Chapter 8

Algorithms

EBrooksto!e ©Brooks/Cole,
Thameon 1o T 2003

Informal Definition :: Review

« Algorithm: a step-by-step method for solving a problem or
doing a task

Figure 8-6 .
Three constructs :: Review
do action 1
do action 2
do action
a. Sequence
-.if a 1'u|1;liliun is true, | [whitea con
then |
| doa series of actions | do action 2
| 1
else Lok |
doanother seresof actions || | | doaction |

b. Decision c. Repetition

EBrooksto!e ©Brooks/Cole,
1 ~ - 2003,

EBrooksto!e ©Brooks/Cole,
Thameon 1o T 00

Figure 8-7

Flowcharts for three constructs :: Review

[9 - e false
ction] fabse i 4 condlisan 7
r Test — 1
o
| AtionZ I |
! 2

Asctlies secqurece A sijunnce A sequence

e -—— —F

a. Sequence b. Decision c. Repetition

Figure 8-8

Pseudocode for three constructs :: Review

if [condition)

action while (condition)
action | aetion action
action 2 i
G else san
action n action End while
3 action
£ Shquoncs ¢. Repetition

End if
b. Decision

zBrookstDle ©Brooks/Cole,
Thameon 1o & 2003,

EBron ks/Cole ©Brooks/Cole,
i i 00;

Algorithm :: Formal Definition :: Review

An ordered set of unambiguous steps that produces a result and
terminates in a finite time

zBrookstDle ©Brooks/Cole,
Thameon 1o & 00

SUBALGORITHMS

ﬁmk%&:le

©Brooks/Cole,
2003

Figure 8-9

Concept of a subalgorithm

FindLargest
Input: A list of integers
1. Set Largestto 0 ,Mr
2. while (more integers) ! Input: Largest and integer

- 1.if er than

2.1 FindLarger | &"WM i

4| 1.1 Set Largest to the value of integer
End while > End ¥

3. Return Largest End
End

ﬁmk%&:le ©Brooks/Cole,
00

Algorithm 8.6: Find largest

FindLargest

Input: A list of positive integers
1. Set Largestto0
2. while (more integers)

2.1 FindLarger

End while
3. Return Largest

End

ﬁmk%&:le

Subalgorithm: Find larger

FindLarger
Input: Largest and current integer
1. if (the integer is greater than Largest)
then
1.1 Set Largest to the value of the integer
End if
End

©Brooks/Cole,
2003

BASIC
ALGORITHMS

ﬁmk%ﬁ‘ole

©Brooks/Cole,
2003

ﬁmk%&:le ©Brooks/Cole,
00

Figure 8-10

Summation

N

| Set sum to 0

More no
numbers
yes

Add current
number o sum

L1

Return sum |

ﬁl‘oﬂk%@le ©Brooks/Cole,
200

Figure 8-11

Product
I

Set product
to 1

E—

/' More no
%, numbers

[yes

Multiply current
number by product

J'i
Return product |

EBrookstole ©Brooks/Cole,
homenn Lo s 2003
Figure 8-13: part | .
Example of selection sort
| |23]78]45 8 ‘ 32|56 Original list
; Unsorted
BY _§
| 78] 45 | 23132 ‘ 56 After pass 1
Unsorted
G
8 ‘23 145 78 | 32 | 56 After pass 2
Unsorted
BI'OD](_SJ‘CDIE ©Brooks/(;g‘[i
Figure 8-14 .
—— Selection sort
B algorithm
4 Stop 2
EBFODK_SJ‘CDIE @Brooks/Cole,

Figure 8-12 -
h Selection sort
Wall
| swap (smallest element with element k)
1 n
Sorted ‘ Unsorted g
EBrook_stole ©BrooksiCol,
Figure 8-13: part Il)
o Example of selection sort
my ¥
| 8] 23]32; (78] 45 | 56 After pass 3
Sarted . Unsorted
I ‘l] T 1
| 8 23|32 Ei ?3| 56 After pass 4
- Ll
Sorted
'8 |2sfs2 e [s6]78] Afterpasss
Sorted
EBrook_stole ©Brooks/Cole,
Figure 8-15
h Bubble sort
Wall Bubble up
LYY Y Y Y Y YV
HEEENNENREN
1 | "
Saorted :4 Unsorted =
EBFODK_SJ‘CDIE ©Brooks/Cole

Figure 8-16: part |

Example of bubble sort

: 23 ‘ 78 | 45| 8 |32 ‘ 56 Original list
= Unsorted -
|ﬂ 23|78 |45 |32 56 After pass 1
: Unsorted

(W8 w[ne]s

After pass 2

Unsorted

EBrookstole ©Brooks/Cole,
homean e s 2003
Figure 8-17 .
Insertion sort
Wall
BT | || [T 1]
1 n
Sorted g Unsorted N
EBI’ODK_SICD!E ©Brooks/Col,

Figure 8-16: part I1

Example of bubble sort

|i 23 SZI 45 | 78 | 56
Sorted - Unsorted

8 |23 : 45 556 78 After pass 4
= P Sorted

E T =

After pass 3

Sorted

Figure 8-18: part 11

Example of insertion sort

823]4s|78 53:2\55
-
8 [23]32]45]

