically. The 

set of events are listed in Table 1. They are 

represented in context predicates since it is easier to 

understand than plaintext descriptions. The set of 

events represent a script that John drives back to 

home, enters the kitchen, turns on the gas switch, and 

leaves the kitchen. Peter enters the bathroom, turns 

on the water heater for taking a shower, and so on. 

The simulation parameters are defined in Table 

2. The parameters include the averages and 

derivations of three device status, two thresholds for 

warning and emergent modes, and the reasoning 

interval. The final dangerous level is computed for 

every minute by submitting a Prolog query command 

manually. 

type

status

location

P3

P4

P5 type

location

eventTime

deviceType

Device

Person

condition

gas_switch

on

TS

Place

P2rule

anonymous 

resource

resource resource 

variable
value value 

variable

D

name

Pname

name

name

Fig. 6: The graph representation of a rule 
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Table 1: A series of events for the simulation 
Event ID Description (Context Predicate) 

E_1 Door(garage_door#1, is, open, 18:35:13) 

E_2 Location(john, entering, garage, 18:35:25)  
E_3 Location(john, entering, kitchen, 18:38:41)  

E_4 Device(gas_switch#1, is, on, 18:39:25) 

E_5 Location(peter, entering, bathroom, 18:39:40) 
E_6 Device(water_heater#2, is, on, 18:40:02) 

E_7 Location(john, entering, living_room, 18:40:05) 

E_8 Device(tv_set#1 , is, on, 18:42:36) 
E_9 Location(john, entering, garage, 18:50:22) 

E_10 Door(garage_door#1, is, close, 18:50:35) 

E_11 Location(john, entering, living_room, 18:51:28) 

E_12 Location(john, entering, kitchen, 19:13:42) 

E_13 Location(john, entering, bedroom, 19:17:57) 

E_14 Device(water_heater#2, is, off, 19:25:02) 
E_15 Location(peter, entering, living_room, 19:26:40) 

 

Table 2: The settings of simulation parameters 

 Settings 

Parameters 
D1(on) 

gas_switch#1 

D2(on) 

water_heater#2 

D3(open) 

garage_door#1 

Average (µi) 1,121 sec. 1,200 sec. 460 sec. 

Deviation (σi) 808 sec. 935 sec. 168 sec. 

Tw 0.6 

Te 0.8 

Reasoning Interval 60 sec. 
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Fig. 7: The curves of the simulation result 

 

The recorded dangerous levels within one hour 

after John coming home are depicted as curves shown 

in Figure 7. There are three curves in the figure. 

Three curves represent the dangerous levels of D1(on), 

D2(on), and D3(open), respectively. The fourth curve 

represents the FinalDL that equals the maximum 

value of three curves. In the event E_4, John enters 

the kitchen and turns on the gas switch. Then, he 

enters the living room in the event E_7. The elapsed 

time of the device status, D1(on), is increased. The 

dangerous level is increased when the time is larger 

than the average interval as shown in the curve of D1. 
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Fig. 8: The simulation result of solving masking 

effect by choosing “remind me every five minutes” 

 

In the event E_12, John goes back to the 

kitchen. It causes the dangerous level of D1(on) back 

to zero since there is a person at the same location of 

D1. However, John leaves the kitchen in the event 

E_13 causes the dangerous level returning to the 

expected value computed from the elapsed time as 

shown in the curve. It also causes the home entering 

the warning mode. A flash light or voice message can 

remain John this dangerous situation. On the other 

hand, the open of garage door causes the dangerous 

level of D2(on) is increased after the elapsed time 

larger than the average. It level is back to zero when 

John enters the garage in the event E_9. 

 

The value of FinalDL is the maximum among 

all the dangerous levels. It enables the inhabitant 

concentrating on the most emerging dangerous 

situation. However, it may cause a problem called 

masking effect. In the above example, the inhabitant 

really needs to cook for several hours. As a result, the 

dangerous level of D1(on) is increased continuously. 

It masks the dangerous level of D2(on) except the 

period between the event E_12 and E_13. In fact, a 

simple user interface is useful to solve the problem of 

the masking effect. When the FinalDL causes the 

home entering the warning or emergent mode, three 

choices can be provided by the user interface: keep 

warning, cancel warning, or remind me later. The 

last two choices enable the inhabitant being aware of 

a minor dangerous situation. If the inhabitant chooses 

“remind me for every five minutes” for solving the 

mask effect in the above simulation, the result is 

shown in Figure 8. It is obvious that the dangerous 

situation of D2 can be revealed after the dangerous 

level of D1 is reduced to zero. 

 

The above simulation results illustrate 

TempCRM can detect and compute the level of the 
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potential dangerous situations to prevent the 

occurrence of incidents. The level can be increased as 

the time elapsed. This is the key difference of 

TempCRM compared with current temporal 

reasoning models. Besides, a reasoning rule mixed 

with RDF-based contexts usually suffers from the 

modification of a house, e.g., house renovation. 

However, the rule is also mixed with a smart home 

ontology in TempCRM. It enables a rule applying to 

the same type of devices or rooms. That is, the house 

modification does not lead to an overhaul of the 

entire rule set. TempCRM is useful to increase the 

safety of a smart home. 

 

CONCLUSION AND FUTURE WORKS 

 

Temporal context-awareness is an important 

issue. Some temporal-related information or 

high-level contexts can only be inferred from 

temporal context reasoning. The detection of 

potential dangerous situation in a home environment 

is a typical application of temporal context reasoning. 

TempCRM is proposed and applied to the smart 

home in this paper. TempCRM consists of context 

predicate, smart home ontology, probability density 

function, RDF-based temporal context, and temporal 

reasoning rules. The potential dangerous situations 

can be detected and the warning or emergent alarm is 

activated once the level over the customizable 

threshold. The usage behaviors of devices are 

modeled by the probability density functions that are 

established from the history temporal contexts. It 

causes the inferred dangerous level fits inhabitant’s 

behavior. TempCRM can be an effective approach to 

increase the safety of a smart home. 

In the future works, TempCRM will be 

implemented by incorporating the Jena and Jess (Java 

expert system shell) reasoning engine. It is expected 

to be a temporal context reasoning platform. Besides, 

the detection of a potential dangerous situation 

depends on the temporal reasoning rules. The 

definition of the rules becomes a critical task. It also 

determines the effectiveness of TempCRM. The 

dangerous situations are diverse for different home 

environments. It is unable to define a complete set of 

rules for all the homes. Therefore, when an inhabitant 

encounters a potential dangerous situation that is not 

detected by existing rules, the design of a 

semi-automatic mechanism for establishing a 

corresponding reasoning rule of the dangerous 

situation is another important work in the future. 
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