

• Instantaneous signal-to-noise ratio

$$\gamma_k = \frac{E}{N_0} \alpha_k^2 \qquad k = 1, 2, \dots, N_r$$
 (6.5)

- Assume average signal-to-noise ratio over short-term fading is same, the probability density functions of random variables Γ_k pertaining to individual branches as

$$f_{\Gamma_k}(\gamma_k) = \frac{1}{\gamma_{av}} \exp\left(-\frac{\gamma_k}{\gamma_{av}}\right) \quad \gamma_k \ge 0 \quad k = 1, 2, \dots, N_r$$
 (6.6)

 For some signal-to-noise ratio, the associated cumulative distributions of individual branches are

$$prob(\gamma_{k} \leq \gamma) = \int_{-\pi}^{\gamma} f_{\Gamma_{j}}(\gamma_{k}) d\gamma_{k}$$

$$= 1 - \exp\left(-\frac{\gamma}{\gamma_{n}}\right) \quad \gamma \geq 0$$
(6.7)

CH06-13

• Probability that all the diversity branches have a signal-to-noise ration less than threshold
$$\gamma$$
 is $prob(\gamma_1 < \gamma)$ or $k = 1, 2, \dots, N_1 = \prod_{i=1}^N prob(\gamma_i < \gamma)$ $= \prod_{i=1}^N \left[1 - \exp\left(-\frac{\gamma}{\gamma_{e_i}}\right)\right]$ (6.8) • Cumulative distribution function of random variable Γ_{SC} • Cumulative distribution function of selection combiner
$$F_{\Gamma}(\gamma_{sc}) = \left[1 - \exp\left(-\frac{\gamma_{e_i}}{\gamma_{e_i}}\right)\right]^{N_e}, \quad \gamma_{sc} \geq 0 \quad (6.10)$$

• Probability density function of $f_{\Gamma}(\gamma_{sc})$

$$f_{\Gamma}(\gamma_{x}) = \frac{d}{d\gamma_{x}} F_{\Gamma}(\gamma_{x})$$

$$= \frac{N_{r}}{\gamma_{av}} \exp\left(-\frac{\gamma_{x}}{\gamma_{av}}\right) \left[1 - \exp\left(-\frac{\gamma_{x}}{\gamma_{av}}\right)\right]^{N_{r}-1} \qquad \gamma_{x} \ge 0$$
(6.11)

 For convenience of graphical presentation, we use the scaled probability density function

 $f_X(x) = \gamma_{av} f_{\Gamma_{sc}}(\gamma_{sc})$ where the normalized variable x is $x = \gamma_{sc}/\gamma_{av}$

CH06-1

The transmission matrix of Alamouti code satisfies the unique condition

$$\mathbf{S}\mathbf{S}^{+} = \mathbf{S}^{+}\mathbf{S} = \left(\left|\widetilde{\mathbf{s}}_{1}\right|^{2} + \left|\widetilde{\mathbf{s}}_{2}\right|^{2}\right)\mathbf{I}$$
(6.91)

And Note that

$$\mathbf{S}^{-1} = \frac{1}{\left|\tilde{s}_{1}\right|^{2} + \left|\tilde{s}_{2}\right|^{2}} \mathbf{S}^{+}$$
 (6.92)

CH06-79

- · Four Properties of Alamouti code
- Property 1. Unitarity (Complex Orthogonality)
 - Alamouti code is an orthogonal space-time block code
 - Product of transmission matrix with its Hermitian transpose is equal to the two-by-two identity matrix scaled by the sum of squared amplitudes of transmitted symbols.
- Property 2: Full-Rate Complex Code
 - Only complex space-time block code with a code rate unity

CH06-80

- · Property 3. Linearity
 - Alamouti code is linear in transmitted symbols.
- · Property 4. Optimality of Capacity
 - For two transmit antennas and a single receive antenna, the Alamouti code is the only optimal space-time block code that satisfies the log-det capacity formula of Eq. (6.63).

