Chapter 8

Algorithms
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Informal Definition :: Review

« Algorithm: a step-by-step method for solving a problem or
doing a task

Figure 8-6 .
Three constructs :: Review
do action 1
do action 2
do action
a. Sequence
-.if a 1'u|1;liliun is true, | [whitea con
then |
| doa series of actions | do action 2
| 1
else Lok |
doanother seresof actions || | | doaction |

b. Decision c. Repetition
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Figure 8-7

Flowcharts for three constructs :: Review
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a. Sequence b. Decision c. Repetition

Figure 8-8

Pseudocode for three constructs :: Review

if [condition)

action while (condition)
action | aetion action
action 2 i
G else san
action n action End while
3 action
£ Shquoncs ¢. Repetition

End if
b. Decision
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Algorithm :: Formal Definition :: Review

An ordered set of unambiguous steps that produces a result and
terminates in a finite time
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SUBALGORITHMS
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Figure 8-9

Concept of a subalgorithm

FindLargest
Input: A list of integers
1. Set Largestto 0 ,Mr
2. while (more integers) ! Input: Largest and integer

- 1.if er than

2.1 FindLarger | &"WM i

4| 1.1 Set Largest to the value of integer
End while > End ¥

3. Return Largest End
End
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Algorithm 8.6: Find largest

FindLargest

Input: A list of positive integers
1. Set Largestto0
2. while (more integers)

2.1 FindLarger

End while
3. Return Largest

End
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Subalgorithm: Find larger

FindLarger
Input: Largest and current integer
1. if (the integer is greater than Largest)
then
1.1 Set Largest to the value of the integer
End if
End
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BASIC
ALGORITHMS
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Figure 8-10

Summation

N

| Set sum to 0

More no
numbers
yes

Add current
number o sum

L1

Return sum |
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Figure 8-11

Product
I

Set product
to 1

E—

/' More no
%, numbers

[ yes

Multiply current
number by product

J'i
Return product |
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Figure 8-13: part | .
Example of selection sort
| |23]78]45 8 ‘ 32|56 Original list
; Unsorted
BY _§
| 78] 45 | 23132 ‘ 56 After pass 1
Unsorted
G
8 ‘23 145 78 | 32 | 56 After pass 2
Unsorted
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—— Selection sort
B algorithm
4 Stop 2
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Figure 8-12 -
h Selection sort
Wall
| swap (smallest element with element k )
1 n
Sorted ‘ Unsorted g
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o Example of selection sort
my ¥
| 8 ] 23]32; (78] 45 | 56 After pass 3
Sarted . Unsorted
I ‘l ] T 1
| 8 23|32 Ei ?3| 56 After pass 4
- Ll
Sorted
'8 |2sfs2 e [s6]78]  Afterpasss
Sorted
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h Bubble sort
Wall Bubble up
LYY Y Y Y Y YV
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1 | "
Saorted :4 Unsorted =
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Figure 8-16: part |

Example of bubble sort

: 23 ‘ 78 | 45| 8 |32 ‘ 56 Original list
= Unsorted -
|ﬂ 23|78 |45 |32 56 After pass 1
: Unsorted

(W8 w[ne]s

After pass 2

Unsorted
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Insertion sort
Wall
BT | || [ T 1]
1 n
Sorted g Unsorted N
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Figure 8-16: part I1

Example of bubble sort

|i 23 SZI 45 | 78 | 56
Sorted - Unsorted

8 |23 : 45 556 78 After pass 4
= P Sorted

E T =

After pass 3

Sorted

Figure 8-18: part 11

Example of insertion sort

823 ]4s|78 53:2\55
-
8 [23]32]45]

- >

Sorted

After pass 3

After pass 4

i_aj_za[sz|45]55[?s‘ After pass 5

Sorted
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o Example of insertion sort
iginal I
78| 45| 8 |32 | 56 Original list
- Unsorted
L BER :
23|78 45| 8 [32[55 After pass 1
] ¥ Al |
B __ Unsorted
23[45[78 | 8[32]s6]  Amerpass2
-4 - 4—p
Sorted Unsorted
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Search concept

( “Location wanted
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Figure 8-20: Part |

Example of a sequential sort

position
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Figure 8-20: Part 11

Example of a sequential sort

position

8 9 W 1

4
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Figure 8-21 Example of a binary sort
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Iterative definition of factorial
1 ifn=0

Factorial (n) =

ax{n-1=x(m-2)x ... % 3=x2x1 ifn=0
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Recursive definition of factorial
=
1 ifn=0
Factorial () = |
| n x Factorial (m- 1) ifn=0
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Figure 8-24

Tracing recursive solution to factorial problem Algorithm 8.7:  iterative factorial
Factorial
Input: A positive integer num
Factorial (3) = 3  Factorial (2)] Factorial (3) = 3 x 2= 6 | 1. SetFactNto0
L - X 2. Setitol
= N 3. while (i is less than or equal to num)

. »>
Factorial (2) = 2 * Factorial [nl Factorial (2) = 2 x 1 = 2 I 3.1 Set FactN to FactN x i

= 3.2 Incrementi
F > 4 N End while
Factorial (1) = 1 x Factorial ©) | Factorial (1) = 1 x_1 =1 | 4. Return FactN
E \‘ = End
s
| Factorial (0) = 1
Brooks/Cole ©Brooks/Cole, Brooks/Cole ©Brooks/Cole,
homean e T 2003 homenn Lo s 00

i Summar
Algorithm 8.8:  Recursive factorial Y
« An algorithm is a step-by-step method for solving a problem

Factorial or doing a task

Input: A positive integer num - An algorithm accepts an input list of data and creates an output
1. if (numis equal to 0) list of data

then . L -

1.1 return 1 « A program is a combination of sequence constructs, decision

elsé constructs, and repetition constructs

1.2 return num x Factorial (num — 1) « A flowchart is a pictorial representation of an algorithm

End if « Pseudocode is an Englishlike representation of an algorithm

End « Formally, an algorithm is an ordered set of unambiguous steps

that produces a result and terminates in a finite time
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Summary Summary

« An algorithm can be broken into smaller units called « Searching, a process to locate a target in a list of data, is a

subalgorithms basic algorithm
* Summation is a high-level design tool that shows the « Sequential search is used for undirected lists

relationship between different modules of a program « Binary search is used for ordered lists
* Product is a basic algorithm in which numbers are multiplied « An iterative algorithms involves only the parameters and not
 Finding the minimum or the maximum in a list of numbers is a the algorithm itself

basic algorithm « A recursive algorithm involves the algorithm itself

« Sorting, a process to order data, is a basic algorithm

« Selection sort, bubble sort, and insertion sort are commonly
used sorting algorithms
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