
1

EEC-484/584
Computer Networks

Lecture 15

Wenbing Zhao
wenbing@ieee.org

(Lecture nodes are based on materials supplied by
Dr. Louise Moser at UCSB and Prentice-Hall)

26 October 2005 EEC484/584

2

Wenbing Zhao

Outline

Review of last lecture
The network layer in Internet

The transport layer
Transport service
Elements of transport protocols

2

26 October 2005 EEC484/584

3

Wenbing Zhao

Review

Essential topics of last lecture
NAT
ICMP, ARP, RARP, BOOTP, DHCP
OSPF, BGP

26 October 2005 EEC484/584

4

Wenbing Zhao

NAT – Network Address Translation

Placement and operation of a NAT box

3

ICMP – Internet Control Message Protocol
When something unexpected occurs in Internet, the
event is reported by routers using ICMP
It is also used to test Internet
Principal ICMP message types

26 October 2005 EEC484/584

6

Wenbing Zhao

ARP and RARP

ARP – find the mapping of IP addresses to data
link layer addresses
RARP - This protocol allows a newly-booted
diskless-workstation (e.g., X terminal) to
broadcast its Ethernet address and ask for its IP
address

32-bit Internet address

48-bit Ethernet address

ARP RARP

4

26 October 2005 EEC484/584

7

Wenbing Zhao

DHCP –
Dynamic Host Configuration Protocol

Allows both manual IP address assignment and automatic
assignment. DHCP has largely replaced RARP and BOOTP
A DHCP relay agent is needed on each LAN. The only piece
of information the relay agent needs is the IP address of the
DHCP server.
To find its IP address, a newly-booted machine broadcasts a
DHCP DISCOVER packet. The DHCP relay agent on its
LAN receives all DHCP broadcasts
When it finds a DHCP DISCOVER packet, it sends the packet
as a unicast packet to the DHCP server, possibly on a distant
network
IP address assignment is lease-based (to cope with client
failure)

26 October 2005 EEC484/584

8

Wenbing Zhao

Internet Routing Protocols

5

26 October 2005 EEC484/584

9

Wenbing Zhao

Interior Gateway Routing Protocol
Uses Open Shortest Path First (OSPF)

Open, dynamic, and support multiple distance metrics
Routing based on type of service
Load balancing
Hierarchical
Security
Tunneling

Supports 3 types of connections
Point-to-point between 2 routers
Multiaccess (multiple routers that communicate with each
other) – with broadcasting and without broadcasting

26 October 2005 EEC484/584

10

Wenbing Zhao

Exterior Gateway Routing Protocol

Border Gateway Protocol (BGP)
Used between autonomous systems
Main concerns: politics, security, economic
Uses distance vector routing except keeps track of exact path
instead of cost to destination and periodically tells its neighbors
that path

6

26 October 2005 EEC484/584

11

Wenbing Zhao

Transport Layer – Design Goals

To provide efficient, reliable, cost-effective
service to the transport layer users
To allow application programs to be written
using a standard set of primitives and to have
programs work on a variety of networks
To enhance the quality of service provided by
the network layer below it

Services Provided to the Upper Layers

TPDU: Transport Protocol Data Unit

Transport Entity - The hardware and/or software within the
transport layer that does the work. The transport entity can be
located in

Operating system kernel, a separate user process, a library package
bound into network applications, or conceivably on the network
interface card

7

26 October 2005 EEC484/584

13

Wenbing Zhao

Services Provided to the Upper Layers

The transport layer fulfills the key function of isolating
the upper layers from the technology, design, and
imperfections of the subnet
For this reason, many people have traditionally made a
distinction between layers 1 through 4 and layer(s)
above 4:

Transport service provider - The bottom four layers
Transport service user - the upper layer(s)

26 October 2005 EEC484/584

14

Wenbing Zhao

Transport Service Primitives

Connection oriented
Provides reliable service on top of unreliable
network

8

26 October 2005 EEC484/584

15

Wenbing Zhao

Transport Service Primitives

The nesting of TPDUs, packets, and frames

Transport Service Primitives
A state diagram
for a simple
connection
management
scheme.

