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Abstract

The study applies the three-dimensional boundary element method in frequency domain to investigate the screening effectiveness of
circular piles in a row for a massless square foundation subject to harmonic vertical loading. Four types of piles were studied: steel pipe
piles, concrete hollow piles, concrete solid piles and timber piles. A parametric study was undertaken to examine the effects of pile dimen-
sions, operational frequency, and source distance on the screening effectiveness. The results showed that screening effectiveness of steel
pipe piles is generally better than that of solid piles, and that a concrete hollow pile barrier can be ineffective due to its stiffness. The
influence of pile length on screening effectiveness is more significant than that of pile spacing and the distance between the vibrating foun-
dation and the pile barrier.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

If the vibration level of construction, traffic or machine
operation is too high, environmental quality will be
degraded and distress people. Often it may cause cost over-
runs due to bad production rates of high-tech plants which
have strict limitation on vibration. Therefore, reduction or
isolation of vibration for required areas is an important
issue. Among the various isolation methods, installation
of barriers between a vibration source and the area of pro-
tection is deemed one of the best solutions. Trenches are
often used for barriers; however, there are limitations such
as constructible depth and stability of the trench. Piles,
therefore, are studied for vibration barriers.
0266-352X/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.compgeo.2007.05.010

* Corresponding author. Tel.: +886 4 22840381x222; fax: +886 4
22876851.

E-mail address: tonyfeng@dragon.nchu.edu.tw (Z.Y. Feng).
2. Review of previous analyses

In an experimental approach, Barkan [1] used sheet piles
and open trenches to isolate and protect a building from
traffic vibration, but at that time the screening effectiveness
for the trench was not well known. McNeill et al. [2]
described some successful applications of vibration isola-
tion with open trench and sheet piles. Woods [3] presented
field experimental results using open trenches for wave iso-
lation. He defined the amplitude reduction ratio and
showed the amplitude reduction ratio contour diagrams
for ground surface displacement amplitude reduction ratio
near the trench. He considered the amplitude reduction
ratio should be smaller or equal to 0.25 for a good isolation
mechanism. Woods et al. [4] used the principle of hologra-
phy to simulate vibration in half-space to observe passive
screening effectiveness of hollow cylindrical piles as barri-
ers. They concluded that the diameter of the piles should
be greater than 0.6 times of Rayleigh wave (R-wave)
length, LR, and the net spacing between the piles should
be smaller than 0.4LR. Liao and Sangrey [5] studied the
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propagation of sound waves in fluid media using model
piles as passive vibration reduction barriers. They found
that the screening effectiveness of soft pile is better than
hard pile (e.g. concrete pile). For a hollow pile barrier to
have better screening effectiveness, the hollow piles must
be small in diameter and made with elastic materials. The
screening effectiveness of a double row pile barrier is better
than a single row pile barrier. However, if the spacing of
piles in a single row barrier is small enough, the screening
effectiveness of a single row pile barrier can be better than
that of a double row pile barrier. The upper limit of the pile
spacing is 0.4LR for an effective vibration reduction. Haupt
[6] performed model tests for analyses of vibration reduc-
tion. He used an open trench, a concrete in-filled trench,
and hollow piles in a row as the vibration reduction mech-
anisms. His research showed that efficiency of vibration
reduction is related to the cross-sectional area of the
trench. The efficiency increases with increasing depth of
the trench.