CH06-8

With
$$\tilde{s}_1$$
 and \tilde{s}_2 transmitted simultaneously at time t , the complex received signal at time $t' > t$, is
$$\tilde{x}_1 = \alpha_1 e^{j\theta_1} \tilde{s}_1 + \alpha_2 e^{j\theta_2} \tilde{s}_2 + w_1 \qquad (6.95)$$
 The complex signal received at time $t' + T$ is
$$\tilde{x}_2 = -\alpha_1 e^{j\theta_1} \tilde{s}_2^* + \alpha_2 e^{j\theta_2} \tilde{s}_1^* + w_2 \qquad (6.96)$$
 Reformulate the variable \tilde{x}_1 and complex conjugate of the second variable \tilde{x}_2 in matrix form
$$\begin{bmatrix} \tilde{x}_1 \\ \tilde{x}_2^* \end{bmatrix} = \begin{bmatrix} \alpha_1 e^{j\theta_1} & \alpha_1 e^{j\theta_2} \\ \alpha_2 e^{-j\theta_2} & -\alpha_1 e^{-j\theta_1} \end{bmatrix} \begin{bmatrix} \tilde{s}_1 \\ \tilde{s}_2 \end{bmatrix} + \begin{bmatrix} \tilde{w}_1 \\ \tilde{w}_2^* \end{bmatrix} \qquad (6.97)$$

 Let G be a an m-by- N_i matrix, N_i is the number of transmit antennas and m is the number of time slots, the entries of the matrix

$$0,\pm s_1,\pm s_1^*,\pm s_2,\pm s_2^*,\ldots,\pm s_l,\pm s_l^*$$

- ${f G}$ is said to be generalized complex orthogonalized design of size $N_{\rm r}$ and code rate is l/m if

$$\mathbf{G}^{+}\mathbf{G} = \left(\sum_{j=1}^{l} \left| s_{j} \right|^{2} \right) \mathbf{I}$$
 (6.106)

CH06-91

CH06-93

• Construction of space-time block codes using generalized complex orthogonal design is exemplified by rate-1/2 codes.
• Case 1: For three transmit antennas
$$(l=4, m=8)$$

$$G_3 = \begin{bmatrix} \widetilde{s_1} & \widetilde{s_2} & \widetilde{s_3} \\ -\widetilde{s_2} & \widetilde{s_1} & -\widetilde{s_4} \\ -\widetilde{s_3} & \widetilde{s_4} & \widetilde{s_1} \\ -\widetilde{s_3}^* & \widetilde{s_3}^* & \widetilde{s_3}^* \\ -\widetilde{s_3}^* & \widetilde{s_4}^* & \widetilde{s_1}^* \\ -\widetilde{s_4}^* & -\widetilde{s_3}^* & \widetilde{s_2}^* \end{bmatrix}$$

$$\downarrow Time$$

• Case 2: For four transmit antennas (
$$i=4,m=8$$
)
$$\mathbf{G}_{4} = \begin{bmatrix} \widetilde{S}_{1} & \widetilde{S}_{2} & \widetilde{S}_{3} & \widetilde{S}_{4} \\ -\widetilde{S}_{2} & \widetilde{S}_{1} & -\widetilde{S}_{4} & \widetilde{S}_{3} \\ -\widetilde{S}_{3} & \widetilde{S}_{4} & \widetilde{S}_{1} & -\widetilde{S}_{2} \\ -\widetilde{S}_{4} & -\widetilde{S}_{3} & \widetilde{S}_{2} & \widetilde{S}_{1} \\ \widetilde{S}_{1}^{*} & \widetilde{S}_{2}^{*} & \widetilde{S}_{3}^{*} & \widetilde{S}_{4}^{*} \end{bmatrix} \rightarrow Space$$

$$(6.108)$$

$$-\widetilde{S}_{3}^{*} & \widetilde{S}_{4}^{*} & \widetilde{S}_{1}^{*} & -\widetilde{S}_{4}^{*} & \widetilde{S}_{3}^{*} \\ -\widetilde{S}_{3}^{*} & \widetilde{S}_{4}^{*} & \widetilde{S}_{1}^{*} & -\widetilde{S}_{2}^{*} \\ -\widetilde{S}_{4}^{*} & -\widetilde{S}_{3}^{*} & \widetilde{S}_{2}^{*} & \widetilde{S}_{1}^{*} \end{bmatrix}$$

$$Time$$

Modern Wireless Communications

○高立圖書公司
GAN LIH BOOK CO. LTD.

