Module 5: Frame Relay  
  
5.1 Frame Relay Concepts 
   
5.1.1 Introducing Frame Relay 

Frame Relay is an International Telecommunication Union Telecommunications Standardization Sector (ITU-T) and American National Standards Institute (ANSI) standard. Frame Relay is a packet-switched, connection-oriented, WAN service. It operates at the data link layer of the OSI reference model. Frame Relay uses a subset of the high-level data-link control (HDLC) protocol called Link Access Procedure for Frame Relay (LAPF). Frames carry data between user devices called data terminal equipment (DTE), and the data communications equipment (DCE) at the edge of the WAN.

訊框中繼是國際電訊聯盟的電訊標準化部門和美國國家標準局的標準,是分封交換和連接導向式的廣域網路服務。訊框中繼在OSI model的第二層(Data link)作用,使用高階數據鏈路控制(HDLC)底下的連接存取程序(Link Access procedure), 訊框在資料終端設備(DTE)之間帶有所需的資訊(資料),在廣域網路的邊緣有資料通訊設備(DCE)。

A Frame Relay network may be privately owned, but it is more commonly provided as a service by a public carrier. It typically consists of many geographically scattered Frame Relay switches interconnected by trunk lines.

訊框中繼可以是私有的但大部分都是由公用載體(carrier)所提供,基本上載體包含地理上散亂的訊框中繼交換單元,它們被主要的線路(Trunk line)所連接。

Frame Relay is often used to interconnect LANs. When this is the case, a router on each LAN will be the DTE. A serial connection, such as a T1/E1 leased line, will connect the router to a Frame Relay switch of the carrier at the nearest point-of-presence for the carrier. The Frame Relay switch is a DCE device. Frames from one DTE will be moved across the network and delivered to other DTEs by way of DCEs.

訊框中繼經常使用在各個區域網路的連結,區域網路上的路由器被當成資料終端設備,像T1或E1此類串列式連結的專線會連接到一個載體的訊框中繼轉接點,訊框中繼轉接點是一種資料通訊設備。訊框從一個資料終端設備移動到另一個資料終端設備是藉由各個資料通訊設備的路徑。

5.1.2 Frame Relay terminology 

The connection through the Frame Relay network between two DTEs is called a virtual circuit (VC). Virtual circuits may be established dynamically by sending signaling messages to the network. In this case they are called switched virtual circuits (SVCs). However, SVCs are not very common. Generally permanent virtual circuits (PVCs) that have been preconfigured by the carrier are used. A VC is created by storing input-port to output-port mapping in the memory of each switch and thus linking one switch to another until a continuous path from one end of the circuit to the other is identified.

在資料終端設備建立的連結稱為虛擬電路,虛擬電路可被動態的建立藉由傳送訊號訊息到網路中這種例子我們稱為交換虛擬電路(switched virtual circuits)。但是虛擬交換電路還不普遍,通常都使用固定的虛擬線路(permanent virtual circuits)。虛擬電路的建立是藉由儲存記憶體中input-port到output-port的連續應對,及從一個交換器到另一個可辨識交換器的連通。沒有在區域網路上的計算設備也會在訊框中繼網域傳送資料,但它是以其他訊框中繼設備(Frame Relay Access Device)當成是資料終端設備。

Because it was designed to operate on high-quality digital lines, Frame Relay provides no error recovery mechanism. If there is an error in a frame, as detected by any node, it is discarded without notification.

訊框中繼是建立在有較高品質的傳輸媒介上面,所以它沒有錯誤復原的技術,假設有任何錯誤的訊框發生,就直接把此訊框丟棄而不用任何回報。

The router connected to the Frame Relay network may have multiple virtual circuits connecting it to various end points. This makes it a very cost-effective replacement for a mesh of access lines. With this configuration, each end point needs only a single access line and interface. More savings arise as the capacity of the access line is based on the average bandwidth requirement of the virtual circuits, rather than on the maximum bandwidth requirement.

連接到訊框中繼網路的訊框中繼存取設備或路由器可以有多重虛擬電路連接到不同的端點,這跟網狀聯結的方式比起來更有經濟效益,依照此方式每個端點只需要一條單一的存取線路或介面。存取線的容量是基於虛擬電路的平均頻寬需求而不是最大的頻寬需求。

The various virtual circuits on a single access line can be distinguished because each VC has its own Data Link Connection Identifier (DLCI). The DLCI is stored in the address field of every frame transmitted. The DLCI usually has only local significance and may be different at each end of a VC.