For numerical approaches, Wass [7] used the finite ele-
ment method (FEM) to study the influence of trenches
on horizontal shear waves (SH-wave). His results showed
the vibration reduction efficiency of open trenches is not
good at high frequencies, and only good at some low fre-
quencies. Aboudi [8] installed barriers in elastic half-space
and used finite difference method (FDM) to calculate the
ground surface response. He concluded that the behavior
of Rayleigh wave propagation will be influenced by barri-
ers. Haupt [9] performed experiments to verify his finite ele-
ment analysis on the vibration reduction subject. He found
complex wave propagation near the barriers. For stiffer in-
filled materials, the efficiency of vibration reduction relates
to the cross-sectional area of the trench; and for softer in-
filled materials, the efficiency relates to the shape of the
trench. Segol et al. [10] applied FEM to discuss 2-D vibra-
tion reduction for open and in-filled trenches in layered
stratum. Fuyuki and Matsumoto [11] adopted FDM to
investigate Rayleigh waves when they reach an open
trench. May and Bolt [12] employed FEM to examine the
isolation effects of open trenches on SH-wave in two layer
soil systems. They found that when vibration frequencies
are between 4 Hz and 6 Hz, and the depth of a trench is
greater than 0.6LR, the power spectral ratio of SH-waves
can be reduced to only 6% of free field (i.e. no trench).
However, when operational frequency is smaller than
4 Hz, the power spectral ratio could be enlarged to over
200%. Avilles and Sanchez-Sesma [13] inspected the vibra-
tion reduction effect of 8 solid piles on compression wave
(P-wave), SH-wave, vertical shear wave (SV-wave). From
the results, it showed that among these three waves, the effi-
ciency of vibration reduction of solid piles to SV-wave is
better, but worse for P-wave. A pile diameter between 1/
4 and 1 times of shear wave length is most efficient. Net
spacing of piles is found most important to the influence
of dimension and arrangement of piles. Emad and Manolis
[14] utilized the boundary element method (BEM) with
constant elements to research the efficiency of vibration
reduction of rectangular and circular open trench. Screen-
ing effectiveness using vibration amplitude as indicator was
evaluated for some particular locations. Beskos et al. [15]
employed BEM with constant element to discuss the influ-
ence on vibration reduction using open and in-filled
trenches. He concluded the efficiency of vibration reduction
of open trenches is better than that for in-filled trenches.
Dasgupta et al. [16,17] applied 3-D frequency domain
BEM with full domain fundamental solution to analyze
rigid surface foundation subjected to harmonic loading
and discussed vibration reduction of open and in-filled
trenches. Avilles and Sanchez-Sesma [18] developed theo-
retical models to study the distribution of amplitude reduc-
tion behind circular solid piles in a row when subjected to
SV-wave and R-wave. They found when the diameter of a
pile equals to 0.25LR, and the pile length equals to 2 LR, the
screening effectiveness can be optimized. Ahmad and Al-
Hussaini [19] utilized 2-D BEM to research the efficiency
of vibration reduction for open and in-filled trench under
horizontal or vertical vibration mode. A simplified design
method was proposed using the influence parameters,
including frequency, location of trench, wave velocity,
properties of in-filled material, Poisson’s ratio, and damp-
ing ratio. Klein et al. [20] showed that depth of trench is a
critical parameter in screening effectiveness. Kattis et al.
[21,22] also used 3-D frequency domain BEM to calculate
the screening effectiveness of piles in a row for the same
assumption. The piles were assumed as tubular or solid
and have circular and square cross-sections. Their tubular
piles are only treated as long cylindrical cavities for simplic-
ity. They showed that the shape of the pile does not much
influence screening effectiveness. They concluded that net
spacing of piles is the major influencing factor: the smaller
the net spacing, the better the screening effectiveness of a
barrier.

3. Overview of study

From the above review, researches for vibration reduc-
tion mainly focused on open-trench and in-filled trench.
They are limited to circular cavities or square cavities in
a row or solid pile. Analysis using structured hollow/pipe
piles is rare. Therefore, this paper focuses on the efficiency
of structured hollow piles (not just using cavities as piles).
The materials for the hollow piles are concrete or steel. In
addition, concrete solid piles and timber solid pile were also
analyzed for comparisons. Rigid massless square founda-
tions subjected to vertical harmonic loading were modeled.
The barriers are arranged using 8 piles in a row. Numerical
analyses were performed using 3-D BEM to calculate ver-
tical vibration amplitudes behind a pile barrier and ampli-
tude reduction ratio. There are four pile types studied,
including steel pipe pile, concrete hollow pile, concrete
solid pile, and timber solid pile.

Woods [3] proposed an averaged amplitude reduction
ratio, Ary , for evaluation of screening effectiveness. The
amplitude reduction ratio, Ary, is first computed using
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Eq. (1), which is the ratio between amplitude with piles and
amplitude without piles.

