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• Diversity

– Frequency diversity

– Time (signal-repetition) diversity

– Space diversity

• Receive diversity

• Transmit diversity

• Diversity on both transmit and receive

• Multiple-input, multiple-output (MIMO)

– User terminal of limited battery power

– Channel of limited RF bandwidth
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6.2 “Space Diversity on Receive”
Techniques
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6.2 “Space Diversity on Receive”
Techniques

6.2.1 Selection Combining
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• Given Nr receiver outputs produced by common 
transmitted signal, logic circuit selects particular receiver 
output with largest signal-to-noise ratio as received 
signal.

• Assumption

– Frequency-flat: all frequency components constituting the 
transmitted signal are characterized by same random 
attenuation and phase shift.

– Slow-fading: fading remains unchanged during 
transmission

– Fading phenomenon is described by Rayleigh distribution.
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• Complex envelope of received signal of kth diversity branch is

• With fading assumed to be slowly varying relative to symbol 

duration T, we simply the above Eq. to 

• The average signal-to-noise ratio at kth receiver output 

• As mean-square value of       is the same for all k , we have( )twk
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• Instantaneous signal-to-noise ratio

• Assume average signal-to-noise ratio over short-term fading is same, 

the probability density functions of random variables pertaining to 

individual branches as

• For some signal-to-noise ratio, the associated cumulative 
distributions of individual branches are 
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• Probability that all the diversity branches have a signal-to-noise ratio 
less than threshold γis 

• Cumulative distribution function of random variable

• Cumulative distribution function of selection combiner
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(6.9)
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• Probability density function of 

• For convenience of graphical presentation, we use the scaled 
probability density function

( )scf γΓ
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• From figure 6.2

– As the number of branches increase, probability density function
of normalized random variable moves progressively to right.

– Probability density function becomes more symmetrical and 
Gaussian as Nr increase.

• Procedures of scanning version of selection-combining:

– Selecting receiver with strongest output signal.

– Maintain the procedure by using the output of this particular 
receiver as combiner’s output.

– When the instantaneous signal-to-noise ratio of combiner falls 
below the threshold, select a new receiver with strongest output
signal.
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6.2.2 Maximal-Ratio Combining

6.2 “Space Diversity on Receive”
Techniques
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• Limitation of selection combiner can be mitigated by maximal-ratio 

combiner

• Complex envelope of linear combiner output

• From Eq. (6.12), we notices that 

– Complex envelope of output signal equals

– Complex envelope of output noise equals ( )∑
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• Let denote the instantaneous output signal-to-noise ratio of 

linear combiner, then using 

as the instantaneous values of expectations in numerator and 

denominator of eq.(6.13), we can write
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• According to Cauchy-Schwarz inequality for complex number, we 

have

• Applying Cauchy-Schwarz inequality to instantaneous output signal-

to-noise ratio

• Canceling common terms in Eq.(6.16)
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• Therefore, the equality in Eq.(6.17) holds for

• Instantaneous output signal-to-noise ratio of maximal-ratio combiner

• According to Eq.(6.5), the maximal-ratio combiner produces an γmrc

that is the sum of instantaneous signal-to-noise ratios of individual 

branches

• The term “maximal-ratio combiner” has been coined to describe the 
combiner of Fig. 6.4 that produces the produces optimum result.
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• Chi-Square with 2Nr degrees of freedom
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6.2.3 Equal-Gain Combining

6.2 “Space Diversity on Receive”
Techniques
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• Three issues for maximal-ratio combiner

1. Significant instrumentation is needed to adjust the complex 
weighting parameters of maximal-ratio combiner to their exact 
values.

2. Additional improvement in :

1. output signal-to-noise ration gained by mrc over sc is not 
large

2. Receiver performance is lost in inability to achieve the exact 
setting of mrc

3. other details of the combiner may result in a minor improvement 
in overall receiver performance.