在同一條存取線上的不同虛擬電路是可以被分辨出來的,因為它們有自己的資料連接頻道辨識器(Data Link Channel Identifier) ,資料連接頻道辨識器是存在每個訊框的位址欄,資料連接頻道辨識器只在局部上有較重要的意義,在每個虛擬電路上都有可能不同。

5.1.3 Frame Relay stack layered support 

Frame Relay functions by doing the following:

訊框中繼有下列的功能:
 

  • 在網路層協定「ex IP或IPX」中抓取資料封包。
     
  • 把它們當成是資料的部分壓縮在訊框終。
     
  • 丟到實體層以便傳送。
  • The physical layer is typically EIA/TIA-232, 449 or 530, V.35, or X.21. The Frame Relay frame is a subset of the HDLC frame type. Therefore it is delimited with flag fields. The 1-byte flag uses the bit pattern 01111110. The Frame Check Sequence (FCS) is used to determine if any errors in the layer 2 address field occurred during transmission. The FCS is calculated prior to transmission and the result is inserted in the FCS field. At the distance end, a second FCS value is calculated and compared to the FCS in the frame. If the results are the same, the frame is processed. If there is a difference, the frame is discarded. No notification is sent to the source when a frame is discarded. Error control left to the upper layers of the OSI model.

    實體層可能有下 EIA/TIA-232、449 or 530,V.35,X.21。訊框中繼的訊框是高階數據鏈路控制的一種訊框,使用旗標欄來分界。旗標欄使用1位元組01111110。訊框檢查順序(Frame Check Sequence)用來檢測在第二層的位址欄在傳輸時是否有錯誤發生,在傳送前就必須計算訊框檢查順序並把結果存在訊框檢查順序欄位,在一個距離的端點,第二個訊框檢查順序會被計算並且跟前一個作比較,假如比較結果是一樣的,這個訊框就會被傳送,如果不同就放棄此訊框,放棄時不會通知來源地點,錯誤控制交給OSI模式的較上層去管理。

    5.1.4 Frame Relay bandwidth and flow control 

    The serial connection or access link to the Frame Relay network is normally a leased line. The speed of the line is the access speed or port speed. Port speeds are typically between 64 kbps and 4 Mbps. Some providers offer speeds up to 45 Mbps.

    訊框中繼的串列連線或存取線路通常是一條專線,線路的速度稱為存取速度或阜速度,阜速度通常在64kbps和4Mbps之間,有些提供到45Mbps。

    Usually there are several PVCs operating on the access link with each VC having dedicated bandwidth availability. This is called the committed information rate (CIR). The CIR is the rate at which the service provider agrees to accept bits on the VC.

    在同一條線路上可能有好幾個固定的虛擬線路,每條線路有固定的頻寬大小,這稱為約定之資訊速率(committed information rate CIR)。CIR是服務提供端同意去接收的位元數。

    Individual CIRs are normally less than the port speed. However, the sum of the CIRs will normally be greater than the port speed. Sometimes this is a factor of 2 or 3. Statistical multiplexing accommodates the bursty nature of computer communications since channels are unlikely to be at their maximum data rate simultaneously.

    每個CIR都小於阜速度,然而全部CIR的總合會大於阜速度,因為每個頻道同時間不會有最大的資料速率所以經過統計可以容納超出的原本電腦可通信的量。

    While a frame is being transmitted, each bit will be sent at the port speed. For this reason, there must be a gap between frames on a VC if the average bit rate is to be the CIR.

    訊框在傳輸的時候,每個位元會以阜速度在傳送,因此,假如平均的位元速率為CIR則在虛擬電路傳送的訊框之間必須要有一個間隙(GAP)。

    The switch will accept frames from the DTE at rates in excess of the CIR. This effectively provides each channel with bandwidth on demand up to a maximum of the port speed. Some service providers impose a VC maximum that is less than the port speed. The difference between the CIR and the maximum, whether the maximum is port speed or lower, is called the Excess Information Rate (EIR).

    The time interval over which the rates are calculated is called the committed time (Tc). The number of committed bits in Tc is the committed burst (Bc). The extra number of bits above the committed burst, up to the maximum speed of the access link, is the excess burst (Be).

    Although the switch accepts frames in excess of the CIR, each excess frame is marked at the switch by setting the Discard Eligible (DE) bit to "1" in the address field.

    這個時間的間隔稱為約定時間Tc(Committed time)。在約定時間裡的所有位元稱為約定突發(Committed Burst)Bc,其他超出約定突發在存取連結上到達最大速度的稱超抑溢突發(excess burst)Be。雖然轉接點可接受這些超出CIR的訊框,但是這些訊框在位址欄裡面可選擇丟棄的位元(Discard Eligible(DE) bit)設為1。

    The switch maintains a bit counter for each VC. An incoming frame is marked DE if it puts the counter over Bc. An incoming frame is discarded if it pushes the counter over Bc + Be. At the end of each Tc seconds the counter is reset. The counter may not be negative, so idle time cannot be saved up.