Ary ¼
Amplitude with the pile barrier

Amplitude without pile barrier
ð1Þ

To evaluate the screening effectiveness of piles, the aver-
aged amplitude reduction ratio, Ary , is calculated using
the rectangular area, A, right behind the piles. The area
is defined as the area of one Rayleigh wave length long
multiples the width of the piles in a row. The amplitude
reduction ratio, Ary, is averaged becoming Ary as shown
in Eq. (2):

Ary ¼
1

A

Z
Ary dA ð2Þ

In this study, parametric studies were performed by
varying dimension and arrangement of piles, including
net spacing between piles in a row, pile length, the source
distance from the central pile of the barrier to the center
of vibration foundation, and operational frequency. The
results can be useful in pile barrier design to achieve vibra-
tion reduction, and beneficial to plan experimental work. If
the number of the piles in the design is greater or less than
eight, additional analyses can be performed using the
numerical scheme introduced in this study.
4. Boundary element method

The time domain equation of motion for a homoge-
neous, isotropic, and linear elastic body can be expressed
as:

rij;jðx; tÞ þ qfiðx; tÞ ¼ q€uiðx; tÞ i; j ¼ x; y; z ð3Þ

where €uiðx; tÞ is the acceleration; rij(x, t) is the stress; q and
fi(x, t) are mass density and body force per unit mass,
respectively. The ui and fi are complex variables.

Using the Fourier transform of Eq. (3), the governing
equation of motion in frequency domain takes the form:

rij;jðx;xÞ þ qfiðx;xÞ ¼ �qx2uiðx;xÞ ð4Þ
where x is the Fourier transform parameter and is equal to
the excitation frequency in this study.

The fundamental solution, Uij(x,y,x), is defined as the
displacement field at field point x in i direction due to the
concentrated force with a unit amplitude acting in the j

direction at loading point y. The fundamental solution of
traction field is expressed as Tij(x,y,x). The 3-D funda-
mental solution, Uij(x,y,x), of steady state elastodynamic
in infinite medium domain, satisfies the following equation:

rij;jðx; y;xÞ þ qx2uiðx; y;xÞ ¼ �dijdðy; xÞ ð5Þ
The solution of Eq. (5) was obtained as Eq. (6) [23].

U ij ¼
1

4pl
LðkT Þdij þ

1

kT
M ;ij

� �
ð6Þ
where

LðkT Þ ¼
eikT r

r
; M ¼ LðkT Þ � LðkLÞ

M ;ij ¼ o2M
oX ioX j

; r ¼ jx� yj, Xi is the three directional (x,y,z)
components of the vector from loading point y to field
point x.

dij = the Kronecker delta, dij = 1, when i = j; dij = 0,
when i 6¼ j.
cT = shear wave velocity,
cL = dilational wave velocity,
kT = wave numbers of shear wave,
kL = wave numbers of dilational wave.

The fundamental solution of traction field is calculated
from the fundamental solution Uij as:

T ijðx; y;xÞ ¼ Dijkðx; y;xÞnk ð7Þ

where nk is the unit outward normal vector at field point x;

Dijk ¼ kU il;ldjk þ lðU ij;k þ U ik;jÞ ð8Þ
where k, l are Lamé’s elastic constants.

In these expressions of Uij and Tij contains the terms of
order (kr)�2r�1 and (kr)�2r�2, respectively, and k stand for
either kT or kL. Therefore, if r is near to zero or low fre-
quency range, i.e., kr! 0, the integrals of fundamental
solution become singular. Kitahara et al. [24] suggested
two types of expressions of fundamental solution. Regular
type is used for all case except kr! 0 and singular type is
used for kr! 0.

