Module 6: CPU Scheduling

· Basic Concepts

· Scheduling Criteria

· Scheduling Algorithms

· Multiple-Processor Scheduling

· Real-Time Scheduling

· Algorithm Evaluation

Basic Concepts

· Maximum CPU utilization obtained with multiprogramming

· CPU–I/O Burst Cycle – Process execution consists of a cycle of CPU execution and I/O wait.

· CPU burst distribution

Alternating Sequence of CPU And I/O Bursts

[image: image1.wmf]:

Define

4.

1

0

,

3.

burst

CPU

next

the

for

value

predicted

2.

burst

CPU

of

lenght

actual

1.

£

£

=

=

+

a

a

t

1

n

th

n

n

t

Histogram of CPU-burst Times

[image: image2.wmf](

)

.

t

n

n

n

t

a

a

t

-

+

=

=

1

1

CPU Scheduler

· Selects from among the processes in memory that are ready to execute, and allocates the CPU to one of them.

· CPU scheduling decisions may take place when a process:

1.
Switches from running to waiting state.

2.
Switches from running to ready state.

3.
Switches from waiting to ready.

4.
Terminates.

· Scheduling under 1 and 4 is nonpreemptive.

· All other scheduling is preemptive.

Dispatcher

· Dispatcher module gives control of the CPU to the process selected by the short-term scheduler; this involves:

· switching context

· switching to user mode

· jumping to the proper location in the user program to restart that program

· Dispatch latency – time it takes for the dispatcher to stop one process and start another running.

Scheduling Criteria

· CPU utilization – keep the CPU as busy as possible

· Throughput – # of processes that complete their execution per time unit

· Turnaround time – amount of time to execute a particular process

· Waiting time – amount of time a process has been wiating in the ready queue

· Response time – amount of time it takes from when a request was submitted until the first response is produced, not output (for time-sharing environment)

Optimization Criteria

· Max CPU utilization

· Max throughput

· Min turnaround time

· Min waiting time

· Min response time

First-Come, First-Served (FCFS) Scheduling

· Example:
Process
Burst Time

P1
24

P2
3

P3
3

· [image: image3.png]Toad store
add store

read from file cPUburst

waitfor 1O

store increment
index
write o file

cPUburs

wait for 10 10 burst

Toad store
add store

read from file CPUburst

watfor 1O 10 burst

Suppose that the processes arrive in the order: P1 ,
 P2 , P3
The Gantt Chart for the schedule is:

· Waiting time for P1 = 0; P2 = 24; P3 = 27

· Average waiting time: (0 + 24 + 27)/3 = 17

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order

 P2 , P3 , P1 .

· [image: image4.png]>
o
f
[}
>
o
[0}
o
=

16 24

burst duration (milliseconds)

The Gantt chart for the schedule is:

· Waiting time for P1 = 6; P2 = 0; P3 = 3
· Average waiting time: (6 + 0 + 3)/3 = 3

· Much better than previous case.

· Convoy effect short process behind long process

Shortest-Job-First (SJR) Scheduling

· Associate with each process the length of its next CPU burst. Use these lengths to schedule the process with the shortest time.

· Two schemes:

· nonpreemptive – once CPU given to the process it cannot be preempted until completes its CPU burst.

· Preemptive – if a new process arrives with CPU burst length less than remaining time of current executing process, preempt. This scheme is know as the
Shortest-Remaining-Time-First (SRTF).

· SJF is optimal – gives minimum average waiting time for a given set of processes.

Example of Non-Preemptive SJF

Process
Arrival Time
 Burst Time

P1
0.0
7

P2
2.0
4

P3
4.0
1

P4
5.0
4

· SJF (non-preemptive)

[image: image5.wmf]:

Define

4.

1

0

,

3.

burst

CPU

next

the

for

value

predicted

2.

burst

CPU

of

lenght

actual

1.

£

£

=

=

+

a

a

t

1

n

th

n

n

t

· Average waiting time = (0 + 6 + 3 + 7)/4 - 4
Example of Preemptive SJF

Process
Arrival Time
 Burst Time

P1
0.0
7

P2
2.0
4

P3
4.0
1

P4
5.0
4

· SJF (preemptive)

[image: image6.wmf](

)

.

t

n

n

n

t

a

a

t

-

+

=

=

1

1

· Average waiting time = (9 + 1 + 0 +2)/4 - 3
Determining Length of Next CPU Burst

· Can only estimate the length.

· [image: image7.png]pracass time - 10 quantun context
swichos

12 3

Can be done by using the length of previous CPU bursts, using exponential averaging.

[image: image8.png]S
=]
2
c
IS
>
o
o
£
=

o
=}
-

awl} punoseuln) abelane

Examples of Exponential Averaging

· (=0

· (n+1 = (n

· Recent history does not count.

· (=1

· (n+1 = tn

· Only the actual last CPU burst counts.

· If we expand the formula, we get:

(n+1 = (tn+(1 - () (tn -1 + …

 +(1 - ()j (tn -1 + …

 +(1 - ()n=1 tn (0

· Since both (and (1 - () are less than or equal to 1, each successive term has less weight than its predecessor.

Priority Scheduling

· A priority number (integer) is associated with each process

· The CPU is allocated to the process with the highest priority (smallest integer (highest priority).

· Preemptive

· nonpreemptive

· SJF is a priority scheduling where priority is the predicted next CPU burst time.

· Problem (Starvation – low priority processes may never execute.