    轉接點對每個虛擬電路有一個位元記數器對應之,假設記數器被改為Bc 則接收的訊框標示為DE。假設記數器為Bc+Be則訊框標示為丟棄,在每個Tc的最後記數器被重新設置。

    Frames arriving at a switch are queued or buffered prior to forwarding. As in any queuing system, it is possible that there will be an excessive buildup of frames at a switch. This causes delays. Delays lead to unnecessary retransmissions that occur when higher-level protocols receive no acknowledgment within a set time. In severe cases this can cause a serious drop in network throughput.

    當一個訊框到達一個轉接點要往下一個點前進時必須先排隊或被緩衝起來。在任何的排隊系統中轉接點可能超過可以負載的訊框量,這會造成延遲,延遲會造成較上層協定接收不到東西而有重新傳送的動作,傳輸的效能就會降低。

    To avoid this problem, Frame Relay switches incorporate a policy of dropping frames from a queue to keep the queues short. Frames with their DE bit set will be dropped first.

    為了解決此問題,訊框中繼的轉接點會有丟棄訊框的策略,有標示為DE在緩衝中的訊框會先被丟棄。

    When a switch sees its queue increasing, it tries to reduce the flow of frames to it. It does this by notifying DTEs of the problem by setting the Explicit Congestion Notification (ECN) bits in the frame address field.

    再轉接點排隊的訊框增加時,它會設法降低訊框流進的量,藉由設定擁塞通知(Explicit Congestion Notification)位元來來告知資料終端設備來達成此動作。

    The Forward ECN (FECN) bit is set on every frame that the switch receives on the congested link. The Backward ECN (BECN) bit is set on every frame that the switch places onto the congested link. DTEs receiving frames with the ECN bits set are expected to try to reduce the flow of frames until the congestion clears.

    If the congestion occurs on an internal trunk, DTEs may receive notification even though they are not the cause of the congestion.

    The DE, FECN and BECN bits are part of the address field in the LAPF frame.

    前向擁塞通知位元會被設定在每個訊框,轉接點則在擁塞的鏈結上接收它,後向擁塞通知位元也會被設定在每個訊框,轉接點在擁塞的鏈結上放置它。資料終端設備接收ECN位元時就知道要減少流量以降低擁塞。

    5.1.5 Frame Relay address mapping and topology 

    Frame Relay is unlikely to be cost-effective when only two sites are interconnected with a point-to-point connection. Frame Relay is more cost-effective where multiple sites must be interconnected.

    訊框中繼在只有兩個端點的點對點連結是沒有效率的,在多個端點間的連結才會有效率。

    WANs are often interconnected as a star topology. A central site hosts the primary services and is connected to each of the remote sites needing access to the services. In a hub and spoke topology the location of the hub is chosen to give the lowest leased line cost. When implementing a star topology with Frame Relay, each remote site has an access link to the frame relay cloud with a single VC. The hub has an access link with multiple VCs, one for each remote site. Because Frame Relay tariffs are not distance related, the hub does not need to be in the geographical center of the network.

    廣域網路通常使用星狀拓撲,中間的區域是作為其他端點服務的主區域,要實作訊框中繼的星狀拓撲時,每個遠端區域有一個存取連結到訊框叢聚中,每個叢有一個虛擬電路。 需要用到網狀拓撲服務有兩個主要原因,各個連接點在地理位置上是分散的和高可靠度的存取,每一個區域都有線路和其它區域相連接。不像專線的互連,網狀可以不經任何硬體設備達到訊框中繼的功能。它必須要使用更多的虛擬電路,我們可以從存在的星狀拓撲去改進成網狀拓撲,使用更多的虛擬電路是訊框中繼可以達到最高效率的一個原則。

    A full mesh topology is chosen when services to be accessed are geographically dispersed and highly reliable access to them is required. With full mesh, every site is connected to every other site. Unlike with leased line interconnections, this can be achieved in Frame Relay without additional hardware. It is necessary to configure additional VCs on the existing links to upgrade from star to full mesh topology. Multiple VCs on an access link will generally make better use of Frame Relay than single VCs. This is because they take advantage of the built-in statistical multiplexing.

    當服務是從分散的地方和高可靠度的存取須選擇完全的網狀拓撲,當使用完全的網狀拓撲時,每個地點都互相連結.不像專線的連接,這可以不需要額外的硬體而只用訊框傳輸達到目的.在固定的連結上由星狀到網狀拓撲, 設定額外的虛擬電路是必須的.在存取線路使用多重虛擬電路會比單一虛擬電路有效率,因為這使用到內建統計多工的優勢。

    For large networks, full mesh topology is seldom affordable. This is because the number of links required for a full mesh topology grows at almost the square of the number of sites. While there is no equipment issue for Frame Relay, there is a limit of less than 1000 VCs per link. In practice, the limit will be less than that, and larger networks will generally be partial mesh topology. With partial mesh, there are more interconnections than required for a star arrangement, but not as many as for a full mesh. The actual pattern is very dependant on the data flow requirements.