• Equal-gain combiner: all the complex weighting parameters have 
their phase angles set opposite to those of their respective multipath
branches.
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6.2.4 Square-Law Combining

6.2 “Space Diversity on Receive”
Techniques
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• No need phase estimation.

• Applicable to orthogonal modulation.

• With binary orthogonal signaling, receiver generates

• In orthogonal modulation, two signaling waveforms approximately 

satisfy the condition

• If binary symbol 0 is transmitted, the two decision variables are 
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• Square-law receiver makes a decision between symbols 0 and 1 as 

• With square-lave combining, we form the decision variable 

• If s0(t) was transmitted, the variances are given by
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• Probability density function for correct symbol is 

• For incorrect symbol, it is 

• As Q1 and Q0 are independent random variables, the probability of 

error is
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6.3 Multiple-Input, Multiple-
Output Antenna Systems

CH06-34

Modern Wireless CommunicationsModern Wireless Communications

• MIMO wireless communications include space diversity

• Three important points:

– Fading phenomenon is an environmental source of 

possible enrichment.

– Space diversity provides the basis for a significant 
increase in channel capacity or spectral efficiency.

– Increasing channel capacity with MIMO is achieved by 

increasing computational complexity with maintaining 
primary communication resources fixed.
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6.3 Multiple-Input, Multiple-
Output Antenna Systems

6.3.1 Co-antenna Interference
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6.3.2 Basic Baseband Channel Model

6.3 Multiple-Input, Multiple-
Output Antenna Systems
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• Spatial parameter, defines as a new degree of freedom.

• Nt-by-1 vector, denotes the complex signal vector transmitted by the Nt

antennas at discrete time n.

• Total transmit power is fixed at the value
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• For flat-fading, we can use        denote sampled complex gain of 

channel, thus express the Nr-by-Nt complex channel matrix as
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• The system of equations, defines the complex signal received at ith

antenna due to transmitted symbol     radiated by kth antenna

• Complex received signal vector

• Complex channel noise vector

• Therefore, the compact matrix form of the system equation which is 

the basic complex channel model for MIMO wireless communications

• To simply the exposition, we get
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• For mathematical tractability, we assume Gaussian model made up 

of three elements

1. Transmitter

2. Channel

3. Receiver

– 1. Correlation matrix of transmitted signal vector s is

Rs = E[ss†]

=σ2
sINt

where is the Nt-by-Nt identity matrix
tNI
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• 2. The Nt x Nt elements of channel matrix H is 

• On this basis, the amplitude component hik is rayleigh distributes, 
this is the reason why MIMO channel is a rich Rayleigh scattering 

environment.

• Mean of squared amplitude component is a chi-square random 

variable
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• 3. Correlation matrix of noise vector w is 

Rw = E[ww†]

=σ2
wINr

where is the Nr-by-Nr identity matrix

• The average signal-to-noise ratio (SNR) at each receiver is
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6.4 MIMO Capacity for Channel 
Known at the Receiver
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6.4.1 Ergodic Capacity

6.4 MIMO Capacity for Channel 
Known at the Receiver
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• Information capacity of AWGN channel with fixed transmit power is 
defined as

• With the sampling theorem, we can rewrite to 

• Capacity of complex, flat-fading channel is

• Assume the channel is stationary and ergodic, C is commonly referred 
to ergodic capacity of single-input, single-output (SISO) flat fading 
channel.
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• Ergodic capacity of MIMO channel

• Substituting Eqs. (6.49) and (6.52) into Eq.(6.57)

• Invoking definition of average signal-to-noise ratio, we get

• This is the log-det capacity formula for a Gaussian MIMO channel.
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• Asymptotic formula

• The ergodic capacity of a MIMO flat-fading wireless link with an 
equal number N of transmit and receive antennas grows roughly 

proportionately with N

constant
N

C

N
≥

∞→
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6.4.2 Two other special case of log-det

formula: Capacities of Receiver and 
Transmit Diversity Links

6.4 MIMO Capacity for Channel 
Known at the Receiver
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• 1. Diversity-on-receive channel

– Applying log-det capacity formula to this case, Eq. (6.60) reduces 
to

– Eq. (6.62) expresses the ergodic capacity due to linear 
combination of receive-antenna outputs. 

