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4.2 Sampling
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• Convert an analog information-bearing signal m(t) to a 
sequence that spaced uniformly in time without 
significant loss of information.

• Sampling Theorem
– A band-limited signal of finite energy that has no 

frequency components greater than W hertz is 
completely

• described by specifying the values of the signal at instants of 
time separated by 1/2W seconds.

• recovered from a knowledge of its samples taken at the rate 
of 1/2W samples per seconds.
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• Aliasing 
– phenomenon of high frequency in the spectrum of 

information-bearing signal take on the identity of lower 
frequency in the spectrum of sampled version of signal.

• The sampling rate of 2W samples per second for a signal 
bandwidth of W hertz is called Nyquist rate.

• Corrective measures of aliasing
– A low-pass antialiasingfilter is used to attenuate high-

frequency components of signal m(t) before sampling.
– The output of the low-pass filter is sampled at a rate 

slightly higher than the Nyquist rate.
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4.3 Why Follow Sampling with 
Coding
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• Encoding: translate the discrete set of sample values to a 
form best suited for transmission.

• Source coding is a way to remove the redundant information. 
– It has the net effect of reducing the channel bandwidth 

required to transmit the speech signal.

• Benefits of encoded version of speech signal
– Offers potential for mitigating the effects of channel noise.
– Allow system to have a capability to correct transmission 

errors.  
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4.4 Shannon’s Information 
theory
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• Issues of Shannon’s Information Theory
– The efficient encoding of a source signal
– Reliable transmission over noisy channel
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4.4 Shannon’s Information 
theory

4.4.1 Source-Coding Theorem
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• Entropy
– a measure of average information content per symbol emitted by 

the source

• Given discrete memoryless source characterized by a certain 
amount of entropy, the average code-word length for a distortionless
source-encoding scheme is upper bounded by the entropy

• Source encoder

• Entropy ( )
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4.4 Shannon’s Information 
theory

4.4.2 Channel-Coding Theorem
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• Reliable transmission of sequence over noisy channel

• If a discrete memoryless channel has capacity C and a source 
generates information at a rate less than C, then there exists a 
coding technique such that the output of the source may be 
transmitted over the channel with an arbitrarily low probability of 
symbol error.

• Code rate

• Channel-coding Theorem: 
– non-constructive nature

n
k

r = (4.3)

CH01-20

Modern Wireless CommunicationsModern Wireless Communications

4.4 Shannon’s Information 
theory

4.4.3 Information Capacity Theorem
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• Trade-off between channel bandwidth and signal-to-noise ratio 
at channel output.

• Information Capacity

• Three key system parameters: channel bandwidth, average 
transmitted power and channel noise variance.

• easier to increase the information capacity of a wireless 
channel by expanding its bandwidth than the other. 
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4.4 Shannon’s Information 
theory

4.4.4 Rate Distortion Theory
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• A natural extension of source and channel coding 
theorem.

• Applications of rate distortion theory
– Source coding, wherein the permitted alphabet of the 

source code cannot represent the source output exactly
• thereby forcing us to put with lossy data compression

– Information transmission
• required at a rate greater than the permissible channel 

capacity.
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4.5 Speech Coding
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• A recurrent theme in the design of digital 
wireless communication system is 
– efficient utilization of the allotted spectrum.

• Speech coding: 
– remove nearly all of the natural redundancy 

inherent in speech signal.

• Linear Predictive coding (LPC)
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4.5 Speech Coding

4.5.1 Linear Prediction
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• Predictive mode: predicting the present or future value of a discrete-
time signal in a given set of past samples of signal.

• Prediction error : difference between the actual future value of the 
signal and the predicted value produced by the model.

• Set of samples

• Output of the predictive model
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• Mean-square-error criterion

• Optimum value of parameter a rRa 1−= (4.9)

( ) ( )[ ]2ˆ txtxEMSE −= (4.8)
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4.5 Speech Coding

4.5.2 Multipulse Excited LPC
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• Exploits the principle of analysis by synthesis

• Three parts of encoder
– Synthesis Filter

• Produce synthesis version of original speech with high quality.

– Excitation generator
• Producing the excitation applied to the synthesis filter.

– Error minimization
• Optimizing the perceptually weighted error between the 

original speech and the synthesized speech 
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• Encoding Steps:
1. Computation of free parameters of synthesis filter with the use 

of actual speech samples as input.
2. Optimum excitation for synthesis filter is computed by 

minimizing the perceptually weighted error with the loop 
closed.

– Decoder which 
– located in the receiver 
– consists of excitation generator and synthesis filter, 
– using the received signal to produce a synthetic version 

of original speech signal.
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4.5 Speech Coding

4.5.3 Code-Excited LPC
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• Use of predetermined codebook of stochastic (zero-mean 
white Gaussian) vectors as the source of excitation for the 
synthesis filter.