    對較大的網域而言,很好會使用網狀拓撲,因為要建立的連結數是以平方的速度變化。架設我們對增加設備無義論的時候,每條連結的最大虛擬電路數目應該小於1000,就實際而言,虛擬電路的數目都是小於1000,且大型網域通常使用部分的網狀拓撲,使用部分網狀拓撲的連結量不像像全部網狀拓撲那麼多,又有比星狀拓撲優異的特性,而使用部分網狀拓撲需求是依照資料流量需求而定。

    In any Frame Relay topology, when a single interface is used to interconnect multiple sites, there may be reachability issues. This is due to the nonbroadcast multiaccess (NBMA) nature of Frame Relay. Split horizon is a technique used by routing protocols to prevent routing loops. Split horizon does not allow routing updates to be sent out the same interface that was the source of the route information. This can cause problems with routing updates in a Frame Relay environment where multiple PVCs are on a single physical interface.

    在任何訊框中繼的架構下,當一個單一的介面連接到多重區域時必須達成某些要求,因為訊框中繼沒有廣播多重存取(NBMA)的功能,我們使用Split horizon的技術,Split horizon技術是不准對相同的來源介面作重複傳送的功能,它是依據來源介面的路由資訊;但是對單一介面上有多個固定虛擬電路會產生某些問題。

    Whatever the underlying topology of the physical network, a mapping is needed in each FRAD or router between a data link layer Frame Relay address and a network layer address, such as an IP address. Essentially, the router needs to know what networks are reachable beyond a particular interface. The same problem exists if an ordinary leased line is connected to an interface. The difference is that the remote end of a leased line is connected directly to a single router. Frames from the DTE travel down a leased line as far as a network switch, where they may fan out to as many as 1000 routers. The DLCI for each VC must be associated with the network address of its remote router. This information can be configured manually by using map commands. The DLCI can also be configured automatically using Inverse ARP.

    不管在任何實體網路的拓撲下,訊框中繼設備和路由器都必須要在網路層作應對的動作,基本上路由器必須知道特定的介面連接到各種不同網域,相同的問題也存在一般專線連接當中,不同的地方在專線是由遠端連接到特定的路由器。訊框藉由網路轉接點一直傳送出去,最多可經過1000個路由器。虛擬電路的DLCI必須跟遠端路由器的網路位址有關,這些資訊可藉由應對指令可由人工操作完成。

    5.1.6 Frame Relay LMI 

    Frame Relay was designed to provide packet-switched data transfer with minimal end-to-end delays. Anything that might contribute to delays was omitted. When vendors implemented Frame Relay as a separate technology rather than as one component of ISDN, they decided that there was a need for DTEs to dynamically acquire information about the status of the network. This feature was omitted in the original design. The extensions for this status transfer are called the Local Management Interface (LMI).

    訊框中繼提供最小延遲在分封交換的環境下,當使用訊框中繼當成是分散技術時而不是ISDN的一部份,資料終端設備是動態要求網路的狀態資訊,這個特點在原來的設計被刪去,狀態轉移的延伸稱為區域管理介面(Local Management Interface (LMI))。

    The 10-bit DLCI field allows VC identifiers 0 through 1023. The LMI extensions reserve some of these identifiers. This reduces the number of permitted VCs. LMI messages are exchanged between the DTE and DCE using these reserved DLCIs.

    The LMI extensions include the following:

    10位元的DLCI欄位可以讓虛擬電路可以有0到1023個識別碼,LMI的延伸保留某些識別碼,這可降低認可的虛擬電路量,LMI的訊息在資料終端設備和資料通信設備間轉換藉由使用保留的DLCI欄位。
    LMI延伸的功能包含以下: 

  • 保持活動機制,確保虛擬電路是可運作的
     
  • 群播的機制
     
  • 流量控制
     
  • 確保DLCI的重要性
     
  • 虛擬狀態的機制
  • There are several LMI types, each of which is incompatible with the others. The LMI type configured on the router must match the type used by the service provider. Three types of LMIs are supported by Cisco routers:

    不同的LMI介面都互不相容,路由器上的LMI設定需配合服務提供端。Cisco路由器有3種LMI:Cisco、Ansi、q9332。

    LMI messages are carried in a variant of LAPF frames. This variant includes four extra fields in the header so that they will be compatible with the LAPD frames used in ISDN. The address field carries one of the reserved DLCIs. Following this are the control, protocol discriminator, and call reference fields that do not change. The fourth field indicates the LMI message type.

    There are one or more information elements (IE) that follow the header. Each IE consists of the following:

    不同的LAMP訊框攜帶不同的LMI訊息,這種特性在標頭地方包含4個額外的欄位,所以LAMP訊框可相容於ISDN網路。位址欄包含保留的DLCI訊息,其他本來的欄位接保留下來,第四個欄位為LMI訊息。
    在標頭檔之後跟隨很多資訊單元(information elements),資訊單元包含如下:

  • 一個位元組的資訊單元識別碼
     
  • 資訊單元長度欄
     
  • 資料位元組包含DLCI狀態
  • Status messages help verify the integrity of logical and physical links. This information is critical in a routing environment because routing protocols make decisions based on link integrity.