Compare with Alamouti code, space-time codes G_3 and G_4 are at a disadvantage in two respects:

The bandwidth efficiency is reduced by a factor of two.

The number of time slots across which channel is required to have a constant fading envelope is increased by a factor of four.

* Since $S_{t,t+1}$ is a unitary matrix by virtue of orthonormality of its tow constituent row vectors, it follow that $S_{t,t+1}^{-+} = S_{t,t+1}$ * Basis for differential space-time block encoding at the transmitter $S_{t+2,t+3} = A_{t+2,t+3} S_{t,t+1}^{-+}$ $= A_{t+2,t+3} S_{t,t+1}^{-+}$ * In the absence of channel noise, the received signal matrix in response to transmitted signal matrix $S_{t,t+1}$ is given by $X_{t,t+1} = S_{t,t+1} H$ (6.116)

• From the solution to problem6.12, we note that $\mathbf{H} = \begin{bmatrix} \alpha_1 e^{-j\theta_1} & \alpha_2 e^{-j\theta_2} \\ \alpha_2 e^{-j\theta_2} & -\alpha_1 e^{-j\theta_1} \end{bmatrix} \text{ and } \mathbf{H}^+\mathbf{H} = \mathbf{H}\mathbf{H}^+ = \begin{pmatrix} \alpha_1^2 + \alpha_2^2 \end{pmatrix} \mathbf{I} \qquad (6.119)$ • Accordingly. Eq.(6.118) reduces to $\mathbf{Y}_{t+2,t+3} = \begin{pmatrix} \alpha_1^2 + \alpha_2^2 \end{pmatrix} \mathbf{S}_{t+2,t+3} \mathbf{S}_{t+1}^+ \\ = \begin{pmatrix} \alpha_1^2 + \alpha_2^2 \end{pmatrix} \mathbf{A}_{t+2,t+3}$ • This is the basis for differential space-time block decoding at the receiver.

CH06-107

Modern Wireless Communications

 Advantages of 120° sector antennas at base station
 Can be applied with FDMA, TDMA or CDMA
 Allows multiple users to operate on same frequency and/or time slot in same cell
 More users in same spectrum and improved capacity
 Can be applied at base station without affecting mobile terminals

ি Complex envelope of transmitted signal $\widetilde{s}(t) = m(t)e^{j2\pi jt} \qquad (6.122)$ • Received symbols $\widetilde{r}(t,l) = A(t)m(t-l/c)e^{j2\pi j(l/c)} \qquad (6.123)$ • Key assumptions
1. Incident field is a plane wave
2. The attenuation $A(t) = A(t_0) \equiv A_0$ 3. $.m(t-l/c) \approx (t-l_0/c) \equiv m_0(t)$ 4. There is no mutual coupling between the antenna elements.

* The received signal at element k is $s_k(t) = s_0(t)e^{j2\pi \left(\frac{kd}{\lambda}\right) \sin \theta}$ $= 2\pi \left(\frac{kd}{\lambda}\right) \sin \theta$ where $s_0(t) = A_0 m_0(t)e^{jA_0(t)}$ (6.126,127) * Complex rotation $a_k(\theta) = e^{j2\pi \left(\frac{kd}{\lambda}\right) \sin \theta}$ (6.128) * A phased array computes a linear sum of the signals received at each element in Fig 6.29, yielding the received signal $r(t) = \sum_{k=N/2}^{N/2} w_k^* s_k(t)$ (6.129) $= \left(\mathbf{w}^+ \mathbf{a}\right) s_0(t) \text{ where } w = \left[w_{-N/2}, \dots, w_{N/2}\right]^T \text{ and } \mathbf{a}(\theta) = \left[a_{-N/2}(\theta), \dots, a_{N/2}(\theta)\right]^T$