• CELP us capable of producing good quality speech at bit 
rates below 8 kb/s

• Intensive computational complexity
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4.6 Error-Control Coding
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1. Forward error-correction (FEC) code
• Classified into 

• block codes
• convolutional codes.

• Rely on the controlled use of redundancy in the 
transmitted code word for 
• detectionand correction of errors.

2. Automatic-repeat request (ARQ) schemes
• Use redundancy merely for the purpose of error 

detection.
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4.6 Error-Control Coding

4.6.1 Cyclic Redundancy Check Codes
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• Provide a powerful method of error detection for use in ARQ 
strategies.

• Cyclic codes: any cyclic shift of a code word in the code is 
also a code word.

• Cyclic codes are suited for error detection
– Can be designed to detect many combinations of errors.
– Implementation of encoding and error -detecting circuits is very 

simple.
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• Binary (n,k) CRC codes are capable of detecting the 
following patterns
1.All error bursts of length n-k or less.
2.A fraction of error bursts of length equal or greater 

then n-k+1; the fraction equals 1-2-(n-k-1)

3.All combinations of dmin-1 (or fewer) errors.
4.All error patterns with an odd number of errors if the 

generator polynominal for the code has an even 
number of nonzero coefficients.
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4.7 Convolutional codes
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• Convolutional coder generates redundant bits by using 
modulo-2 convolutions.

• The encoder of a binary convolutional code with rate 1/n, 
measured in bits per symbol, is called finite-state machine 
(FSM).

• Code rate of convolutional code

• The constraint lengthdefines as the number of shifts over 
which a single message bit can influence the encoder output.

( ) bit/symbol
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• Impulse response
– the response of the path connecting output to input of 

convolutional encoder to a symbol 1 applied to its input.

• Generator polynomial
– the unit-delay transform of the impulse response.
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4.7 Convolutional codes

4.7.1 Trellis and State Diagrams of 
Convolutional Codes
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4.8 Maximum-Likelihood 
Decoding of Convolutional 
Codes
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• Maximum-likelihood decoder

• Consider the special case of memoryless binary symmetric 
channel, the conditional probability

• Log-likelihood function for convolutional decoder
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• Let the transition probability be

• Then we may rewrite the log-likelihood function as

• Restate the maximum -likelihood decoding rule for binary 
symmetric channel as
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4.9 The Viterbi Algorithm
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4.9 The Viterbi Algorithm

4.9.1 Modifications of the Viterbi
Algorithm



10

CH01-55

Modern Wireless CommunicationsModern Wireless Communications

• When the received sequence is very long, the storage 
requirement of Viterbi algorithm becomes too high.

• Decoding window of acceptable length l is specified and the 
Viterbi algorithm operates on a frame of received sequence, 
always stopping after l steps.

• Decision is made on the best path and symbol associated 
with 1st branch on that path is released to user.

• Decoding window is moved forward one time interval and the 
decision on next code frame is made.

• No longer truly maximum likelihool.
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4.10 Interleaving
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• Minimization of information to be transmitted
– Reducing the amount of data to be transmitted means less pwer

has to be transmitted.
– Reducing the spectral (or radio frequency) resources that are 

required for satisfactory performance.

• Interleaving
– Obtain the maximum benefit from FEC coding.
– Resolving the two conflicting phenomena

• Wireless channel that produces bursts of correlated bit errors.
• Convolutional decoder that cannot handle error burst.

– No need exact statistical characterization of wireless channel but 
only the coherence time.
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• Coherence time for fast fading

• Interleaver randomizes the order of encoded bits after the 
channel encoder in transmitter.

• Deinterleaver undoes the randomization before the data reach 
the channel decoder in the receiver.

D
coherence f

T
2

3.0≈ (4.19)
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4.10 Interleaving

4.10.1 Block Interleaving
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4.10 Interleaving

4.10.2 Convolutional Interleaving
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4.10 Interleaving

4.10.3 Random Interleaving
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Two steps algorithm:
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4.11 Noise Performance of 
Convolutional Codes
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• For low values of Eb/N0,
– the uncoded performance is better than the coded 

performance.

• For a prescribed Eb/N0 , 
– the noise performance improves with increasing constraint 

length K for both AWGN and fading channels.
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• For a prescribed constraint length K
– the Eb/N0 must be increased for the fading channel to 

exhibit a noise performance comparable to that attainable 
with corresponding AWGN channel

• For constraint length K=9 in the Rayleigh-fading channel
– we can realize a bit error rate of 2x10 -4 by using an Eb/N0

=6,  by using the forward error-correction coding.
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4.12 Turbo Codes
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4.12 Turbo Codes

4.12.1 Turbo Encoding
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4.12 Turbo Codes

4.12.2 Turbo Decoding
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• Soft-input, soft-output (SISO) decoding algorithm.