1. Regular type [24]

U ij ¼
kT

4pl
½ðAU1Þdij � ðAU2Þr;ir;j� ð9Þ

T ij ¼ �½kdjkU im;m þ lðU ij;k þ U ik;jÞ�nk

¼ k2
T

4p

�
fððAT2Þ � ðAT1ÞÞdij þ 2ððAT3Þ � 2ðAT2ÞÞr;ir;jgr;knk

þ k
l
ððAT3Þ � ðAT1ÞÞ þ 2

k
l
þ 1

� �
ðAT2Þ

� �
r;inj þ ððAT2Þ � ðAT1ÞÞr;jni

�
ð10Þ

The detail formulation for AU1, AU2, AT1, AT2, and
AT3 can be found in Kitahara et al. [24].
2. Singular type [24]

Uij ¼ Û ij þ Uij ð11Þ
T ij ¼ T̂ ij þ T ij ð12Þ

where

Û ij ¼
1

16plð1� mÞr ½ð3� 4mÞdij þ r;ir;j� ð13Þ

T̂ ij ¼
1

8pð1� mÞr2
½fð1� 2mÞdij þ 3r;ir;jgr;knk � ð1� 2mÞðr;inj � r;jniÞ�

ð14Þ

with m denoting Poisson’s ratio. This Û ij coincides with the
fundamental solution of the elastostatics. The term Û ij has
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the singularity r�1, and the term T̂ ij has the singularity r�2.
These singularities can be treated in elastostatics problem.
This treatment makes U ij and T ij become regular when r is
approaching zero as following:

Uij ¼
1

4pl
½/dij� � wr;ir;j� ð15Þ

T ij ¼
1

4p
w
r
� /0

� �
dij þ 2 w0 � 2w

r

� �
r;ir;j

� ��
r;knk

þ k
l
ðw0 � /0Þ þ 2

k
l
þ 1

� �
w
r

� �
r;inj þ

w
r
� /0

� �
r;jni

�
ð16Þ

The / and w in Eqs. (15) and (16) are:

/ ¼
X1
n¼1

ðikT Þn

n!
rn�1 þ 1

k2
T

X1
n¼3

anðn� 1Þrn�3 ð17Þ

w ¼ � 1

k2
T

X1
n¼4

anðn� 1Þðn� 3Þrn�3 ð18Þ

where an ¼ in ðkn
T�kn

LÞ
n!

; /0 ¼ o/
or , and w0 ¼ ow

or .

By applying Betti’s reciprocal theorem [25], Eq. (4) can
be transformed into Eq. (19) as:Z

S
½tiðx;xÞU ijðx; y;xÞ � T ijðx; y;xÞuiðx;xÞ�dC

¼ ujðy;xÞ; y 2 V ð19Þ

Traction, ti, is complex variable. We assume that no wave
can be reflected from infinite, i.e., field quantities at infinite
must satisfy Sommerfeld’s radiation condition [24]. There-
fore, Eq. (19) can then be expressed as:Z

oS
½tiðx;xÞU ijðx; y;xÞ � T ijðx; y;xÞuiðx;xÞ�dC ¼ ujðy;xÞ

ð20Þ
where oS is ground surface and pile surface boundary, and
y 2 V. If y is belongs to boundary oS, the boundary inte-
gral equation is then established as:Z

oS
½tiðx;xÞU ijðx;y;xÞ � T ijðx;y;xÞuiðx;xÞ�dC¼ Cijuiðy;xÞ

ð21Þ
Eq. (21) is the governing boundary integral equation. Cij

can be computed by the Cauchy principal value [26]. If
boundary oS is smooth in the neighborhood of y, Cij can
be computed as:

Cij ¼
1

2
dij ð22Þ

The boundary oS can be discretized into n constant element
boundary with constant stress and displacement vectors on
the boundary. Eq. (21) can be expressed as a matrix
equation:

Cijui þ
Xn

j¼1

eH ijuj ¼
Xn

j¼1

Gijtj ð23Þ
where

Cij ¼
1

2
dij ð24Þ

eH ij ¼
Z

Cj

T ijðx; y;xÞdCj ð25Þ

Gij ¼
Z

Cj

U ijðx; y;xÞdCj ð26Þ

Therefore, Eq. (23) can be simplified to:Xn

j¼1

H ijuj ¼
Xn

j¼1

Gijtj ð27Þ

where

H ¼ C þ eH ð28Þ
Eq. (27) can be put in the following matrix form:

½H � � fUg ¼ ½G� � fTg ð29Þ
By substituting the boundary condition into Eq. (29), the
following governing equation can be obtained.