– It designed to maximize the information contained in Nr received 
signals about the transmitted signal.

HzsbithEC
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ρ (6.62)

CH06-52

Modern Wireless CommunicationsModern Wireless Communications

• 2. Diversity-on-transmit channel

– The log-det capacity formula reduced to 

Hzsbitsh
N

C
tN

k

k

t

//1log
1

2

2 















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=

ρ
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6.4.3 Outage Capacity

6.4 MIMO Capacity for Channel 
Known at the Receiver

CH06-54
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• Outage probability of MIMO link is defined as the probability for 

which the link is in a state of outage for data transmitted across the 

link at a certain rate, R.

• To proceed on this probabilistic basis, we invoke a quasi-static 

model:

– The burst is long enough to accommodate the transmission of 

large number of symbols.

– Yet the burst is short enough that can be treated as quasi static.

– Channel matrix is permitted to change.

– The different realizations of transmitted signal vector are drawn 

from a white gaussian codebook.
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• In light of the log-det capacity formula, we may view the random 

variable 

as the expression for a sample of the wireless link.

• Outage probability at rate R is

• Outage capacity of the MIMO link is the maximum bit rate that can be 

maintained across the link for all bursts of data transmissions for a 
prescribed outage probability.

Hzsbit
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6.4.4 Channel Known at the 

Transmitter

6.4 MIMO Capacity for Channel 
Known at the Receiver

CH06-57
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• Log-det capacity formula is based on the premise that 
the transmitter has no knowledge of channel state.

• Knowledge of channel state can be gathered by 

– first estimating the channel matrix at receiver

– then sending to the transmitter via feedback channel.

– Capacity is optimized.
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6.5 Singular-Value Decompostion
of the Channel Matrix

CH06-59
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• Diagonalize HH+ by invoking eigendecomposition of Hermitian Matrix

• The matrixΛis a diagonal matrix whose Nr elements are eigenvalues

of matrix product HH+

• The matrix U is a unitary matrix whose Nr columns are the 

eigenvectors associated with eigenvalues of HH+.

• Inverse of unitary matrix is equal to Hermitian transpose of matrix, as 

shown by

A=++
UHHU (6.67)

rN     ly,equivalent or,   IUUUUUU === +++−1
(6.68,69)
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• Let Nt-by-Nt matrix V be another unitary matrix, that is

• Inject the matrix product VV+ into the center of left-hand side of Eq. 

(6.67)

• Let the Nt-by-Nt matrix D denate a new diagonal matrix related to Nr-
by-Nr diagonal matrixΛwith Nr ≤ Nt by

• Examining Eqs.(6.71) and (6.72) and comparing terms, we deduce 

the new decomposition, which is singular-value decomposition (SDV)

rNIVVVV == ++
(6.70)

Α=+++
U)HH(VVU (6.71)

[ ][ ]+=Α 00 DD (6.72)

[ ]0DHVU =+
(6.73)
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• According to SVD theorem, we have

– Elements of diagonal matrix

are the singular values of channel matrix H.

– Columns of unitary matrix

are the left singular vectors of matrix H

– Columns of second unitary matrix

are the right singular vectors of matrix H

( )
tNddddiag ,,, 21 K=D (6.74)

[ ]
rNu,,u,uU 11 K= (6.75)

[ ]
tNvv,vV

1
,,2 K= (6.76)
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• Using the definitions of Eqs. 

(6.74) through (6.76), the 

decomposed channel model 
can changed to scalar form

riiii N,1,2,i     wsdx K=+= ~~~
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6.5 Singular-Value Decompostion
of the Channel Matrix

6.5.1 Eigendecomposition of the Log-

det Capacity Formula

CH06-64
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• Substituting Eq. (6.59)into Eq. (6.67) leads to spectral 

decomposition of HH+ in terms of Nr eigenmodes, we may write

• Substituting the first line of this decomposition into determinant part 

of Eq. (6.59) yields

• Invoking the determinant identity.