• 1st decoding stage uses MAP algorithm to produce a soft estimate, 
which is expressed as the equivalent log-likelihood ratio

• The second decoding stage uses MAP algorithm and the second set 
of parity bits to produce a further refined estimate
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• Single-loop feedback system

• To increase the independence of inputs from one processing stage
to the next
– turbo algorithm use the concepts of intrinsic and extrinsic 

information.

• Intrinsic information 
– information inherent in a sample prior to a decoding operation.

• Extrinsic information 
– incremental information obtained through decoding.
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• Extrinsic information at the output of 2nd stage

• The extrinsic information supplied to the second stage by 1st

stage

• On the last iteration of the decoding process, a hard decision is 
applied to the output of the 2nd decoder to produce an estimate 
of the jth information bit
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4.12 Turbo Codes

4.12.3 Noise Performance
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4.12 Turbo Codes

4.12.4 Maximum a Posteriori 
Probability Decoding
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• MAP algorithm includes a backward an forward recursion.

• Derive the a posteriori probabilities of the states and transitions of the 
trellis

• S-vector of state probabilities at time j based on set of observations

• Assume the transmitted information bit is least significant bit (LSB) of 
the state, the probability that a 1 was the information bit is g iven by
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• Forward estimator of state probabilities

• Backward estimator  of state probabilities

• Define the L1 norm for probability vectors as
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• Transition probability at time j

• Matrix of the above probabilities

• Recursion equations for calculating the forward and backward 
state estimates:
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• MAP algorithm:
– α (0) and β (T) are initialized according to the trellis 

structure. 
• For a trellis beginning and ending in the all-zero state, 
• we have α 0(0)=1 and α S(0)=0 for all s not equal to zero 

and similarly for β(T).
– When r(j) is received, the decoder computes Γ(j) and 

then α (j) using Eq.(4.33). 
• The computed values of α (j) are stored for all j and s . 
• Note that r(j) is a vector of length L, defined by
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• MAP algorithm:
– After the complete sequence r[1,T] has been received, the 

decoder recursively computes β (j), using Eq.(4.34). 
• Then, when β (j) have been computed, they are 

multiplied by the appropriate α (j) to obtain λ (j), using 
Eq.(4.30)
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4.13 Comparison of Channel-Coding 
Strategies for Wireless 
Communication
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• 4.13.1 Encoding 

• 4.13.2 Decoding

• 4.13.3 AWGN Channel

• 4.13.4 Fading Wireless Channels

• 4.13.5 Latency

• 4.13.6 Joint Equalization and Decoding
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4.13 Comparison of Channel-Coding 
Strategies for Wireless 
Communication

4.13.1 Encoding
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• Convolutional encoder can assume  of one of two forms:
– Nonrecursive nonsystematic
– Recursive systematic

• Comparing turbo codes with convolutional (RSC) encoder:
– Unlike Shannon’s random codes, turbo codes are decodable .
– Turbo codes work better than classical convolutional codes 

when code rates are high or signal to noise ratios are low.
– Both types of codes require use of flush bits. With parallel 

encoding structure of turbo codes, it is not straightforward to 
flush the second encoder, so flushing is often not done.

– Unlike convolutional codes, turbo codes have an error floor.
– Turbo codes rely on soft inputs to work. Convolutional codes can

work with either soft-decision or hard-decision inputs. 
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4.13 Comparison of Channel-Coding 
Strategies for Wireless 
Communication

4.13.2 Decoding
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• Decoding for convolutional code is to use the Viterbi algorithm 
– complexity depends on number of states and 
– there is a trade off between the performance and decoder 

complexity.
• Turbo decoding relies on 

– exchange extrinsic information between 2 SISP decoding stage 
on iterative basis. 

– Complexity is twice as Viterbi algorithm. But it can achieve large 
coding gains with simple component codes.

• EXIT chart is defined as the function that maps the prior information 
to the extrinsic information applied to the decoder in question, with 
the information capacity of its communication channel treated as a 
parameter.
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4.13 Comparison of Channel-Coding 
Strategies for Wireless 
Communication

4.13.3 AWGN Channel
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• Ability to achieve near-optimum performance.

• Optimality is defined in terms of theoretical limits 
imposed by Shannon’s information capacity 
theorem.

• For finite size of information block, performance 
is measured in terms of increase in Eb/N0.
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4.13 Comparison of Channel-Coding 
Strategies for Wireless 
Communication

4.13.4 Fading Wireless Channels
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• To combat error bursts, using of interleavers in transmitter 
and deinterleavers in receiver is needed.

• Performance curves of turbo codes, brick-wall in shape.

• Convolutional codes, the performance codes exhibit a slow 
roll-off characteristic.