½A� � fXg ¼ fF g ð30Þ
Using the correspondence principle [27], material damp-

ing of soil can be taken into account by replacing the wave
velocity in complex form; i.e.,

c�L ¼ cL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2ib

p
; c�T ¼ cT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2ib

p
ð31Þ

where b is the material damping ratio, the symbol * denotes
complex form. The unknown vector {X} in Eq. (30) can be
solved by the Gaussian elimination method. The displace-
ment and traction of all boundary elements can be ob-
tained subsequently.

5. Numerical model

This study assumes the soil and foundation form a per-
fectly bonded contact: the foundation remains in place on
the ground while vibrating, and the displacement of soil
is the same as the displacement of the foundation. To make
sure the foundation is rigid; all elements at the foundation
should be all assigned the same vertical displacement
amplitude. For those elements at ground surface, zero trac-
tion is assumed (traction free). Meanwhile, for the elements
of pile heads and those on the surface inside the hollow
piles, the traction is also zero. In this study, there is no need
to use interface elements between piles and soils because
the difference in displacement between piles and soils is
very small. Therefore, the piles and soils are assumed to
be perfectly bonded, i.e., soil and pile have their individual
elements on the interfaces. The displacements of soil ele-
ments on the interfaces are equal to those of pile elements
in the other side of the interfaces. The tractions of soil ele-
ments and pile elements are in the same magnitude but act-
ing in opposite directions on the interfaces. However,
numbers of elements on the interfaces between piles and
soil are counted twice.



Fig. 1. The symmetrical model domain in this study (symmetry in xz-
plane).
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In numerical analysis, if a physical problem presents
symmetry, taking advantage of it results in less computa-
tion time and computer memory. In this study, there is a
symmetrical plan located at the vertical plan cutting
through the center of the foundation and center of the
row of piles. The boundary conditions at the plan are that
the normal displacement components of the plan are zero,
and the tangential traction components of the plan are
zero.

In this study, the model domain is designed to be sym-
metrical in xz-plane, thus the degrees of freedom
(unknowns) can be significantly reduced. Only a half of
the domain is discretized as shown in Fig. 1 and the deriva-
Fig. 2. A typical boundary ele
tions of the boundary element system equations are
explained as following.

Because of symmetry in xz-plane, the displacement field
has the relationships:

u1x ¼ u2x; u1y ¼ �u2y ; u1z ¼ u2z ð32Þ
where the subscript 1 and 2 stand for Zone 1 and Zone 2 in
Fig. 1. A typical boundary element mesh for the study
applying symmetries is shown in Fig. 2.

The boundary element system equations can be
expanded as:X

H 1x1xu1x þ H 1x1yu1y þ H 1x1zu1z þ H 1x2xu2x

þ H 1x2yu2y þ H 1x2zu2z ¼
X

Gijtj ð33Þ

Due to symmetry, u2x, u2y and u2z can be replaced by u1x,
u1y and u1z, respectively. Therefore, Eq. (33) can be re-writ-
ten as:X
ððH 1x1x þ H 1x2xÞu1x þ ðH 1x1y � DH 1x2yÞu1y

þ ðH 1x1z þ H 1x2zÞu1zÞ ¼
X

Gijtj ð34Þ

Traction field can be treated in the similar approach.
Therefore, the total degrees of freedom of the boundary
element model can be reduced to one-half of the original
one.

Constant boundary elements are adopted. The numeri-
cal program used in this study is coded according to the
above 3-D boundary element theory using FORTRAN
language. The number of element in a mesh is often
ment mesh for the study.
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Table 1
Material properties of soil and piles in this study

Soil Steel pipe
[30]

Concrete Timber [31]

Shear modulus G, MN/m2 132 79,300 4526.28 5580
Poisson’s ratio m 0.25 0.3 0.25 0.29
Unit weight c, kN/m3 17.5 75 23.5 4.2
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constricted to RAM size and CPU. To decide an optimum
mesh, the authors selected 4 element meshes with 540, 664,
1067, and 1316 elements to compare precision of results.
The comparison is shown in Fig. 3 and the numerical dif-
ference becoming approximately ‘‘steady’’. There is about
5.7% numerical difference between using 1067 and 1316 ele-
ments. Therefore, by considering the CPU consumed time
and numerical difference, the mesh of 1067 elements (747
for soil and 320 for pile) was selected for solid pile barriers.