    狀態訊息可幫助驗證和檢查邏輯、實體的鏈結,這種資訊對有路由器的環境是非常重要的因為路由的協定是基於正確的鏈結。

    5.1.7 Stages of Inverse ARP and LMI operation  

    LMI status messages combined with Inverse ARP messages allow a router to associate network layer and data link layer addresses.

    包含反轉位址解析協定(inverse ARP)LMI狀態訊息使路由器跟網路層和資料鏈結層有關。

    When a router that is connected to a Frame Relay network is started, it sends an LMI status inquiry message to the network. The network replies with an LMI status message containing details of every VC configured on the access link.

    當路由器連接到訊框中繼的網域時,會先傳送LMI狀態詢問訊息給此網域,網域也是以LMI狀態回傳虛擬電路設定的詳細訊息給路由器。

    Periodically the router repeats the status inquiry, but subsequent responses include only status changes. After a set number of these abbreviated responses, the network will send a full status message.

    路由器每隔一段時間會重複傳送詢問訊息,隨後的回應會包含狀態改變的資訊。

    If the router needs to map the VCs to network layer addresses, it will send an Inverse ARP message on each VC. The Inverse ARP message includes the network layer address of the router, so the remote DTE, or router, can also perform the mapping. The Inverse ARP reply allows the router to make the necessary mapping entries in its address to DLCI map table. If several network layer protocols are supported on the link, Inverse ARP messages will be sent for each.

    假如路由器想把虛擬電路應對到網路層位址,它會在每個虛擬電路上回傳反轉位址解析協定。轉位址解析訊息包含路由器的網路層位址,所以資料終端設備或路由器可以執行位址應對DLCI應對表。假如鏈結上支援多個網路層協定,轉位址解析協定會送給每個協定訊息。
     

    5.2 Configuring Frame Relay 
       
    5.2.1 Configuring basic Frame Relay 

    This section explains how to configure a basic Frame Relay PVC. Frame Relay is configured on a serial interface. The default encapsulation type is the Cisco proprietary version of HDLC. To change the encapsulation to Frame Relay use the encapsulation frame-relay[cisco | ietf] command.

    這個章節說明如何設定基本的訊框中繼固定虛擬電路。訊框中繼是藉由串列阜設定的,大概是以Cisco的HDLC作為基準。使用encapsulation frame-relay[cisco | ietf]指令變更到訊框中繼使用。

    cisco:Uses the Cisco proprietary Frame Relay encapsulation. Use this option if connecting to another Cisco router. Many non-Cisco devices also support this encapsulation type. This is the default.

    ietf:Sets the encapsulation method to comply with the Internet Engineering Task Force (IETF) standard RFC 1490. Select this if connecting to a non-Cisco router.

    cisco:使用cisco所有的訊框中繼架構,在連接到其他cisco路由器時需要用到,許多非cisco的路由器也適用。
    ietf:遵守IETF的方式去設定。

    Cisco's proprietary Frame Relay encapsulation uses a 4-byte header, with 2 bytes to identify the data-link connection identifier (DLCI) and 2 bytes to identify the packet type.

    cisco所有的訊框中繼架構使用4個位元組的架構,2個位元組用來辨認資料鏈結連接的辨別器(DLCI),另外2個用來辨別方包類型。

    Set an IP address on the interface using the ip address command. Set the bandwidth of the serial interface using the bandwidth command. Bandwidth is specified in kilobits per second (kbps). This command is used to notify the routing protocol that bandwidth is statically configured on the link. The bandwidth value is used by Interior Gateway Routing Protocol (IGRP), Enhanced Interior Gateway Routing Protocol (EIGRP), and Open Shortest Path First (OSPF) to determine the metric of the link.

    使用ip address指令來設定ip位址;使用bandwidth 位址來設定串列介面的頻寬,這個指令用來通知路由協定說頻寬已被靜態設定,頻寬值由內部閘道路由協定(IGRP)、增強內部閘道路由協定(EIGRP)和最短路徑優先(OSPF)來決定鏈結。

    The LMI connection is established and configured by the frame-relay lmi-type [ansi | cisco | q933a] command. This command is only needed if using Cisco IOS Release 11.1 or earlier. With IOS Release 11.2 or later, the LMI-type is autosensed and no configuration is needed. The default LMI type is cisco. The LMI type is set on a per-interface basis and is shown in the output of the show interfaces command.

    These configuration steps are the same, regardless of the network layer protocols operating across the network.