• For short block lengths, which are most robust for 
communication over fading wireless channels. The 
improvement offered by turbo codes over convolutional codes 
is usually small.
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4.13 Comparison of Channel-Coding 
Strategies for Wireless 
Communication

4.13.5 Latency
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• Delay incurred by a channel decoder in processing the 
received signal in order to recover the original sequence 
of information bits.

• Proportional to interleaversize.

• Smaller block sizes mean smaller latency.
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4.13 Comparison of Channel-Coding 
Strategies for Wireless 
Communication

4.13.6 Joint Equalization and Decoding
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• Turbo codes 
– have a very small free distance. 
– Upon decoding, they have fewer error events at this 

free distance than convolutional codes have.

• Convolutional encoders 
– used in the turbo encoder are recursive
– non-return-to zero encoders in that they return to 

initial state only with probability 2 -v
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4.14 RF Modulation Revisited



18

CH01-103

Modern Wireless CommunicationsModern Wireless Communications

• Partial-response modulation
– ensure the phase response of the modulated signal is spread 

over several symbol periods.

• GMSK: example of partial -response modulation.
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4.15 Baseband Processing for 
Channel Estimation and 
Equalization
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• Signal resulting from convolution operation plus AWGN at 
channel output constitutes the received RF signal:

• Complex baseband signal

• Complex equivalent baseband form of real impulse response 
of channel

( ) ( ) ( ) ( )twthtstx +⊗= (4.35)
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4.15 Baseband Processing for 
Channel Estimation and 
Equalization

4.15.1 Channel Estimation
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• Complex channel -sounding signal

• The complex channel -sounding signal is applied to matched filter. 
Appropriately delayed to satisfy causality, the impulse response is

• Match-filter output

• Property of match filter
The output of a matched filter, in response to an input signal to 
which the filter is matched, is equal to the autocorrelation of the 
input signal

( ) ( ) ( ) 0
~~)(~ =⊗= tw    thtctxchannel

(4.38)

( ) ( )tTctq c −= ∗~~
(4.39)

( ) ( ) ( )
( ) ( ) ( )thtctTc

txtqtz

c

channel
~~~

~~~

⊗⊗−=

⊗=
∗

(4.40)
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• Mathematical representation of matched filter property

• Hence, Eq(4.40) reduces to 

• Real value of autocorrelation function

• Rewrite Eq.(4.42)

• Suppose autocorrelation is real and in form of delta function, then

( ) ( ) ( )tTrtctTc ccc −=⊗−∗
~

~~ (4.41)

( ) ( ) ( )thtTrtz cc

~~
~ ⊗−= (4.42)

( ) ( ) ( ) ( )τρτρττρτ == -   therefore    all for   rc~
(4.43,44)

( ) ( ) ( )thTttz c
~~ ⊗−= ρ

(4.45)

( ) ( ) ( ) ( )cc TththTttz −=⊗−=
~~~ δ (4.46)
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• Eq.(4.46) is idealized when
– Channel noise is zero
– Probing signal is ling enough

• Estimate of complex impulse response

( ) ( ) ( )cest Tthtth +⊗=
~~

ρ (4.47)
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4.15 Baseband Processing for 
Channel Estimation and 
Equalization

4.15.2 Viterbi Equalization
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• Metric for design the equalizer
– Estimated received waveforms
– Compensated received waveform

• Squared Euclidean distance

• Transition metric of equalizer
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• Steps in Viterbi equalization
1. Compute the transition metric
2. Compute the accumulated transition metric for 

every possible path in the trellis representing the 
equalizer.

3. Repeat the computation for every bit of received 
signal.

4. Active path discovered by the algorithm defines the 
I-bit sequence applied to the local modulator.
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4.16 Time-Division Multiple 
Access
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• TDMA system permits a number of user to access a wireless 
communication channel of bandwidth on a time shared basis.

• Distinguish TDMA from FDMA
– Each user has access to the full bandwidth of the channel.
– Each user accesses the channel for only a fraction of time.

• TDMA frame are divided into two functional groups:
– Traffic data bits
– Overhead bits
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4.16 Time-Division Multiple 
Access

4.16.1 Advantages of TDMA over 
FDMA
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• With TDMA, 
– the use of a diplexer can be avoided at the 

mobile terminal.
– only one RF carrier at a time is present in the 

channel.
– same channel unit is shared between multiple 

sessions.

• With voice, a significant portion of the consists of 
quiet time, when neither party is speaking.
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4.16 Time-Division Multiple 
Access

4.16.1 Advantages of TDMA over 
FDMA
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• Three basic forms of TDMA
– Wideband TDMA
– Medium-band TDMA
– Narrowband TDMA

• Appropriate choice of granularity for FDMA systems
– In a cellular system, the granularity has to be sufficient to al low 

different frequency assignment and perform flexible interference
management.

– System complexity increases with the channel bandwidth and 
data-transmission rate.

– Propagation conditions may favor higher bandwidth system.