For hollow pile barriers, a typical mesh of 1355 (779 for
soil and 576 for pile) was selected as shown in Fig. 2 for
symmetrical half domain. There are three displacement
directions of each element; therefore, there are totally
4065 degrees of freedom in the numerical system. We used
a high-performance computer (IBM SP SMP, 4CPU·42-
node, 184 GB RAM) for the computations.

In Eqs. (25) and (26), the integration of Uij and Tij were
calculated by standard numerical integration method,
using the values of Uij and Tij at the Gaussian integration
points multiple the ‘‘weights’’. The Gaussian integration
points and ‘‘weights’’ can be referred in Brebbia [28]. The
geometry of each boundary elements will be mapped in
to a ‘‘master element’’ for numerical Gaussian integration
as stated in Becker et al. [29].
To investigate the screening effectiveness of pile barriers
and the influencing factors, Rayleigh wave length, LR, was
used to normalize the pile dimensions. As shown in Fig. 2,
the pile length, h, is divided by LR to be the pile length
parameter, H. The net spacing between piles, s, is divided
by LR to be the net spacing parameter, S. The source dis-
tance, sd, is normalized to be the source distance parame-
ter, SD. In addition, the pile diameter, d, and hollow pile
thickness, t, to be D and T, respectively.

For the ground surface right behind the pile barrier, the
elements were discretized into finer rectangle elements, the
size of element between LR/25 and LR/5, because these are
the major areas for evaluating screening effectiveness. Gen-
erally, element size is larger for those elements away from
the barrier.

To decide the extent of the mesh boundary behind a
barrier for numerical analyses, a mesh study was per-
formed using 3LR, 9LR, 12LR, and 15LR as the mesh
boundary for concrete solid pile barriers. A harmonic
force, P0 = 100 kN with vibration frequency f = 50 Hz
and LR = 5 m, was assumed acting on the foundation.
The geometry parameters of the solid piles are: H = 0.5,
S = 0.3, SD = 1, D = 0.2. Vertical amplitudes of ground
surface were calculated as shown in Fig. 4. It is found
that the amplitudes for the above four boundary exten-
sions are very similar. Therefore, using 3LR distance for
the mesh boundary behind the barrier should be accurate
enough and was adopted for the subsequent numerical
analyses.

To verify the BEM code developed in this research, a
numerical analysis on vibration reduction ratio of a con-
crete solid pile barrier was compared with the results from
Kattis et al. [21]. The geometry parameters of the solid pile
barrier are: H = 1.0, S = 0.1, SD = 1.5, D = 0.2. The
assumed material properties of soil and concrete are listed
in Table 1. The frequency of vibration foundation is
f = 50 Hz. The size of the foundation is 0.8 m · 0.8 m.
The vibration reduction ratio at each element is presented
in Fig. 5. It can be observed that the amplitude reduction
ratio is much smaller right behind the pile barriers. By
graphically comparison, results in Fig. 5 is close to that
of Kattis et al. [21] for the identical solid pile barrier con-
ditions. For further comparison, a numerical analysis was
performed for cylindrical cavity barrier by assigning soil
properties to hollow piles. The results shows that the aver-
age amplitude reduction ratio, Ary , of 8 cylindrical cavities
is 0.838, while results of Kattis is 0.812. There is only 3%
Material damping ratio, b 0.05 0.03 0.05 0.08
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difference. Therefore, the accuracy of the developed BEM
code for screening effectiveness of pile barriers system is
validated.