    使用frame-relay lmi-type [ansi | cisco | q933a]指令來建立和設定LMI連接,這個指令只有Cisco IOS Release 11.1或更早以前才會用到。IOS Release 11.2或更晚期的LMI會被自動傳送也不需要被設定。Cisco的LMI在現今是主流。
    LMI的種類會先被設定在每個介面並使用show interfaces顯示結果。不管在任何網路的網路層協定其設定步驟皆一樣。

    Lab Exercise: Configuring Frame Relay

    In this lab, the student will configure a router to make a successful connection to a local Frame Relay switch.

     
    5.2.2 Configuring a static Frame Relay map 

    The local DLCI must be statically mapped to the network layer address of the remote router when the remote router does not support Inverse ARP. This is also true when broadcast traffic and multicast traffic over the PVC must be controlled. These static Frame Relay map entries are referred to as static maps.

    本地端的DLCI必須靜態應對到遠端路由器的網路層位址當遠端路由器沒有支援反轉位址解析協定。在固定虛擬電路上的廣播和多重播送是要被合理控制的,這些靜態的訊框中繼應對單元被歸類靜態應對。

    Use the frame-relay map protocol protocol-address dlci [broadcast] command to statically map the remote network layer address to the local DLCI.

    使用frame-relay map protocol protocol-address dlci [broadcast]指令把遠端網路層位址應對到本地端DLCI。

    Lab Exercise: Configuring Frame Relay PVC

    In this lab, the student will configure two routers back-to-back as a Frame Relay permanent virtual circuit (PVC).

     
    5.2.3 Reachability issues with routing updates in NBMA 

    By default, a Frame Relay network provides non-broadcast multi-access (NBMA) connectivity between remote sites. An NBMA environment is viewed like other multiaccess media environments, such as Ethernet, where all the routers are on the same subnet. However, to reduce cost, NBMA clouds are usually built in a hub-and-spoke topology. With a hub-and-spoke topology, the physical topology does not provide the multi-access capabilities that Ethernet does. The physical topology consists of multiple PVCs.

    非廣播多重存取的環境(NBMA)可視為另一種多重存取的環境,像是乙太網路,在裡面的路由器都可視為一組子集合,為了降低成本NBMA群集通常使用hub-and-spoke拓撲,使用此種形式的拓撲,實體拓撲不用提供多重存取的能力,實體拓撲包含多個固定虛擬電路。

    A Frame Relay NBMA topology may cause two problems:

    一個訊框中繼hub-and-spoke拓撲可能造成兩個問題: 

  • 路由的更新引發的可到達性議論(reachability issues)
     
  • 當實體介面包含一個以上的固定虛擬電路如何複製廣播資料
  • Split-horizon updates reduce routing loops by not allowing a routing update received on one interface to be forwarded out the same interface. If Router B, a spoke router, sends a broadcast routing update to Router A, the hub router, and Router A has multiple PVCs over a single physical interface, then Router A cannot forward that routing update through the same physical interface to other remote spoke routers. If split-horizon is disabled, then the routing update can be forwarded out the same physical interface from which it came. Split-horizon is not a problem when there is a single PVC on a physical interface. This would be a point-to-point Frame Relay connection.

    水平分割(split-horizon)更新降低路由的迴圈,因為它不允許路由更新到相同的介面,假如一個路由器B為發送更新訊息的路由器,傳送更新給路由器A,路由器A有多個固定虛擬電路再單一實體介面上,此時路由器A不能發送更新訊息在同一條線路上給另一個路由器。在單一虛擬電路的介面上不會有水平分割更新的問題,這是一個點對點的訊框中繼連結。

    Routers that support multiple connections over a single physical interface have many PVCs that terminate in a single router. This router must replicate broadcast packets such as routing update broadcasts, on each PVC, to the remote routers. The replicated broadcast packets can consume bandwidth and cause significant latency to user traffic. It might seem logical to turn off split-horizon to resolve the reachability issues caused by split-horizon. However, not all network layer protocols allow split-horizon to be disabled and disabling split-horizon increases the chances of routing loops in any network.

    在單一實體介面上支援多重連結的多個路由器有很多虛擬電路會被某一個路由器結束,這個路由器會在固定虛擬第亂上複製很多廣播封包像是更新的廣播。這個複製的廣播封包會消耗頻寬和造成嚴重的延遲,它應該是關掉水平分割技術以解決到達性的議論,因為到達性的議論是又水平分割技術所引起,然而,並非所有的網路層都允許關閉水平分割,因為水平會引起路由迴圈。

    One way to solve the split-horizon problem is to use a fully meshed topology. However, this will increase the cost because more PVCs are required. The preferred solution is to use subinterfaces.

