應用表面波譜法調查地盤灌漿品質範圍及尺寸之研究

賴建琮¹,李佳融²,蔡佩勳³ ¹朝陽科技大學營建工程系 碩士 ²朝陽科技大學營建工程系 研究生 ³朝陽科技大學營建工程系 助理教授 E-mail:s9611626@cyut.edu.tw

國科會計畫編號 NSC 96-2622-E-324-012-CC3

摘要

本研究將利用表面波譜法(SASW)來調查地盤灌 浆時灌浆體的範圍與品質。在本研究中以有限差分為 基礎之數值分析軟體FLAC3D程式來進行表面波譜法 之數值模擬,探討影響參數對頻散曲線之影響,其中 包括敲擊延時(1000µs、500µs、300µs)以及灌浆體材料 性質(混凝土與攪拌土兩種情形)。由FLAC所得不同點 位的速度歷時透過快速傳立葉轉換(FFT)後,得到頻率 域訊號,再經過頻譜分析計算其相位角,得到其頻散 曲線,由不同間距的頻散曲線集合成複合頻散曲線, 再繪製成一"代表性"頻散曲線,以評估灌浆體品質及 範圍。本研究也從時頻圖來驗證灌浆體之存在跡象。 由本研究結果顯示灌浆體的長度、寬度與深度可由複 合頻散曲線、"代表性"頻散曲線求出,而其品質可由 頻散曲線所得之波速來判斷。

關鍵字:表面波譜法、地盤灌漿、相位角、頻散曲線、 快速傅立葉轉換

1、前言

非破壞檢測(Nondestructive Testing Method)的 方法因為具有大面積檢測、經濟、快速等優點,因此 具有相當發展的潛力與空間。而表面波譜法(SASW)即 是其中之一,其運用於探測土層特性之檢測技術逐漸 受到重視,所以相關的研究也有增加之趨勢。

表面波譜法,為一種簡便、快速又經濟之非破壞 震測試驗,此法是在表面安裝至少兩個收波器,使用 鐵鎚敲擊偵測物表面,使其產生應力波在偵測物體內 或表面傳播,再利用頻率域法(頻譜分析)推求雷利 波相速度與視波長間之關係曲線,此關係曲線稱為頻 散曲線,再經由頻散曲線反算程式,計算現地的土層 分佈與不同土層深度之雷利波波速。

在本研究中以有限差分為基礎之數值分析軟體 FLAC3D 程式來進行表面波譜法之數值模擬,探討影 響參數對頻散曲線之影響,其中包括敲擊延時 (1000μs、500μs、300μs)以及灌漿體材料性質(混凝土與 攪拌土兩種情形)。

2. 數值分析方法

2.1 FLAC 程式簡介

本研究中所使用之 FLAC 程式(Fast Lagrangian Analysis of Continua) 由美國 Itasca Consulting Group, Inc. 發展以外顯有限差分法(Explicit finite difference method)為原則的數值分析軟體,適用於深開挖穩定、 隧道開挖、邊坡滑動、基礎承載、土石壩分析等多項 大地工程問題。其運算過程是以「時階」方式(time-step) 來求解每一個節點的運動方程式,在每一個時階中, 利用系統每一節點的不平衡力,利用運動方程式求出 節點的速度和位移,然後決定節點之應變增量;再利 用應力應變組合律決定新的應力增量,藉此應力增量 又可以更新節點的不平衡力,如此程式將反覆執行此 運算步驟,直到各節點中最大的不平衡力趨近於零, 達靜力平衡為止,計算流程如圖 1。

圖1 FLAC程式運算之步驟

2.2 FLAC 數值分析

在初始應力狀態的計算中,整個 FLAC 網格範圍 為 30m*30m 的立方體,如圖 2 所示而網格中每 一元素大小 1m*1m*1m,在分析網格的四周設置無限 邊界,避免波傳至邊界時產生反射現象。因表面波譜 的振動不大所以土體一般皆假設仍在彈性範圍。所 以,本研究之分析模式採用彈性模式,其所需輸入之 參數包括有土壤單位重、剪力模數、體積模數等資料。 為了更接近現地分析,本研究加入剪力模數隨深度增 加而線性增加之 Fish 語言,即深度 Z 的剪力模數與體 積模數可用下式表示: 中華民國力學學會第三十二屆全國力學會議