Transitions
labeled in italics
are caused by
packet arrivals.

The solid lines
show the client's
state sequence.

The dashed lines
show the server's
state sequence.

9

26 October 2005 EEC484/584

17

Wenbing Zhao

Berkeley Sockets
Socket – an endpoint to which connections can be
attached from bottom (OS) and to which processes
can be established from top
Socket primitives for TCP

26 October 2005 EEC484/584

18

Wenbing Zhao

Berkeley Sockets
Common include:
#include <sys/types.h>
#include <sys/socket.h>

Socket: int socket(int domain, int type, int protocol);
Creates a new end point and allocates table space for it
Parameters:

− Communication domain: PF_UNIX, PF_INET, PF_INET6, etc.
− Socket type: SOCK_STREAM, SOCK_DGRAM, etc.
− Protocol: specify a particular protocol to be used with the socket.

Normally only a single protocol exists to support a particular type
within a given protocol family, in which case 0 is used

10

26 October 2005 EEC484/584

19

Wenbing Zhao

Berkeley Sockets

Bind:
int bind(int sockfd, struct sockaddr *my_addr, socklen_t addrlen);

Each socket has name (local address) by which remote user can
send connection request to socket
Bind call attaches the given name (local address my_addr) to the
socket sockfd. my_addr is addrlen bytes long

26 October 2005 EEC484/584

20

Wenbing Zhao

Berkeley Sockets

Listen: int listen(int s, int backlog);
After a socket has been created, listen call allocates
space to queue incoming calls in case several clients try
to connect simultaneously
Listen call is non-blocking

11

26 October 2005 EEC484/584

21

Wenbing Zhao

Berkeley Sockets

Accept:
int accept(int s, struct sockaddr *addr, socklen_t *addrlen);

Accept call is blocking, waits for incoming connection
When TPDU requesting a connection arrives, new socket is
created and file descriptor is returned for it
Server can fork off process or thread to handle connection on
new socket and wait for next connection on original socket
addr is a pointer to a sockaddr structure. It is filled in which
the address of the connecting entity

26 October 2005 EEC484/584

22

Wenbing Zhao

Berkeley Sockets

Connect:
int connect(int sockfd, const struct sockaddr *serv_addr, socklen_t addrlen);

For a connection-based socket such as TCP socket
− Blocks the caller (default setting) and actively starts the

connection process
− When it completes (appropriate TPDU is received from

server), client is unblocked and connection is established

For a datagram socket, the specified server address
is associated with the socket sockfd

12

26 October 2005 EEC484/584

23

Wenbing Zhao

Berkeley Sockets

Send:
ssize_t send(int s, const void *msg, size_t len, int flags);
ssize_t sendto(int s, const void *msg, size_t len, int flags,

const struct sockaddr *to, socklen_t tolen);
ssize_t sendmsg(int s, const struct msghdr *msg, int flags);

Transmit a message msg to another socket
send may be used only when the socket is in a connected
state
For connectionless communication, sendto and sendmsg
should be used instead

26 October 2005 EEC484/584

24

Wenbing Zhao

Berkeley Sockets
Receive:
ssize_t recv(int s, void *buf, size_t len, int flags);
ssize_t recvfrom(int s, void *buf, size_t len, int flags, struct

sockaddr *from, socklen_t *fromlen);
ssize_t recvmsg(int s, struct msghdr *msg, int flags);

All three calls are used to receive messages from a socket.
They return the length of the message on successful
completion
If no messages are available at the socket, the receive calls
wait for a message to arrive, unless the socket is nonblocking
The recv call is normally used only on a connected socket. It
is identical to recvfrom with a NULL from parameter
The recvfrom and recvmsg calls may be used to receive data
on a socket whether or not it is connection-oriented

13

26 October 2005 EEC484/584

25

Wenbing Zhao

Berkeley Sockets

Close
#include <unistd.h>
int close(int fd);