∑
=

+

++

=

=
rN

i

iii

1
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UUΑHH

λ
(6.82)

( ) ( )BAIABI +=+ detdet (6.84)
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• And then using the defining Eq. (6.69), we can rewrite Eq. (6.83)
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• Finally, subsitute Eq. (6.85) into Eq. (6.59)

• Ergodic capacity of a MIMO wireless communication system is the 
sum of capacity of Nr virtual single-input, single-output channels 

defined by the spatial eigenmodes of the matrix product HH+.

• Using the log-det capacity formula of Eq.(6.60), for Nt ≤ Nr, we can 

show that 

Hzsbits
N

EC i
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r
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6.6 Space-Time Codes for MIMO 
Wireless Communications

CH06-68
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• Space-Time codes

– Joint channel encoding of multiple transmit antennas

– Employ redundancy for purpose of providing protection 

against channel fading, noise, interference.

– Maximize outage capacity

– Classified into

• Space-time trellis codes

• Space-time block codes

CH06-69
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• Space-time trellis code

– Permits serial transmission of symbols.

– Designed for two to four transmit antennas

– Well for slow-fading environment but not indoor data 

transmission.

– For decoding, multidimensional version of Viterbi algorithm 

is required

– Decoding complexity of space-time trellis codes increases 
exponentially as the function of spectral efficiency.

CH06-70
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• Space-time block code

– Transmission of signal takes place in blocks. Code is 

defined by transmission matrix with 3 parameters

• Number of transmitted symbols l

• Number of transmit antennas, Nt, defines the size of 

transmission matrix.

• Number of time slots in data block m

– Ratio l/m defines of rate of code.

– For efficient transmission, transmitted symbols are 

expressed in complex form.

CH06-71
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– Linear processing

• Estimate transmitted symbols at receiver and simplify the 

receiver design.

– Different receiver design procedures:

• Complex orthogonal design

• Generalized complex orthogonal design

– Complex orthogonality of transmission matrix in temporal 

sense is a sufficient condition for linear processing at 
receiver.

– Alamouti code: code with code rate of unity.

CH06-72
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6.6 Space-Time Codes for MIMO 
Wireless Communications

6.6.1 Preliminaries

CH06-74
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• Two functional units:

– Mapper

• Take incoming binary data stream and generate a new 
sequence of blocks.

– Block encoder

• Converts each block of complex symbols produced by 
mapper into an l-by- Nt transmission matrix S, where l and Nt

are temporal dimension and spatial dimension

CH06-76
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6.6.2 Alamouti Code

6.6 Space-Time Codes for MIMO 
Wireless Communications

CH06-77
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• Two-by-one orthogonal space-time block code.

• Hermitian transpose of S
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• Multiply code matrix S by its Hermitian transpose, obtaining

• This result also holds for alternative matrix product S+S, which is 
proof of orthogonality in the temporal sense
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• The transmission matrix of Alamouti code satisfies the unique 

condition

• And Note that 

( )ISSSS
2

2

2

1
~~ ss +== ++ (6.91)
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• Four Properties of Alamouti code

• Property 1. Unitarity (Complex Orthogonality)

– Alamouti code is an orthogonal space-time block code 

– Product of transmission matrix with its Hermitian transpose 

is equal to the two-by-two identity matrix scaled by the 
sum of squared amplitudes of transmitted symbols.

• Property 2: Full-Rate Complex Code

– Only complex space-time block code with a  code rate 
unity.
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• Property 3. Linearity

– Alamouti code is linear in transmitted symbols.

• Property 4. Optimality of Capacity

– For two transmit antennas and a single receive antenna, 

the Alamouti code is the only optimal space-time block 
code that satisfies the log-det capacity formula of Eq. 