The 32nd National Conference on Theoretical and Applied Mechanics, November 28-29, 2008

$$G = G0 \times (1 + 0.1 \times Z)$$

$$K = 2G \times (1 + \nu)/(3 \times (1 - 2 \times \nu))$$
(1)

其中G為剪力模數、K為體積模數、 ν 為柏松比、 G0為地表面的剪力模數、Z為深度。

2.3 表面波譜模擬

在 SASW 模擬分析中,本研究是利用一個半正弦 函數的載重來模擬敲擊源(震源)產生能量(如圖 3、4), 而能量以實體波與表面波形式向四面散佈出去。紀錄 分析過程中不同位置的網格節點處的速度歷時以模擬 該位置速度計所量出的速度歷時反應,利用這些節點 在分析所得到的速度歷時,透過快速傳立葉轉換成頻 率域訊號,再透過頻譜分析得到兩收波器之相位差, 再依此繪出其頻散曲線。本研究將改變敲擊延時 (1000μs、500μs、300μs)以及灌漿體材料性質(混凝土、 攪拌土)等影響參數,以討論它們對頻散曲線之影響。

圖2 網格示意圖

圖3 無埋設物敲擊後示意圖

圖4 有埋設物敲擊後示意圖

2.4 傅立葉轉換

觀察訊號傳統的方法是在時間域進行,它是訊號 對時間的關係記錄,給人親切而直覺的表達方式。法 國數學家傅立葉證明任何波型的訊號皆可用數個正弦 波的和來表示。在時間域看不出振動原因的訊號,但 轉換至頻率域時,對應的振動原因就可找出來。

2.4.1 快速傅立葉轉換

快速傅立葉轉換是 Cooley 與 Tukey 利用離散傅立 葉轉換具循環重複之特性而發展出來的一種演算方 法,此方法是將運算變數由十進位表示法改成二進位 表示法,可大幅降低運算次數,但其資料點數需為 2 的冪次倍。若以資料點 n 有 1024 點為例,離散傅立葉 轉換之運算次數為 n×2^m,而快速傅立葉轉換之運算次 數為 n×2m,其中 m 是 n 以 2 為底之冪次項,因此可 提高運算效率。本研究利用 MATLAB 語言程式軟體來 進行快速傅立葉轉換,來得到頻率域訊號。

2.5 頻散曲線之計算

相速度 (Phase velocity)意指單一頻率之應力波波 傳速度。在層狀土層內,表面波之傳遞速度會隨頻率 之變化而改變,這種現象稱之為「頻散」,因此特定 頻率下所對應相速度之集合,稱之為頻散曲線。頻散 曲線可代表土層層理與其工程特性。

2.5.1 頻譜分析

為了說明如何進行頻譜分析,以下分別介紹為線 性譜、自能譜、互能譜、轉換函數的作法:

[1] 線性譜(Linear Spectrum) X(f):

$$X(f) = \int_{-\infty}^{\infty} x(t) e^{-i2\pi f} dt$$
 (2)

其中f為頻率,而x(t)也可以寫X(f)的算式:

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(f) e^{i2\pi f t} dt$$
(3)

The 32nd National Conference on Theoretical and Applied Mechanics, November 28-29, 2008

$$X(f) = \operatorname{Real}[X(f)] + i \times \operatorname{Img}[X(f)]$$
(4)

自能譜(Auto Power Spectrum) G_{xx}(f):

$$G_{xx}(f) = X^*(f)X(f)$$
(5)

其中X*(f):線性譜X(f)之共軛複數

[2] 互能譜(Cross Power Spectrum) G_{xy}(f):

$$G_{xy}(f) = Y(f)X^{*}(f)$$
 (6)

轉換函數(Transformation Function) H_{xv}(f):

$$H_{yy}(f) = G_{yy}(f)/G_{yy}(f)$$
 (7)

在傅立葉頻譜上,由轉換函數或是互能譜所計算 之相位差是以摺合相角(Wrapped phase)之形式呈現, 其值介於-π~π之間,各種頻率所對應之相位差集合稱 為相位譜(phase spectrum)。摺合相角之產生是由特定 頻率所對應互能譜之實部與虛部計算出來的,其計算 方式為:

$$\psi_{w} = \tan^{-1}[\operatorname{Img}(G_{xv})/\operatorname{Real}(G_{xv})]$$
(8)