· Solution (Aging – as time progresses increase the priority of the process.

Round Robin (RR)

· Each process gets a small unit of CPU time (time quantum), usually 10-100 milliseconds. After this time has elapsed, the process is preempted and added to the end of the ready queue.

· If there are n processes in the ready queue and the time quantum is q, then each process gets 1/n of the CPU time in chunks of at most q time units at once. No process waits more than (n-1)q time units.

· Performance

· q large (FIFO

· q small (q must be large with respect to context switch, otherwise overhead is too high.

Example: RR with Time Quantum = 20

Process
Burst Time

P1
53

P2
17

P3
68

P4
24

· The Gantt chart is:

[image: image9.png]highest priority

—

— |

interactive processes

—

interactive editing processes

— |

batch processes

—

student processes

lowest priority

· Typically, higher average turnaround than SJF, but better response.

[image: image10.png]quantum = 16

How a Smaller Time Quantum Increases Context Switches

Turnaround Time Varies With The Time Quantum

[image: image11.png]avart response to vent

process made
ntorupt | avalable
processing

dispatch latancy

raaltime
prosess
exacution

conficts dispatcn

Multilevel Queue

· Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

· Each queue has its own scheduling algorithm,
foreground – RR
background – FCFS

· Scheduling must be done between the queues.

· Fixed priority scheduling; i.e., serve all from foreground then from background. Possibility of starvation.

· Time slice – each queue gets a certain amount of CPU time which it can schedule amongst its processes; i.e.,
80% to foreground in RR

· 20% to background in FCFS

[image: image12.png]class

global scheduling specific scheduler run
priority order priorities classes queue

highest first real time kernel
threads of real
time LWP's

kernel
service
threads

interactive & kernel

time sharing threads of
interactive &

time sharing
LWP's

Multilevel Queue Scheduling

Multilevel Feedback Queue

· A process can move between the various queues; aging can be implemented this way.

· Multilevel-feedback-queue scheduler defined by the following parameters:

· number of queues

· scheduling algorithms for each queue

· method used to determine when to upgrade a process

· method used to determine when to demote a process

· method used to determine which queue a process will enter when that process needs service

Multilevel Feedback Queues

[image: image13.png]simulation

acual
process
oxscuion

Py 10
1o 213
cru 12
o 112
oy 2
o 147
cruz3

simulation

suF

racs tape

simulation

AA(0- 14]

>

>

>

performance.
orFCFS

performance.
TorSF

performance

for AR(@= 14)

Example of Multilevel Feedback Queue

· Three queues:

· Q0 – time quantum 8 milliseconds

· Q1 – time quantum 16 milliseconds

· Q2 – FCFS

· Scheduling

· A new job enters queue Q0 which is served FCFS. When it gains CPU, job receives 8 milliseconds. If it does not finish in 8 milliseconds, job is moved to queue Q1.

· At Q1 job is again served FCFS and receives 16 additional milliseconds. If it still does not complete, it is preempted and moved to queue Q2.

Multiple-Processor Scheduling

· CPU scheduling more complex when multiple CPUs are available.

· Homogeneous processors within a multiprocessor.

· Load sharing

· Symmetric Multiprocessing (SMP) – each processor makes its own scheduling decisions.

· Asymmetric multiprocessing – only one processor accesses the system data structures, alleviating the need for data sharing.

Real-Time Scheduling

· Hard real-time systems – required to complete a critical task within a guaranteed amount of time.

· Soft real-time computing – requires that critical processes receive priority over less fortunate ones.

Dispatch Latency

Thread Scheduling

· Local Scheduling – How the threads library decides which thread to put onto an available LWP.

· Global Scheduling – How the kernel decides which kernel thread to run next.

Solaris 2 Scheduling

Java Thread Scheduling

· JVM Uses a Preemptive, Priority-Based Scheduling Algorithm.

· FIFO Queue is Used if There Are Multiple Threads With the Same Priority.

Java Thread Scheduling (cont)

JVM Schedules a Thread to Run When:

· The Currently Running Thread Exits the Runnable State.

· A Higher Priority Thread Enters the Runnable State

* Note – the JVM Does Not Specify Whether Threads are Time-Sliced or Not.

Time-Slicing

· Since the JVM Doesn’t Ensure Time-Slicing, the yield() Method May Be Used:

while (true) {

// perform CPU-intensive task

. . .

Thread.yield();

}

This Yields Control to Another Thread of Equal Priority.

Thread Priorities

· Thread Priorities:

Priority

Comment

Thread.MIN_PRIORITY

Minimum Thread Priority

Thread.MAX_PRIORITY

Maximum Thread Priority

Thread.NORM_PRIORITY

Default Thread Priority

Priorities May Be Set Using setPriority() method:

setPriority(Thread.NORM_PRIORITY + 2);

Algorithm Evaluation

· Deterministic modeling – takes a particular predetermined workload and defines the performance of each algorithm for that workload.

· Queuing models

· Implementation

Evaluation of CPU Schedulers by Simulation

0

30

27

24

P3

P2

P1

0

30

3

6

P2

P3

P1

12

8

P4

0

16

3

7

P2

P3

P1

16

P1

P2

7

5

P4

0

11

2

4

P2

P3

P1

� EMBED Equation.3 ���

� EMBED Equation.3 ���

154

134

121

117

97

77

57

37

20

0

P3

P3

P1

P4

P3

P1

P4

P3

P2

P1

PAGE
12

_1078818948.unknown

_1078819008.unknown

