2007.01.16

- An elastic-perfectly plastic non-associated material satisfies Drucker-Prager yield criterion (f = α I₁ + √J₂ - κ_d = 0) and has a von Mises plastic potential function (g = J₂ - κ²).
 - (a) Show that the stress-strain relation of this material can be expressed as

$$d\varepsilon_{y} = \frac{1}{2G} \cdot dS_{y} + \frac{1}{9K} dI_{1} \cdot \delta_{y} + \left(\frac{3\alpha K \cdot d\varepsilon_{kk}}{2G\sqrt{J_{2}}} + \frac{1}{2J_{2}} S_{mn} \cdot de_{mn} \right) \cdot S_{y} \quad (15\%)$$

- (b) Now suppose the material has a uniaxial compressive strength of $fc'=210~kg/cm^2$ and a shear strength of $\tau_s=0.53\sqrt{fc'}~kg/cm^2$, find the material constants α and κ_s ? (5%)
- (c) The material has a Young's modulus of $E = 15100\sqrt{fc'}$ kg/cm² and a Poisson's ratio of $\nu = 0.17$, now this element is subjected a strain state of $(\varepsilon_1, \varepsilon_2, \varepsilon_3) = (\varepsilon_0, 0)$, find the values of σ_{ν} and ε_{ν} . (10%)
- (a) Show that the relation of deviatoric stress (σ_i σ_j) vs. axial strain ε_a and volumetric strain ε_r, vs. axial strain ε_a response for the Hyperbolic Model can be express as:

(1)
$$\varepsilon_a = \frac{(\sigma_1 - \sigma_3)}{k * P_a * \left(\frac{\sigma_3}{P_a}\right)^a * \left(1 - \frac{R_f(\sigma_1 - \sigma_3)(1 - \sin\phi)}{2C\cos\phi + 2\sigma_3 * \sin\phi}\right)}$$
(10%)
(2) $\varepsilon_v = \frac{k}{3k_*} \left(\frac{\sigma_3}{P_a}\right)^{(n-a)} * \left(1 - \frac{R_f(\sigma_1 - \sigma_3)(1 - \sin\phi)}{2C\cos\phi + 2\sigma_* * \sin\phi}\right)^a \varepsilon_a$ (5%)

(b) The $\sigma - \varepsilon$ response of a soil element follows the *Hyperbolic Model*. Parameters of this soil are shown as below:

$$C' = 0.5kg/cm^2$$
, $\phi' = 30^\circ$, $K = 350$, $n = 0.8$, $R_f = 0.95$, $K_{ur} = 450$, $K_b = 400$, $m = 0.4$

Now, suppose the soil specimen is consolidated under cell pressure of 4 $kg/\ell m^3$ and backed pressure of $2.0\,kg/\ell m^3$, respectively. The soil element was then applied deviatoric stress σ_a (drained condition) to the value of $5.0\,kg/\ell m^3$. Find the elastic axial strain ε_a^r , plastic axial strain ε_a^r and volumetric strain ε_s , (10%)

(c) Why does the friction angle φ of cohesionless soil decreased, when the confining pressure σ₃ increased? (5%)

Mid-term exam on Constitutive Model for Geotechnical Materials

Department of Construction Engineering Chaoyang University of Technology

November 14, 2006

- 1. Explain following two nomenclatures: (a) Bauschinger effect (3%); (b) Yield criterion. (3%)
- 2. The σ - ε response in simple tension for a material, which is approximated by the form of a Ramberg-Osgood formula: $\varepsilon = \varepsilon_e + \varepsilon_p = 0.01\sigma + 0.001*(0.1\sigma)^2$. Where the unit of σ is MPa.
 - (a) Find the E, E_t , E_p , σ , and W_p , when plastic strain $\varepsilon^p = 0.02$. (15%)
 - (b) When plastic strain $\varepsilon^p = 0.02$ and is subsequently unloaded and reversely loaded to $\varepsilon^p = 0$, find the associated stress σ , if the hardening rule is isotropic hardening, and the hardening parameter is defined as $\kappa = \int (d\varepsilon_{ij}^p * d\varepsilon_{ij}^p)^{0.5}$. (10%)
- 3. Show that (a) $\partial J_2 / \partial \sigma_{ij} = s_{ij}$, and (5%); (b) $\tau_{oct} = \frac{\sqrt{2}}{3} (I_1^2 I_2)^{\frac{1}{2}}$. (10%)
- 4. A soil element has a yield stress state: $\sigma_{ij} = \begin{bmatrix} 5 & 2 & 1 \\ 2 & -4 & 0.5 \\ 1 & 0.5 & 3 \end{bmatrix} MPa$
 - (1) Find the new stress state for a new x_1, x_2, x_3 coordinate system defined by rotating x_1, x_2, x_3 axes through an angle of 30° clockwise about x_3 axis. (5%)
 - (2)An acting plane has a normal vector, the angles between the normal vector and X_1 , X_2 and X_3 axes are 73.677°, 35°, and 60°, respectively. Find the stress vector $\overrightarrow{T_i}$, magnitude and direction of the normal stress and shear stress. (15%)
 - (3) Find the principal stresses, and the principal direction for $\sigma_{\rm max}$. (10%)

(Note: Use Newton's method and guess σ =6.0 MPa to get principal stresses)

- (4) Find the invariants of σ_{oct} , τ_{oct} , ξ , ρ and θ . (10%)
- (5) Now suppose the material element is subjected a uniaxial compressive stress q_u , for what values of q_u when the soil element occurs yield? According to (a) Tresca yield criterion (3%); (b) von Mises yield criterion (4%); (c) Osgood yielding criterion: $J_2^3 2.25J_3^2 = \kappa_o^6$ (8%)