    一個解決水平分割的問題是使用全網狀拓撲,然而這會增加成本,因為需要更多的固定虛擬電路。所以我們偏好使用子介面去解決水平分割的問題。

    5.2.4 Frame Relay subinterfaces 

    To enable the forwarding of broadcast routing updates in a hub-and-spoke Frame Relay topology, configure the hub router with logically assigned interfaces. These interfaces are called subinterfaces. Subinterfaces are logical subdivisions of a physical interface.

    為了能在在hub-and-spoke訊框中繼拓撲終傳送廣播路由更新,在路由器中設定由邏輯分配的介面,這些介面稱為子介面,子介面是實體的介面在細分出來的邏輯介面。

    In split-horizon routing environments, routing updates received on one subinterface can be sent out another subinterface. In a subinterface configuration, each virtual circuit can be configured as a point-to-point connection. This allows each subinterface to act similarly to a leased line. Using a Frame Relay point-to-point subinterface, each pair of the point-to-point routers is on its own subnet.

    在水平分割的路由環境,子介面可傳送路由更新給下一個子介面。在每個子介面的設定中每個虛擬電路可設為點對點的連接,使子介面有如一般專線一樣。使用訊框中繼的點對點子介面,每對路由器都是一個子集合。

    Frame Relay subinterfaces can be configured in either point-to-point or multipoint mode:

    訊框中繼的點對點介面可被設定為點對點或多點的模式:
     

  • 點對點模式: 單一的點對點子介面用來建立一個連接到實體介面或子介面的遠端路由器之虛擬電路,每個點對點的子介面會有單一的DLCI。在一個點對點的環境中,每個子介面都作用成點對點的介面,所以路由更新不依照水平分割法則。
     
  • 多點模式:一個單一的多點子介面用來建立一個連接到實體介面或子介面的遠端路由器之多重虛擬電路,所有參與的介面都在同一個子集合內。子介面作用如NBMA的訊框中繼介面,且依照水平分割法則。
  • The encapsulation frame-relay command is assigned to the physical interface. All other configuration items, such as the network layer address and DLCIs, are assigned to the subinterface.

    概括的訊框中繼指令被指定到實體介面.其他的設定都被分配到子介面,像是網路層位址和資料鏈結連接識別碼。

    Multipoint configurations can be used to conserve addresses that can be especially helpful if Variable Length Subnet Masking (VLSM) is not being used. However, multipoint configurations may not work properly given the broadcast traffic and split-horizon considerations. The point-to-point subinterface option was created to avoid these issues.

    多點模式的設定用來節省位址,如果沒有使用變動長度子網遮罩時特別有用(Variable Length Subnet Masking),然而,多點模式的設定在考慮廣播和水平分割時通常不會運作的很好。點對點子介面的選項用來避免這個問題。

    5.2.5 Configuring Frame Relay subinterfaces 

    The Frame Relay service provider will assign the DLCI numbers. These numbers range from 16 to 992, and usually have only local significance. This number range will vary depending on the LMI used. DLCIs can have global significance in certain circumstances.

    訊框中繼服務端會分配DLCI號碼,這些號碼從19到992,從局部的角度去看是有用的,只有在某些情況下在全域環境中是較重要的。號碼範圍會依照LMI的使用而有變化。

    In the figure, Router A has two point-to-point subinterfaces. The s0/0.110 subinterface connects to router B and the s0/0.120 subinterface connects to router C. Each subinterface is on a different subnet. To configure subinterfaces on a physical interface, the following steps are required:

    在此圖中,路由器A有兩個點對點的子介面,s0/0.110子介面聯接道路由器B,s0/0.120子介面聯接道路由器C。每個子介面都是不同的子集合,設定實體介面中的子介面有下列步驟:
     

  • 使用encapsulation frame-relay,在實體介面中設定訊框中繼資訊
     
  • 創造一個邏輯的子介面給每個已定義的固定虛擬電路
  • router(config-if)#interface serialnumber.subinterface-number [multipoint | point-to-point]

    To create a subinterface, use the interface serial command. Specify the port number, followed by a period (.), and then by the subinterface number. Usually, the subinterface number is chosen to be that of the DLCI. This makes troubleshooting easier. The final required parameter is stating whether the subinterface is a point-to-point or point-to-multipoint interface. Either the multipoint or point-to-point keyword is required. There is no default. The following commands create the subinterface for the PVC to router B:

    routerA(config-if)#interface serial 0/0.110 point-to-point

    使用interface serial指令創造子介面。在(.)之後指定一個阜號碼,接著是子介面的號碼,子介面的號碼是DLCI的號碼,這使除錯容易許多。最後需要參數來說明此子介面是點對點或點對多點的介面。要使用Multipoint和point-to-point這兩個關鍵字,下面的指令創造路由器B的固定虛擬電路子介面:routerA(config-if)#interface serial 0/0.110 point-to-point