(6.63).
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• Multiply Eq.(6.97) by hermitian transpose of two-by-two channel 

matrix

• And let
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• Recast Eq.(6.98) in matrix form of input-output relations describing 
the overall behavior of Alamouti code

• Due to complex orthogonality of Alamouti code, the unwanted 
symbols are cancelled out in the equations. This cancellations are 
responsible for the simplification of receiver.

• The detrimental effect of fading arises when diversity paths suffer 
from it. This means a wireless communication system based on the
Alamouti code enjoys a two-level diversirty gain.
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• Maximum-likelihood decoding rule:

– Given that receiver has knowledge of

• Channel fading coefficients α1andα2.

• Set of all possible transmitted symbols in the mapper’s
constellation denoted by S, the maximum-likelihood estimates 

of transmitted symbols defined by

where the φ denote the different hypotheses for the linear 
combiner output. 

( )( ){ } ( )( ){ }ϕααϕαα
ϕϕ

2

2

2

12

2

S
2

2

2

2

11

2

S
1 ,~minargˆ   and   ,~minargˆ +=+=

∈∈
ydsyds (6.1)

CH06-87

Modern Wireless CommunicationsModern Wireless Communications

6.6.3 Performance Comparison of 

Diversity-on-Receive and Diversity-on-
Transmit Schemes

6.6 Space-Time Codes for MIMO 
Wireless Communications

CH06-88
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6.6.4 Generalized Complex Orthogonal 
Space-Time Block Codes

6.6 Space-Time Codes for MIMO 
Wireless Communications

CH06-90
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• Generalized complex orthogonal designs of space–time 
block codes distinguish themselves from the Alamouti
code in three respects:

– Nonsquare transmission matrix

– Fractional code rate

– Orthogonality of transmission matrix only in temporal 

sense.
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• Let G be a an m-by- Nt matrix, Nt is the number of transmit 

antennas and m is the number of time slots, the entries of the 

matrix

• G is said to be generalized complex orthogonalized design of size 

Nt and code rate is l/m if
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• Construction of space-time block codes using generalized complex 

orthogonal design is exemplified by rate-1/2 codes.

• Case 1: For three transmit antennas (l=4, m=8)
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• Case 2: For four transmit antennas (l=4,m=8)
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• Compare with Alamouti code, space-time codes G3 and 
G4 are at a disadvantage in two respects:

1. The bandwidth efficiency is reduced by a factor of two.

2. The number of time slots across which channel is 

required to have a constant fading envelope is increased 
by a factor of four.
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• To improve the bandwidth efficiency, we may use rate-3/4 

generalized complex linear processing orthogonal designs referred 

to as sporadic codes:

• Case 1: For three transmit antennas (l=3, m=4) 
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• Case 2: For four transmit antennas (l=3,m=4)
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6.6.5 Performance Comparisons of 

Different Space-Time Block Codes 
Using a Single Receiver

6.6 Space-Time Codes for MIMO 
Wireless Communications
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6.7 Differential Space-Time Block 
Codes
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6.7 Differential Space-Time Block 
Codes

6.7.1 Differential Space-Time Block 

Coding
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• Given the new pair of complex signals to be transmitted at time t+2, 

the row vector can be expressed as

• a1,t+2 and a2,t+2 are coefficients of linear combination and defined as 

inner products of the row vector, therefore
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• Similarly, we can write

• Coefficients matrix is a product of two orthogonal Alamouti

(quaternionic) matrices.
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• Since St,t+1 is a unitary matrix by virtue of orthonormality of its tow 

constituent row vectors, it follow that

• Basis for differential space-time block encoding at the transmitter

• In the absence of channel noise, the received signal matrix in 
response to transmitted signal matrix St,t+1 is given by

1,1, +
+−
+ = tttt SS

1,3,2

1,3,23,2

+++

+−
+++++

=

=

tttt

tttttt

SA

SAS
(6.115)