6. Parametrical study for screening effectiveness

The vibration reduction effect will be different when dif-
ferent materials and types of piles are used. Four different
types of piles including timber and concrete solid piles, and
concrete and steel hollow piles were investigated for screen-
ing effectiveness for various pile dimension parameters and
layouts, such as H, S and SD. The results were shown using
the averaged vertical amplitude reduction ratio, Ary as
shown in Eq. (2). The elastic properties of the soil and piles
are also listed in Table 1. The geometry parameters are
listed in Table 2. The vibration frequency (f) of the founda-
tion is assumed as 50 Hz. The velocity of Rayleigh waves in
soil, vR, is assumed as 250 m/s; thus, the wavelength of
Rayleigh wave (LR) is 5 m. The thicknesses parameter
T = t/LR, of the concrete hollow piles and steel pipe piles
are both assumed to be 0.025; that is, the thickness of piles
(t) = 12.5 cm for LR = 5 m. The t = 12.5 cm is based on
practical experience for concrete hollow piles. For compar-
ison reason, the thickness of steel pipe piles is also justified
as 12.5 cm. For the parameters listed in Table 2, a consid-
Table 2
Parameters for the numerical study

Purpose of analyses Fixed parameters

Influence of pile length D S

0.2 0.05

Influence of net spacing D SD
0.2 2.0

Influence of source distance D H

0.2 1.0
erable amount of results were generated. However, only
partial and representative figures are selected to present
in this paper.

For steel pipe pile, the isolation effectiveness generally
increases with increasing pile length (Fig. 6). A pile with
H = 1.5 is capable of achieving an Ary < 0:2. For some
cases, the Ary slightly increased with increasing the length
parameter H when H is greater than 1.5. This could be
due to wave scattering or diffracting. However, the influ-
ence of this phenomenon is minor in design practice,
because the difference is small. To investigate the influence
of pipe pile’s properties, the authors varied the shear mod-
ulus of pipe pile (G = 79,300 MN/m2) for 0.33 G, 0.5 G,
2 G and 3 G, and density (c = 75 kN/m3) for 0.33c, 0.5c,
2c and 3c. Figs. 7 and 8 show the isolation effectiveness
increases with increasing shear modulus and density of pipe
pile, respectively. However, the influence of density is rela-
tively smaller. As pipe pile’s length is equal to a Rayleigh
wave length (H = 1), the influence of shear modulus on iso-
lation effectiveness is clear. The system is sensitive while H

equals to one. In Fig. 9, it shows that influence of net spac-
ing parameter, S, on screening effectiveness influence is
insignificant. In Fig. 10, the Ary increases and decreases
slightly with increasing SD when H = 1; however, the var-
iation is not obvious.
Varying parameters

H SD
0.5, 1.0, 1.5, 2.0 1.0, 1.5, 2.0, 3.0

H S

0.5, 1.0, 1.5, 2.0 0.05, 0.1, 0.15, 0.2, 0.25, 0.3

SD S

1.0, 1.5, 2.0, 3.0 0.05, 0.1, 0.15, 0.2, 0.25, 0.3
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Fig. 10. Influence of source distance parameter, SD, on Ary-steel pipe pile.
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Fig. 11. Influence of source distance parameter, SD, on Ary-concrete solid
pile.
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Fig. 6. Influence of length parameter, H, on Ary-steel pipe pile.
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Fig. 7. Influence of shear modulus of steel pipe pile on Ary .
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Fig. 8. Influence of unit weight of steel pipe pile on Ary .
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Fig. 9. Influence of net spacing parameter, S, on Ary-steel pipe pile.
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The screening effectiveness results of steel pipe piles are
compared with the results of Kattis et al. [22] which used 8
cylindrical cavities in Fig. 10. It is obvious that the wave
propagation is quite different between cylindrical cavity
barriers and steel pipe pile barriers. The discrepancy in
Ary is considerable. The Ary of Kattis et al. [22] is 0.812,
and Ary of steel pipe pile barrier is 0.501. The result reveals
that screening effectiveness between steel pipe pile barriers
and cylindrical cavity pile barrier is very different; thus
cylindrical cavity barrier can not be used to represent struc-
tured hollow pile barrier.

The screening effectiveness of concrete solid piles is also
compared with the results of Kattis et al. [22] in Fig. 11.
The numerical result of this study and that of Kattis
et al. are very close. Ary are 0.728 and 0.712, respectively.

For concrete hollow piles, the isolation effectiveness
increases with increasing pile’s length, but might not be
so effective when H > 1.5LR (Fig. 12). It can be observed
that the concrete hollow pile barriers in this study are inef-
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Fig. 12. Influence of length parameter, H, on Ary-concrete hollow pile.
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fective due to their Ary are larger than 0.4. In Fig. 13, it
shows that screening effectiveness is slightly better when
S is small for concrete hollow piles. In Fig. 14, it shown
the influence of source distance (SD) is not significant when
the length parameter H equals to 1.0; and the trend of Ary is
similar to that of steel pipe pile (Fig. 10).

