

@Brooks/Col

- There are many variants of bit patters to represent text symbols
- ASCII (American Standard Code for Information Interchange)
- This code uses 7 bits to encode every symbol
- There are 2⁷=128 different symbols that can be represented using ASCII

©Brooks/Cole

Brooks/Cole

Bit Pattern	Hex Digit	Bit Pattern	Hex Digit
0000	0	1000	8
0001	1	1001	9
0010	2 3	1010	А
0011	3	1011	В
0100	4 5	1100	С
0101		1101	D
0110	6	1110	E
0111	7	1111	F

Example 1

Show the hexadecimal equivalent of the bit

Solution

Each group of 4 bits is translated to one hexadecimal digit. The equivalent is xCE2.

Brooks/Cole

Example 2

Show the hexadecimal equivalent of the bit

Solution

Divide the bit pattern into 4-bit groups (from the right). In this case, add two extra 0s at the left to make the number of bits divisible by 4. So you have 000011100010, which is translated to x0E2.

Brooks/Cole

Brooks/Cole

Bit Pattern	Oct Digit	Bit Pattern	Oct Digit	
000	0	100	4 5	
001 010 011	$\frac{1}{2}$	$\begin{array}{c}101\\110\\111\end{array}$	5 6 7	

Example 4

Show the octal equivalent of the bit pattern 101110010.

Solution

Each group of 3 bits is translated to one octal digit. The equivalent is 0562, o562, or 5628.

Brooks/Cole

Brooks/Cole

Example 5

1100010.

Solution

Example 6

What is the bit pattern for 24_8 ?

Solution

Write each octal digit as its equivalent bit pattern to get 010100.

Brooks/Cole

Summary

- Types of data: text, numbers, images, audio, video
- All data types are converted into bit patterns
- Bit is the smallest unit of data
- Byte = 8 Bits
- ASCII (8 bits) is a popular code for symbols
- Unicode (16 bits) and ISO (32 bits)

Brooks/Cole

©Brooks/Cole

Summary

- Images use bitmap and vector representation
- Audio is transformed using sampling, quantization, coding
- Video data are a set of sequential images

Brooks/Cole

©Brooks/Cole

Next Lecture We will concentrate on Number Representation in the Computer Brooks/Cole @Brooks/Cole