其中 G_{xy}代表特定頻率所對應之互能譜,而 Img 為其 虛部、Real 為其實部。

為了計算相速度,必須將摺合相位角展開成未摺 合相位角(unwrapped phase)(如圖 5 所示)。相位角展開 原則:相鄰兩取樣點位間的相位差其絕對值必須小於 180°,否則後者需減去 360°。然而未摺合之相位角因 反射或折射波之干擾導致相位譜內的點位跳動太頻 繁,使得反摺合的過程困難重重,因此對於反摺合的 過程必須謹慎判讀才不會出差錯。

2.5.2 建立雷利波频散曲線與反算土層剪力波速 與深度

由於脈衝震源試驗時,所使用之收波器皆有 不同距離之差別,故震波到達收波器之時間也有分 別。亦即,於頻率域兩個收波器所受到的訊號存在有 相位差θ(f),因此若針對同一頻率作頻譜分析,計算其

圖 5 比較摺合與未摺合相位譜 【1】

互能譜,即可求得兩收波器間的相位差。而震源與收波器間的傳遞時間(travel time)t,可依下式(9)式求得

$$t = \frac{\theta(f)}{2\pi} \times T \stackrel{\text{d}}{\longrightarrow} t = \frac{\theta(f)}{2\pi} \times \frac{1}{f}$$
(9)

其中,T:週期(sec) f:頻率(Hz)

 $\theta(f): 頻率 f 之相位差,以弳度表示(rad)。$

又兩收波器的間距為 Δx ,故頻率之雷利波傳速度 V_R 為:

$$V_{R} = \frac{\Delta x}{t} = \frac{(\Delta x \times 2\pi \times f)}{\theta(f)}$$
(10)

而視波長λ可由下式求得:

因此,當二收波器間之距離 Δ_x 、頻率與相位差 $\theta(f)$ 已 知,可由式(9~11)計算求出雷利波波速與波長,即可建 立 $V_R \sim \lambda$ 之關係圖,亦即所謂之雷利波頻散曲線。於 穩態振動法之反算過程中通常使用經驗法則,假設整 個表面波傳之能量集中於上半部波長範圍內,亦即假 設在特定波長下所對應之相速度代表二分之一波長範 圍內之土層特性。

$$\mathbf{D} = \lambda/2 \tag{12}$$

其中D 代表所對應之土層深度。而相速度所對應之剪 力波速以下式來表示:

$$\frac{V_R}{V_s} \approx \frac{0.862 + 1.14\nu}{1 + \nu}$$
(13)

3、分析結果與討論

本研究應用表面波譜法調查地盤灌漿品質及範 圍,其中將先由均一土層中建立一套決定頻散曲線的 評估方法,再擴展至內含灌漿體之土層的模擬分析 中。本節將把數值模擬分析之結果,透過傅立葉轉換 及計算相位差後所得到之頻散曲線圖,作一闡述說 明。其中將會對各影響參數(敲擊延時與灌漿體材料) 對頻散曲線之影響加以討論。茲將其說明如下:

- (1)1000µs之敲擊延時,分別在均一土層與含灌漿體(混 凝土、攪拌土)之土層,以五條不同震源測線來分析。
- (2) 500µs之敲擊延時,分別在均一土層與含灌漿體(混凝土、攪拌土)之土層,以五條不同震源測線來分析。
- (3) 300µs之敲擊延時,分別在均一土層與含灌漿體(混 凝土、攪拌土)之土層,以五條不同震源測線來分 析。其中佈設之測線分別如下:
- 第一測線:震源位於座標(15,4)處,本測線正好在灌漿 體表面的中央位置,在離震源 3m、6m、