HSX 1,1, ++ = tttt
(6.116)
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• Similarly, the received signal matrix in response to the next 

transmitted signal matrix St+2,t+3 is 

• New two-by-two matrix

HSX 1,3,2 +++ = tttt
(6.117)
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• From the solution to problem6.12, we note that

• Accordingly. Eq.(6.118) reduces to

• This is the basis for differential space-time block decoding at the 
receiver.
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• With two sets of signal points involved in formulation of Eqs (6.115) 
and (6.121), we identify two signal spaces

–– AA, is spanned by pair of complex coefficients (a1,a2) constituting 
matrix A

– S, is spanned by the complex signals        constituting matrix S

• Properties of these signals:

• 1. With M-ary PSK as the method of modulation transmitting 
Alamouticode, 

– points representing signal space S are uniformly distributed on 
circle of unit radius

– Points representing signal space A constitute a quadrature
amplitude modulation (QAM) constellation

21
~,~ ss
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• 2. Minimum distance between the points in signal space 
S is equal to the minimum distance between the points in 
signal space A.

• 3. To construct matrix A

– Bijective mapping of 2b bits onto the signal space A.

– The mapping bijective in the sense that it is one-to-one

and onto.

CH06-110

Modern Wireless CommunicationsModern Wireless Communications

6.7.2 Transmitter and Receiver 

Structures

6.7 Differential Space-Time Block 
Codes

CH06-111
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Differential space-time block encoder

1. Mapper

• Generate the entries that make up matrix At+2,t+3

2. Differential encoder

• Transforms the matric At+2,t+3 into matrix St+2,t+3

• Delay unit feeds back the matrix St,t+1 to input of differential 

encoder

• Multiplier multiplies matrix inputs At+2,t+3 and St,t+1 to provide 

the transmitted signal matrix St,t+3 in accordance with 
Eq.(6.115)
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Differential space-time block decoder

1. Differential decoder

• Delay unit feeds forward the matrix Xt,t+1

• Multiplier multiplies the matrices Xt+2,t+3 and Xt,t+1 to produce new 
matrix Yt+2,t+3

2. Signal estimator

• Computes the matrix that               is closest to 

3. Inverse mapper

• Operates on estimate                to produce corresponding 

estimates of original pair of data bits transmitted at time t+2 and 
t+3.

2, 3Ât t+ + 3,2 ++ ttY

2, 3Ât t+ +

CH06-113
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6.7.3 Noise Performance

6.7 Differential Space-Time Block 
Codes
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6.8 Space-Division Multiple 
Access  and Smart Antennas

CH06-117
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• Advantages of 120o sector antennas at base station

– Can be applied with FDMA, TDMA or CDMA

– Allows multiple users to operate on same frequency and/or 

time slot in same cell

– More users in same spectrum and improved capacity

– Can be applied at base station without affecting mobile 

terminals
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• SDMA

– user terminals can spatially separated by virtue of their 

angular directions.

• SDMA relies on smart antennas

• Examples of smart antennas

– Sector antenna

– Switched-beam antennas

– Adaptive antenna
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• Advantages of smart antenna

– Greater range

– Fewer base stations

– Better building penetration

– Less sensitivity to power control errors

– More responsive to traffic hot spots

• SDMA improves system capacity by

– Minimization of effects of interference.

– Increasing signal strength 
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6.8 Space-Division Multiple 
Access  and Smart Antennas

6.8.1 Antenna Arrays
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• Complex envelope of transmitted signal

• Received symbols

• Key assumptions

1. Incident field is a plane wave

2. The attenuation

3. .

4. There is no mutual coupling between the antenna elements.
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• Under the above assumptions, analysis depends solely on phase 

relationship of different elements.

• If antenna element k is at distance lk from the transmitting antenna, 

then the carrier phase is 

• The phase offset is
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• The received signal at element k is 

• Complex rotation

• A phased array computes a linear sum of the signals received at 
each element in Fig 6.29, yielding the received signal
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6.8.2 Multipath with Direction Antennas

6.8 Space-Division Multiple 
Access  and Smart Antennas
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