Module 4: Processes

· Process Concept

· Process Scheduling

· Operation on Processes

· Cooperating Processes

· Interprocess Communication

Process Concept

· An operating system executes a variety of programs:

· Batch system – jobs

· Time-shared systems – user programs or tasks

· Textbook uses the terms job and process almost interchangeably.

· Process – a program in execution; process execution must progress in sequential fashion.

· A process includes:

· program counter

· stack

· data section

Process State

· As a process executes, it changes state
· new: The process is being created.

· running: Instructions are being executed.

· waiting: The process is waiting for some event to occur.

· ready: The process is waiting to be assigned to a process.

· terminated: The process has finished execution.

Diagram of Process State

[image: image1.png]admitted interrupt

) scheduler dispatch
I/0 or event completion I/O or event wait

Process Control Block (PCB)

Information associated with each process.

· Process state

· Program counter

· CPU registers

· CPU scheduling information

· Memory-management information

· Accounting information

· I/O status information

Process Control Block (PCB)

[image: image2.png]pointer process

process number

program counter

registers

memory limits

list of open files

CPU Switch From Process to Process

[image: image3.png]process P, operating system process P,

interrupt or system call

executing /—l

3 save state into PCB

.

.

.

reload state from PCB,

_—

interrupt or system call executing

I T

save state into PCB,

.

.

.

reload state from PCB,
S

executing \—l

Process Scheduling Queues

· Job queue – set of all processes in the system.

· Ready queue – set of all processes residing in main memory,
ready and waiting to execute.

· Device queues – set of processes waiting for an I/O device.

· Process migration between the various queues.

Ready Queue And Various I/O Device Queues

[image: image4.png]queue header

head

PCB,

—»

tail

registers

registers

terminal

unit 0

Representation of Process Scheduling

[image: image5.png]ready queue

B

I/0 queue

f——

1/0 request

child
executes
interrupt
occurs

time slice
expired

fork a
child

wait for an
interrupt

Schedulers

· Long-term scheduler (or job scheduler) – selects which processes should be brought into the ready queue.

· Short-term scheduler (or CPU scheduler) – selects which process should be executed next and allocates CPU.

Schedulers (Cont.)

· Short-term scheduler is invoked very frequently (milliseconds)
((must be fast).

· Long-term scheduler is invoked very infrequently (seconds, minutes) ((may be slow).

· The long-term scheduler controls the degree of multiprogramming. (the number of processes in memory)

· Processes can be described as either:

· I/O-bound process – spends more time doing I/O than computations, many short CPU bursts.

· CPU-bound process – spends more time doing computations; few very long CPU bursts.

· Best performance: have a combination of CPU-bound and I/O-bound processes.

· The medium-term scheduler can remove processes from memory to reduce the degree of multiprogramming. (some system like UNIX have no long-term scheduler)-swapping

Addition of Medium Term Scheduling

[image: image6.png]partially executed swap out
swapped-out processes

1/O waiting
queues

Context Switch

· When CPU switches to another process, the system must save the state of the old process and load the saved state for the new process.

· Context-switch time is overhead(1~ 1000 microseconds); the system does no useful work while switching.

· Time dependent on hardware support.

-Sun Ultrasparc provides multiple sets of registers.

Process Creation

· Parent process creates children processes, which, in turn create other processes, forming a tree of processes.

· Resource sharing

· Parent and children share all resources.

· Children share subset of parent’s resources.

· Children obtain its resources from O.S.

· Execution

· Parent and children execute concurrently.

· Parent waits until all of its children terminate.

Process Creation (Cont.)

· Address space

· Child duplicate of parent.

· Child has a program loaded into it.

· UNIX examples

· fork system call creates new process

· execlp system call used after a fork to replace the process’ memory space with a new program.

A Tree of Processes On A Typical UNIX System

[image: image7.png]root !

pagedaemon h

swapper

init

user 1

Process Termination

· Process executes last statement and asks the operating system to decide it (exit).

· Output data from child to parent (via wait).

· Process’ resources are deallocated by operating system.

· Parent may terminate execution of children processes (abort).

· Child has exceeded allocated resources.

· Task assigned to child is no longer required.

· Parent is exiting.

· Cascading termination: Operating system does not allow child to continue if its parent terminates.

Cooperating Processes

· Independent process cannot affect or be affected by the execution of another process.

· Cooperating process can affect or be affected by the execution of another process

· Advantages of process cooperation

· Information sharing

· Computation speed-up

· Modularity

· Convenience

Producer-Consumer Problem

· Paradigm for cooperating processes, producer process produces information that is consumed by a consumer process.

· unbounded-buffer places no practical limit on the size of the buffer.

· bounded-buffer assumes that there is a fixed buffer size.

Bounded-Buffer – Shared-Memory Solution

· Shared data

var n;

type item = … ;

var buffer. array [0..n–1] of item;

in, out: 0..n–1;

· Producer process

repeat
…

produce an item in nextp
…

while in+1 mod n = out do no-op;
buffer [in] :=nextp;

in :=in+1 mod n;

until false;

Bounded-Buffer (Cont.)

· Consumer process

repeat
while in = out do no-op;

nextc := buffer [out];

out := out+1 mod n;

…

consume the item in nextc

 …

until false;

· Solution is correct, but can only fill up n–1 buffer.

Interprocess Communication (IPC)

· Mechanism for processes to communicate and to synchronize their actions.

· Message system – processes communicate with each other without resorting to shared variables.

· IPC facility provides two operations:

· send(message) – message size fixed or variable

· receive(message)

· If P and Q wish to communicate, they need to:

· establish a communication link between them

· exchange messages via send/receive

· Implementation of communication link

· physical (e.g., shared memory, hardware bus)

· logical (e.g., logical properties)

Implementation Questions

· How are links established?

· Can a link be associated with more than two processes?

· How many links can there be between every pair of communicating processes?

· What is the capacity of a link?

· Is the size of a message that the link can accommodate fixed or variable?

· Is a link unidirectional or bi-directional?

Direct Communication

· Processes must name each other explicitly:

· send (P, message) – send a message to process P

· receive(Q, message) – receive a message from process Q

· Properties of communication link

· Lilnks are established automatically.

· A link is associated with exactly one pair of communicating processes.

· Between each pair there exists exactly one link.

· The link may be unidirectional, but is usually bi-directional.

Indirect Communication

· Messages are directed and received from mailboxes (also referred to as ports).

· Each mailbox has a unique id.
· Processes can communicate only if they share a mailbox.

· Properties of communication link

· Link established only if processes share a common mailbox

· A link may be associated with many processes.

· Each pair of processes may share several communication links.

· Link may be unidirectional or bi-directional.

· Operations

· create a new mailbox

· send and receive messages through mailbox

· destroy a mailbox

Indirect Communication (Continued)

· Mailbox sharing

· P1, P2, and P3 share mailbox A.

· P1, sends; P2 and P3 receive.

· Who gets the message?

· Solutions

· Allow a link to be associated with at most two processes.

· Allow only one process at a time to execute a receive operation.

· Allow the system to select arbitrarily the receiver. Sender is notified who the receiver was.

Buffering

· Queue of messages attached to the link; implemented in one of three ways.

1.
Zero capacity – 0 messages
Sender must wait for receiver (rendezvous).

2.
Bounded capacity – finite length of n messages
Sender must wait if link full.

3.
Unbounded capacity – infinite length
Sender never waits.

PAGE
7