9m、12m、18m、24m 之 FLAC 網格節點 上,計算並記錄其速度歷時反應,這些節 點的位置是模擬實務上收波器的擺設位 置。

- 第二測線:在第一測線往右 lm 處,其震源座標為 (16,4),因灌漿體寬度 4m,所以本測線仍 在灌浆體上方。
- 第三測線:在第二測線往右 1m 處,其震源座標為 (17,4),本測線剛好在灌漿體邊緣處。
- 第四測線:在第三測線往右 2m 處,其震源座標為 (19,4),本測線離灌漿體有 2m 的距離。
- 第五測線:在第四測線往右 2m 處,其震源座標為 (21,4),本測線離灌漿體有4m的距離。

上述測線之分佈圖如圖 6。因過去文獻指出,震源離第 一收波器的間距最好等於第一收波器與第二收波器的 間距。因此,本研究以四種間距來分析,分別為3m、 6m、9m、12m, 而 3m 的間距將取離震源 3m 與 6m 的 節點位置之速度歷時來分析;6m的間距將取離震源6m 與 12m 的節點位置之速度歷時來分析;9m 的間距將取 離震源 9m 與 18m 的節點位置之速度歷時來分析;12m 的間距將取離震源12m與24m的節點位置之速度歷時 來分析。

圖 6 測線分佈示意圖

3.1 敲擊延時(1000µs)之分析結果

3.1.1 灌漿體為混凝土之情形

第一測線的複合頻散曲線如圖 7 所示,而其"代表性" 頻散曲線如圖 8 所示。由圖 7 可看出,其與均一土層 之頻散曲線有所不同,其中可看出間距 D=3m 與 D=6m 之波速數據高於 D=9m 與 D=12m 之數據,此結果可能 是因為 D=3m 與 D=6m 所設置之收波器在混凝土上, 而 D=9m 與 D=12m 的收波器則在混凝土後方之土壤 上,以致其波速有明顯之差異,由此即可推算出灌漿 體的長度。在透過圖 8 "代表性"頻散曲線圖,可看出 大約在波長λ=10m處有一轉折區域,由此可推算出混 凝土灌浆體之深度大約為 10m,與本研究所假設的深 度符合。

第二测線的複合頻散因第二测線仍在混凝土上

圖7第一測線之複合頻散曲線圖

圖 8 第一測線之"代表性"頻散曲線圖

方,所以所得到之結果與第一測線結果大致相同。

第三測線的複合頻散所得到之結果與第一、二測 線結果也大致相同,但因本測線位於混凝土與土壤交 界處,所以λ<10m的波速有較小的情形。

第四測線的複合頻散曲線如圖9所示,而其"代表 性"頻散曲線如圖 10 所示。在第四測線中明顯發現與 前三條測線不同,因為本測線已經不在混凝土灌漿體 上方,因此所得到之結果與均一土層情況較為相似。 在複合頻散曲線圖中,可以看出波速高於均一土層之 波速,這可能是因為土層包含了混凝土灌漿體,所以 可能是受到其影響而導致。而且因在混凝土塊表面 上,所以在反射波的影響下,頻散曲線也較為零亂。 第五測線的複合頻散曲線得到之結果與第四測線大致 相同。

由上述五條測線的複合頻散曲線與"代表性"頻散 曲線可以得到混凝土灌浆體之深度、長度及寬度。其 中混凝土之寬度是由不同測線結果來得到;深度可由 "代表性"頻散曲線的轉折點來看出;而長度可由複合 頻散曲線的資訊得到。本研究之第一測線設置在灌漿 體中央對稱位置上,由於第一測線至第三測線有明顯 轉折區域且其相隔 2m 距離,所以即可推估灌漿體一半 之寬度為 2m,而其完整寬度即為 4m,有此可見,以 上所得到之結果與本研究所埋設之灌漿體尺寸符合。

圖 9 第四測線之複合頻散曲線圖

圖 10 第四測線之"代表性"頻散曲線圖

3.1.2 灌漿體為攪拌土之情形

第一測線的複合頻散曲線如圖 11 所示,而其"代 表性"頻散曲線如圖 12 所示。於攪拌土灌漿體第一測 線得知其波速較低於混凝土的情形,但是其波速高於 均一土層之波速,所以還是可以發現灌漿體存在的跡 象。在此測線之複合頻散曲線圖中,仍可以發現有灌 漿體之存在,而在"代表性"頻散曲線圖中也可看出在 波長 10m 處有明顯轉折區域,由此即可推斷出灌漿體 深度約為 10m。

