Thread

•A thread (or lightweight process) is a basic unit of CPU utilization; it consists of:
–thread ID

–program counter

–register set

–stack space

•A thread shares with its peer threads its:

–code section

–data section

–operating-system resources

collectively know as a task.

•A traditional or heavyweight process is equal to a task with one thread

Multiple Threads within a Task

[image: image1.png]Single-threaded Multi-threaded

•In a multiple threaded task, while one server thread is blocked and waiting, a second thread in the same task can run.
–Cooperation of multiple threads in same job confers higher throughput and improved performance.

–Applications that require sharing a common buffer (i.e., producer-consumer) benefit from thread utilization.

•Kernel-supported threads (Mach and OS/2).

•User-level threads; supported above the kernel, via a set of library calls at the user level (Project Andrew from CMU).

•Hybrid approach implements both user-level and kernel-supported threads (Solaris 2).

Threads Support in Solaris 2

•Solaris 2 is a version of UNIX with support for threads at the kernel and user levels, symmetric multiprocessing, and
real-time scheduling.
•LWP – intermediate level between user-level threads and kernel-level threads.

•Resource needs of thread types:

–Kernel thread: small data structure and a stack; thread switching does not require changing memory access information – relatively fast.

–LWP: PCB with register data, accounting and memory information,; switching between LWPs is relatively slow.

–User-level thread: only ned stack and program counter; no kernel involvement means fast switching. Kernel only sees the LWPs that support user-level threads.

Module 5: Threads

· Benefits

· User and Kernel Threads

· Multithreading Models

· Solaris 2 Threads

· Java Threads

Benefits

· Responsiveness

· Resource Sharing

· Economy

· Utilization of MP Architectures

Single and Multithreaded Processes

[image: image2.png]34— user thread

kernel thread

User Threads

· Thread Management Done by User-Level Threads Library

· Examples

- POSIX Pthreads

- Mach C-threads

- Solaris threads

Kernel Threads

· Supported by the Kernel

· Examples

- Windows 95/98/NT

- Solaris

- Digital UNIX

Multithreading Models

· Many-to-One

· One-to-One

· Many-to-Many

Many-to-One

· Many User-Level Threads Mapped to Single Kernel Thread.

· Used on Systems That Do Not Support Kernel Threads.

Many-to-one Model

[image: image3.png]

One-to-One

· Each User-Level Thread Maps to Kernel Thread.

· Examples

- Windows 95/98/NT

- OS/2

One-to-one Model

[image: image4.png]3 <«—— user thread

<«—— kernel thread

Many-to-many Model

[image: image5.png]user-level thread

lightweight process

kernel thread

Solaris 2 Threads

[image: image6.png]process id

memory map

priority

list of open
files

]

Solaris process

Solaris Process

[image: image7.png]sleep()
suspend()
1/0

blocked

Java Threads

· Java Threads May be Created by:

· Extending Thread class

· Implementing the Runnable interface

Extending the Thread Class

class Worker1 extends Thread

{

public void run() {

System.out.println(“I am a Worker Thread”);

}

}

Creating the Thread

public class First

{

public static void main(String args[]) {

Worker runner = new Worker1();

runner.start();

System.out.println(“I am the main thread”);

}

}

The Runnable Interface

public interface Runnable

{

public abstract void run();

}

Implementing the Runnable Interface

class Worker2 implements Runnable

{

public void run() {

System.out.println(“I am a Worker Thread”);

}

}

Creating the Thread

public class Second

{

public static void main(String args[]) {

Runnable runner = new Worker2();

Thread thrd = new Thread(runner);

thrd.start();

System.out.println(“I am the main thread”);

}

}

Java Thread Management

· suspend() – suspends execution of the currently running thread.

· sleep() – puts the currently running thread to sleep for a specified amount of time.

· resume() – resumes execution of a suspended thread.

· stop() – stops execution of a thread.

Java Thread States

[image: image8.png]text segment

Producer Consumer Problem

public class Server {

public Server() {

MessageQueue mailBox = new MessageQueue();

Producer producerThread = new Producer(mailBox);

Consumer consumerThread = new Consumer(mailBox);

producerThread.start();

consumerThread.start();

 }

 public static void main(String args[]) {

Server server = new Server();

 }

}

Producer Thread

class Producer extends Thread {

public Producer(MessageQueue m) {

mbox = m;

}

 public void run() {

 while (true) {

 // produce an item & enter it into the buffer

Date message = new Date();

mbox.send(message);

 }

 }

 private MessageQueue mbox;

}

Consumer Thread

class Consumer extends Thread {

public Consumer(MessageQueue m) {

mbox = m;

}

 public void run() {

 while (true) {

Date message = (Date)mbox.receive();

if (message != null)

// consume the message

}

 }

 private MessageQueue mbox;

}

PAGE
1