- >

Sorted

After pass 3

After pass 4

i_aj_za[sz|45]55[?s‘ After pass 5

Sorted

EBrook_sICole

©Brooks/Cole,
2003

EBIII'K?EK_S}‘CIDIE ©BrooksiCol,
Fi 8-18: tl . .
o Example of insertion sort
iginal I
78| 45| 8 |32 | 56 Original list
- Unsorted
L BER :
23|78 45| 8 [32[55 After pass 1
] ¥ Al |
B __ Unsorted
23[45[78 | 8[32]s6] Amerpass2
-4 - 4—p
Sorted Unsorted
EBrook_stole ©Brooks/Cole,

Figure 8-19

Search concept

(“Location wanted

T |81 |11 | 1D

©Brooks/Cole,
00

EBrook_sICole

Figure 8-20: Part |

Example of a sequential sort

position

N T

0 1 2 3% 4 5 & 1T B 8 W0 11

A 2 (s [ez o |8 |27 s |7 |w]
posttion B =" | 77 | 7 | .22 .28 B i BLUE Bl

T

o ———

B

[62l=4q)

e

s
ool 2 oz A4 5 6 T 8 _B. 10 3t
| 4 zllsﬁll-l 62 |m |8 |2z |7 |®m |7 ||

position 7‘ L L L L L

B e
—~

- 8 w1
8 |7 | |

Figure 8-20: Part 11

Example of a sequential sort

position

8 9 W 1

4
pesition L—

B 9 0 11

ﬁmks{(}ole

[7]s]n]w

2| v |®m |7 |w

©Brooks/Cole,
00

RECURSION

rooks/Cole (©Brooks/Cole,
2003
Figure 8-21 Example of a binary sort
first ad dast Wu y
|
| . e o
g 1 -2 3 485 8 T % 9 MWW
.! T.h Itl.ll Z_II.ZEIJF;.I»?.??.SIIQI.
2221 firss o st
O 1 2 3 4 5 f; 7_\‘3_ u_“-|-1'n'_"'f|_
|Lil-‘|_£"li22_”_“‘? AL
firsé ik Last 22 <62
o 1 2 3 4 \.?fa \.‘7 B a9 m 1
[Flr e elwle] « |« e)
22w= 2
rooks/Cole ©Brooks/Cole,
Figure 8-22 . . el .
Iterative definition of factorial
1 ifn=0

Factorial (n) =

ax{n-1=x(m-2)x ... % 3=x2x1 ifn=0

ﬁmksf(}nle

©Brooks/Cole,
2003

rooks/Cole ©Brooks/Cole,
Figure 8-23
Recursive definition of factorial
=
1 ifn=0
Factorial () = |
| n x Factorial (m- 1) ifn=0
ﬁmks{cnle ©Brooks/Cole,

Figure 8-24

Tracing recursive solution to factorial problem Algorithm 8.7: iterative factorial
Factorial
Input: A positive integer num
Factorial (3) = 3 Factorial (2)] Factorial (3) = 3 x 2= 6 | 1. SetFactNto0
L - X 2. Setitol
= N 3. while (i is less than or equal to num)

. »>
Factorial (2) = 2 * Factorial [nl Factorial (2) = 2 x 1 = 2 I 3.1 Set FactN to FactN x i

= 3.2 Incrementi
F > 4 N End while
Factorial (1) = 1 x Factorial ©) | Factorial (1) = 1 x_1 =1 | 4. Return FactN
E \‘ = End
s
| Factorial (0) = 1
Brooks/Cole ©Brooks/Cole, Brooks/Cole ©Brooks/Cole,
homean e T 2003 homenn Lo s 00

i Summar
Algorithm 8.8: Recursive factorial Y
« An algorithm is a step-by-step method for solving a problem

Factorial or doing a task

Input: A positive integer num - An algorithm accepts an input list of data and creates an output
1. if (numis equal to 0) list of data

then . L -

1.1 return 1 « A program is a combination of sequence constructs, decision

elsé constructs, and repetition constructs

1.2 return num x Factorial (num — 1) « A flowchart is a pictorial representation of an algorithm

End if « Pseudocode is an Englishlike representation of an algorithm

End « Formally, an algorithm is an ordered set of unambiguous steps

that produces a result and terminates in a finite time

Brooks/Cole ©Brooks/Cole, Brooks/Cole ©Brooks/Cole,

-~ Foaralng 2003 ™ - . 00

Summary Summary

« An algorithm can be broken into smaller units called « Searching, a process to locate a target in a list of data, is a

subalgorithms basic algorithm
* Summation is a high-level design tool that shows the « Sequential search is used for undirected lists

relationship between different modules of a program « Binary search is used for ordered lists
* Product is a basic algorithm in which numbers are multiplied « An iterative algorithms involves only the parameters and not
 Finding the minimum or the maximum in a list of numbers is a the algorithm itself

basic algorithm « A recursive algorithm involves the algorithm itself

« Sorting, a process to order data, is a basic algorithm

« Selection sort, bubble sort, and insertion sort are commonly
used sorting algorithms

EBI’ODKSJ’CD!E ©Brooks/Cole, EBI’ODKSJ’CD!E ©Brooks/Cole,
Thomeon leaming. 2003, Thomeon leaming. 00