圖 11 第一測線之複合頻散曲線

圖 12 第一測線之"代表性"頻散曲線圖

圖 13 第四測線之複合頻散曲線圖

圖 14 第四測線之"代表性"頻散曲線圖

第二測線的複合頻散結果與第一測線大致相 同,所以可以偵測得到灌漿體之長度與深度。第三測 線的複合頻散曲線與前兩種測線之結果也大致吻合。

第四測線的複合頻散曲線分別如圖 13 與圖 14 所 示,由第四測線得知與均一土層情況較為相似。第五 測線的複合頻散曲線所得之結果則和第四側線的土層 情況類似。

在此案例中可以得到灌漿體之尺寸,對於混凝土 與攪拌土兩種材料而言,混凝土在判斷上比攪拌土來 的清楚,因材料較堅硬使其波速較土壤為快,所以由 這兩種不同材料的灌漿體可得知,當地盤灌漿體的品 質有差異時,一個品質良好的灌漿體所得到的波速會 比品質較差的灌漿體來的大。

另外由試驗結果顯示,不論是混凝土或是攪拌土 皆可由 SASW 法測得其尺寸,但是在使用敲擊延時 (500µs)和敲擊延時(300µs)跟敲擊延時(1000µs)相比 下,並無太大的差異,可能跟本研究的條件與範圍有 關。

3.2 時頻圖分析

時頻圖是橫坐標為時間軸,縱坐標為頻率軸,而 坐標點的顏色代表能量的多寡,以分貝(dB)表示,其 中紅色代表能量越高,藍色代表能量越低。本文取 1000µs 敲擊延時,內含混凝土灌漿體的速度歷時與均 一土壤的速度歷時來繪製其時頻圖以作比對,均一土 壤的時頻圖如圖 15 所示。由圖看出雖有些訊號出現在 高頻之區域,而主要的訊號仍以低頻者最為顯著。

如果以1000µs 敲擊延時,內含混凝土灌漿體的土 層之第一、三及五條測線的第一收波器之速度歷時來 繪製時頻圖,其時頻圖分別如圖16、圖17及圖18所 示。由圖中可以看出,在第一、三條測線高頻(短波長) 部份所得到之訊號較為複雜,因為在波傳播過程中碰 到灌漿體,會將反射及折射的訊號傳回收波器,所以 此二測線高頻的能量較多,第五測線中雖然未在灌漿 體上方,但是因為碰到混凝土表面的反射波及折射波 的訊號,使得此測線的高頻部份也出現比均一土層為 多的能量。

圖 15 1000µs 敲擊延時均一土層之時頻圖

圖 16 第一測線第一收波器之時頻圖

圖 17 第三測線第一收波器之時頻圖

圖 18 第五測線第一收波器之時頻圖

4、結論

本研究應用表面波譜法調查灌漿體的範圍與品質 的可行性做了一系列的探討,其中本研究針對灌漿體 的材料性質、敲擊延時等參數進行討論,茲將這些分 析結果整理成下列結論:

- 在本研究的討論範圍內,改變敲擊延時對於本研究 並無明顯影響,三種不同延時(1000µs、500µs、300µs) 所得到的結果幾乎相同。
- 透過不同震源測線的複合頻散曲線可以得到灌漿體 之寬度,本文因為灌漿體是自行假設之位置所以測 線只設為五組,而應用在現地時可以將測線多設幾 組以得到更準確之資料。
- 利用不同間距的收波器量測結果,可以推估灌漿體 之長度,本文因為灌漿體是自行假設之位置所以收 波器只設六個位置,在現地量測時可再多設幾個位 置,以得到更準確之資料。
- 本文設定灌漿體埋設深度 10m 深,而透過"代表性" 頻散曲線圖可看出,在波長λ大約為 10m 處有一明 顯轉折區域,所以本研究認為可以用波長λ來判斷 灌漿體的深度。
- 利用兩種不同灌漿體材料性質所得到之頻散曲線, 其波速之差異性可以判斷出地盤灌漿體之品質。
- 在含灌漿體的土層中,由單一收波器所繪製的時頻 圖可以看出,在高頻部份因為反射波及折射波之影