Generally, when the length parameter, H, increases, the
values of Ary becomes smaller (Fig. 15). However, when
H > 1.5, Ary slightly increases. Generally, for a smaller
net spacing parameter (S), the Ary is smaller for timber,
concrete solid and hollow pile barriers (Fig. 16); but the
trend is slightly reversed for steel pipe pile barriers. It could
be that when Ary is small and due to wave scattering/diffrac-
tion or computational error (about 3%), Ary become sensi-
tive for the steel pipe pile barriers. It is not easy to clearly
identify its causes. However, in design practice, influence of
this reversed trend is minor, because Ary is already very
small (effective). For the influence of SD shown in
Fig. 17, the Ary curves of the four types of piles are nearly
flat, which means that the influence of SD on Ary is not
obvious.

From Figs. 15–17, we can observe that the screening
effectiveness of steel pipe pile barriers is the best, while steel
pipe pile has the largest shear modulus. The Ary of concrete
solid piles and timber piles are similar. This may be due to
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Fig. 13. Influence of net spacing parameter, S, on Ary-concrete hollow
pile.
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Fig. 16. Influence of the net spacing parameter, S, on Ary for the four
types of piles (H = 2.0, SD = 1.0).
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their shear moduli are close. The performance of concrete
solid piles is better than that of concrete hollow piles,
because the stiffness of concrete solid piles is larger than
that of concrete hollow piles. This made the screening effec-
tiveness of concrete hollow piles is the worst among the
four types of barriers. The authors consider that the isola-
tion effectiveness of pile barriers could depend on their
shear modulus and stiffness.

To study the influence of vibration frequency on screen-
ing effectiveness for the four types of piles, we fixed the
length of piles to 10 m, pile diameter to 1 m, source dis-
tance to 10 m, also assumed the net spacing as 0.5 m, and
5 vibration frequencies at 30 Hz, 40 Hz, 50 Hz, 60 Hz and
70 Hz. The results are shown in Fig. 18. For pipe pile bar-
riers, the Ary are around 0.1–0.15 for operational frequency
of 30–70 Hz. It is still perform the best among the four
30 40 50 60 70

f (Hz)
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concrete solid pile
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steel pipe pile

Fig. 18. Influence of vibration frequency on Ary for the four types of piles
(s = 0.5 m, sd = 10 m, h = 10 m).
types of pile barriers. The Ary-curves of concrete solid piles
and timber piles are again similar with Ary-curves ranging
from 0.4 to 0.6. The concrete hollow piles are still relatively
ineffective. It is also concluded that the screening effective-
ness of pile barriers is insensitive to vibration frequency.
7. Conclusions

This research used 3-D frequency domain BEM to ana-
lyze screening effectiveness of pile barriers for rigid mass-
less square foundation under harmonic vertical loading.
Four types of circular piles were studied, including steel
pipe piles, concrete hollow piles, concrete solid piles, and
timber solid piles. The influence parameters discussed
include dimension and layout of piles, source distance
and vibration frequency. This study concludes the screen-
ing effectiveness using piles as vibration barriers as
following:

1. The length of pile is the most important factor influenc-
ing the screening effectiveness. General, the longer the
pile length is, the better the screening effectiveness would
be. There are exception cases with steel pipe piles, how-
ever, these exception cases already have very good
screening effectiveness (Ary < 0:15). The net spacing
between piles and the source distance are less significant
for screening effectiveness.

2. Using steel pipe pile for vibration screening is most effec-
tive among the four types of piles studied.

3. The screening effectiveness of timber pile and concrete
solid pile is very similar. This phenomenon may be
due to that the shear moduli of the timber pile and con-
crete solid pile are close.

4. Screening effective between structured hollow pile barri-
ers and cylindrical cavity pile barrier could be very
different.

5. Screening effectiveness of pile barriers is insensitive to
vibration frequency.
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