    If the subinterface is configured as point-to-point, then the local DLCI for the subinterface must also be configured in order to distinguish it from the physical interface. The DLCI is also required for multipoint subinterfaces for which Inverse ARP is enabled. It is not required for multipoint subinterfaces configured with static route maps. The frame-relay interface-dlci command is used to configure the local DLCI on the subinterface

    router(config-subif)#frame-relay interface-dlci dlci-number

    假如子介面被設定為point-to-point則局部的DLCI也要被設定,是為了要從實體介面中去分辨出來。多點子介面在inverse ARP中也需要DLCI,多點子介面不需要靜態的路由應對表。frame-relay interface-dlci 是用來在子介面中設定DLCI。
    router(config-subif)#frame-relay interface-dlci dlci-number

    Lab Exercise: Configuring Frame Relay Subinterfaces

    In this lab, the student will use subinterfaces to configure three routers in a full-mesh Frame Relay network.

     
    5.2.6 Verifying the Frame Relay configuration 

    The show interfaces command displays information regarding the encapsulation and Layer 1 and Layer 2 status. It also displays information about the following:

    show interfaces 指令是用來顯示Layer1和Layer2的狀態,它也用來表示以下的資訊: 

  • LMI的類型
     
  • LMI DLCI
     
  • 訊框中繼中的資料終端設備和資料電路終止設備類型
  • Normally, the router is considered a data terminal equipment (DTE) device. However, a Cisco router can be configured as a Frame Relay switch. The router becomes a data circuit-terminating equipment (DCE) device when it is configured as a Frame Relay switch.

    路由器是一個典型的資料終端設備,然而,Cisco的路由器可被設定成為訊框中繼轉接點,所以可當成資料電路終止設備。

    Use the show frame-relay lmi command to display LMI traffic statistics. For example, this command demonstrates the number of status messages exchanged between the local router and the local Frame Relay switch.

    使用show frame-relay lmi 指令顯示LMI的資訊量統計,這個指令驗證了在局部端路由器和訊框中繼轉接點的狀態訊息交換。

    Use the show frame-relay pvc [interface interface] [dlci] command to display the status of each configured PVC as well as traffic statistics. This command is also useful for viewing the number of BECN and FECN packets received by the router. The PVC status can be active, inactive, or deleted.

    使用show frame-relay pvc 指令去顯示每個已設定固定虛擬電路的狀態, 這個指令對由路由器收到的後退式明示壅塞通知和推送式明示壅塞通知封包也很有幫助.固定虛擬電路的狀態可以被設定為活動\不活動\刪除等狀態。

    The show frame-relay pvc command displays the status of all the PVCs configured on the router. Specifying a PVC will show the status of only that PVC. In Figure , the show frame-relay pvc 100 command displays the status of only PVC 100.

    使用show frame-relay pvc [interface interface] [dlci] 指令顯示所有路由器上的所有固定虛擬電路狀態 。圖三顯示只有固定虛擬線路的狀態,show frame-relay pvc 100 這個指令只會顯示PVC100的狀態。

    Use the show frame-relay map command to display the current map entries and information about the connections. The following information interprets the show frame-relay map output that appears in Figure :

    使用show frame-relay map 指令顯示目前對應單元和連接的資訊,在圖4顯示出show frame-relay map 的資訊。

    To clear dynamically created Frame Relay maps, which are created using Inverse ARP, use the clear frame-relay-inarp command.

    clear frame-relay-inarp 指令是為了清除動態產生使用inverse ARP的訊框中繼應對表。

    5.2.7 Troubleshooting the Frame Relay configuration  

    Use the debug frame-relay lmi command to determine whether the router and the Frame Relay switch are sending and receiving LMI packets properly. The "out" is an LMI status message sent by the router. The "in" is a message received from the Frame Relay switch. A full LMI status message is a "type 0". An LMI exchange is a "type 1". The "dlci 100, status 0x2" means that the status of DLCI 100 is active. The possible values of the status field are as follows:

    用debug frame-relay lmi 指令來決定路由器和訊框中繼轉接點是否正在傳送或接收LMI封包。 ”out”是路由器傳送的LMI狀態訊息,”in”是從訊框中繼轉接點接收的狀態訊息。一個完全的LMI狀態訊息是”type0”,一個LMI的交換是”type1”, "dlci 100, status 0x2"表示資料鏈結連接識別碼 100狀態是正在活動的。有可能的狀態欄位值如下:
     

  • 0x0 :Added/inactive 表示轉接點有資料鏈結連接識別碼執行,但是因為某種原因它 無法正常活動。原因可能是另一端的固定虛擬電路消失了
     
  • 0x2 :Added/active 表示訊框中繼轉接點有資料鏈結連接識別碼且所有東西都正常運行
     
  • 0x4 :刪除表示訊框中繼轉接點沒有資料鏈結連接識別碼給路由器,但在未來可被執行到,另一個原因是路由器保留了資料鏈結連接識別碼或固定虛擬電路被服務提供端刪除了。
  •