中華民國力學學會第三十二屆全國力學會議 國. The 32nd National Conference on Theoretical and Applied Mechanics, November 28-29, 2008

響所以能量較多,而均一土層在高頻部份的能量較少。

5、致謝

本文感謝國科會(計畫編號 NSC 96-2622-E-324-01 2-CC3)支持研究經費以及中興顧問社提供 FLAC3D 軟 體,使本研究得以順利進行,特此致謝。

6、参考文獻

- [1] 江福壽,「頻散曲線評估土層剪力波速剖面之初 步研究」,碩士論文,國立成功大學土木工程研 究所(2004)。
- [2] 許寶琮,「短時頻(STFT)分析於表面波譜法應用 之初步探討」,碩士論文,國立成功大學土木工 程研究所(2006)。
- [3] 張正宙,「多頻道表面波震測之研究」,碩士論 文,國立交通大學土木工程研究所 (2002)。
- [4] 鄒和翰,「多頻道表面波震測法施測改良與案例 分析」,碩士論文,國立交通大學土木工程研究 所 (2005)。
- [5] Bolt, B.A., *Earthquakes: A Primer*. Freeman, W.H. and Company, San Francisco, 1978.
- [6] 黃俊豪,「應用表面波譜法調查土層剪力波速之 研究」,碩士論文,國立成功大學土木工程研究 所 (2003)。
- [7] Kramer, Steven L.," Geotechnical Earthquake Engineering", Perntice Hall, 1996.
- [8] 林盈政,「表面波譜法應用於偵測地下管線技術 之初步研究」,碩士論文,國立成功大學土木工 程研究所(1996)。
- [9] 李咸亨,「震波之量測」,地工技術雑誌,第十七 期(1987)。
- [10] Richart, F. E., Hall, J. R., and Woods, R. D., "Vibrations of Soils and Foundations," Prentice-Hall Inc., Englewood Cliffs, N. J., 1970.
- [11] 倪勝火,「表面波譜法之分析與運用」,地工技術 雜誌,第5-18頁,第八十六期(2001)。
- [12] 林進興與蘇百加,「表面波譜法之實務與運用」, 地工技術雜誌,第19-28頁,第八十六期(2001)。
- [13] 羅俊雄,「地震資料處理及基本應用」,地工技術 雜誌,第九期(1985)。
- [14] 陳彥亨,「高低頻法於表面波譜法之應用分析」, 碩士論文,國立成功大學土木工程研究所(2005)。
- [15] 潘建志,「表面波譜法反算土層剪力波速之探討」,碩士論文,國立成功大學土木工程研究所 (2002)。
- [16] 常正之,「應用雷利波散射取限反算土層動態參 數之研究」,博士論文,國立成功大學土木工程 研究所(1993)。
- [17] 康裕明,「陣列式表面波頻譜法在檢測黏土剖面 變化之應用」,碩士論文,逢甲大學土木工程學 糸(2005)。

- [18] Nazarian S. and Stokoe Π, K. H. ,In Situ Determnation of Elastic Moduli of Pavement Systems by Spectral-Analysis-of-Surface-Wave Method (Practical Aspects), Center for Transportation Research, The Univ. of Texas at Austin, 1985.
- [19] Rayleigh L.," On Waves Propagated Along the Plane Surface of an Elastic Solid," London Mathematical Society Proc, 1885.
- [20] 黃清林,「表面波頻散曲線異常跳動現象之探討」,碩士論文,逢甲大學土木工程學系(2004)。
- [21] Satoh T., Poran C.J., Yamagata K. and Rodriquez J.A.," Soil Profiling by Spectral Analysis of Surface Waves," Proc. of 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. LOUIS, Missouri, 1991.
- [22] Gucunski N.,and Ganji V. and Maher M. H.," Effects of obstacles on Rayleigh wave dispersion obtained from the SASW test," Soil Dynamics and Earthquake Engineering 15, pp.223-231, 1996.
- [23] Vahid Ganji, Student Member, ASCE, Nenad Gucunski, Associate Member, ASCE, and Ali Maher, Associate Member, ASCE," Detection of underground obstacles by sasw method-numerical aspects," Journal of Geotechnical and Geoenvironmental Engineering, pp.212-219, MARCH 1997.