

Examples

- MatLab -> numbers
- MS Word -> text
- Photoshop -> images
- iTunes, WinAmp -> audio
- Media Player -> video
- Any other examples?

Figure 2-2	Bit pattern
	1000101010111111

Questions?

- How many bits are in 1Kilobyte? (possible type of question on the first midterm)
- How many bits are in 1 Megabyte?

Questions?

- Your textbook for this course is about 1 Mega Byte in size !!!
- What units do we use to measure the capacity of your hard drive?
- What units do we use to measure the capacity of RAM (main memory)?

Brooks/Cole

Representing Data: Text

- Text in any language - sequence of symbols
- Number of distinct symbols is limited
- We can represent each symbol with a distinct bit pattern
- Thus we can encode text using bit patterns

Representing Data: Text

- Logarithmic relationship
- $\log _{2}$ (Number_of_symbols)

Data Representation: Text

- There are many variants of bit patters to represent text symbols
- ASCII (American Standard Code for Information Interchange)
- This code uses 7 bits to encode every symbol
- There are $2^{7}=128$ different symbols that can be represented using ASCII

Brooks/Cole

Representing Data: Text

- Extended ASCII (8 bits)
- Unicode (16 bits)
- ISO (32 bits = 4,294,967,296 symbols)
\qquad
- Numbers are represented using the binary system
- ASCII is NOT used to represent numbers
- We'll talk about it in details during the next lecture

Representing Data: Numbers

Hexadecimal Notation

- In hexadecimal notation there are 16 symbols: $0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F$
- It helps writing a long streams of 0 's and 1 's
- It’s very important in Computer Science

Example 1
 Show the hexadecimal equivalent of the bit pattern 110011100010.

Solution
Each group of 4 bits is translated to one hexadecimal digit. The equivalent is $x C E 2$.

Brooks/Cole ©Brooks/Cole,

Exomple 2

Show the hexadecimal equivalent of the bit pattern 0011100010.

Solution

Divide the bit pattern into 4-bit groups (from the right). In this case, add two extra 0s at the left to make the number of bits divisible by 4. So you have 000011100010, which is translated to $\times 0$ E2.

Brooks/Cole
©

Example 4
 Show the octal equivalent of the bit pattern 101110010.
 101110010.

Solution
 Solution

Each group of 3 bits is translated to one octal digit. The equivalent is 0562, o562, or 562_{8}.

Brooks/Cole
Table 2.3 Octal digits

Brooks/Cole
Brooks/Cole
Example 6
What is the bit pattern for 24_{8} ?

Solution

Write each octal digit as its equivalent bit pattern to get 010100.

Summary

- Types of data: text, numbers, images, audio, video
- All data types are converted into bit patterns
- Bit is the smallest unit of data
- Byte = 8 Bits
- ASCII (8 bits) is a popular code for symbols
- Unicode (16 bits) and ISO (32 bits)

Next Lecture

We will concentrate on Number Representation in the Computer

Brooks/Cole