The close call closes a file/socket descriptor, so that
it no longer refers to any file/socket
When both sides have executed close, connection is
released

26 October 2005 EEC484/584

26

Wenbing Zhao

Socket Programming Example
Internet File Server

Code available at
http://authors.phptr.com/tanenbaumcn4/programs/code.zip

Compilation flag in Linux is different from what’s given in
the textbook
setsockopt() on SO_REUSEADDR: “This socket option tells
the kernel that even if this port is busy (in the TIME_WAIT
state), go ahead and reuse it anyway. If it is busy, but with
another state, you will still get an address already in use
error. It is useful if your server has been shut down, and then
restarted right away while sockets are still active on its port.”
quoted from http://www.unixguide.net/network/socketfaq/4.5.shtml

14

26 October 2005 EEC484/584

27

Wenbing Zhao

Socket Programming Example:
Internet File Server (Client)

26 October 2005 EEC484/584

28

Wenbing Zhao

Socket Programming Example:
Internet File Server (Client)

15

26 October 2005 EEC484/584

29

Wenbing Zhao

Socket Programming Example:
Internet File Server (Server)

26 October 2005 EEC484/584

30

Wenbing Zhao

Socket Programming Example:
Internet File Server (Server)

16

26 October 2005 EEC484/584

31

Wenbing Zhao

Transport Protocol
The transport service is implemented by a transport
protocol used between two transport entities
Relationship with data link protocols

Similarities: deal with error control, sequencing, flow
control
Difference: operating environments

Environment of the data link layer Environment of the transport layer

26 October 2005 EEC484/584

32

Wenbing Zhao

Connection Management

Addressing
Connection establishment
Connection release

17

Addressing
Transport Service Access Points (TSAPs) to
which processes can attach and wait for
connections to arrive

26 October 2005 EEC484/584

34

Wenbing Zhao

Addressing - A Scenario
A time of day server process on host 2 attaches itself to TSAP
1522 to wait for an incoming call
An application process on host 1 wants to find out the time-of-
day, so it issues a CONNECT request specifying TSAP 1208 as
the source and TSAP 1522 as the destination
This action results in a transport connection being established
between the application process on host 1 and server 1 on host 2.
The application process then sends over a request for the time.
The time server process responds with the current time
The transport connection is then released

18

26 October 2005 EEC484/584

35

Wenbing Zhao

Connection Establishment

Internet Initial Connection Protocol
Each machine has process server through which
services are requested
Idle process server listens on its TSAP
User issues connection request specifying TSAP
address of process server
Once connection established, user sends message to
process server asking it to run a particular program

26 October 2005 EEC484/584

36

Wenbing Zhao

Connection Establishment

Internet Initial Connection Protocol (cont’d)
Process server chooses idle TSAP

− Spawns new process with that TSAP address
− Sends that TSAP address to user
− Terminates connection
− Returns to listen on its TSAP

User releases connection to process server, connects
to new process
New process executes requested program, terminates
when done

19

26 October 2005 EEC484/584

37

Wenbing Zhao

Connection Establishment
Internet Initial Connection Protocol

26 October 2005 EEC484/584

38

Wenbing Zhao

Connection Establishment

Name Server (directory server)
User sets up connection to Name Server, sends
message specifying service name
Name Server sends back TSAP address
User releases connection with Name Server,
establishes new connection with desired service

When new service is created, it must register with
Name Server giving its service name TSAP address

20

26 October 2005 EEC484/584

39

Wenbing Zhao

Connection Establishment
Problem of delayed duplicates
Possible Solutions

When TSAP address is needed, new unique address is
generated based on current time. When connection is released,
address is discarded forever
Each connection has unique identifier, chosen by initiator of
connection put in each TPDU.

− When connection request arrives, checked against table.
− When connection released, each transport entity updates its table

marking connection obsolete

Tomlinson’s algorithm is not required

26 October 2005 EEC484/584

40

Wenbing Zhao

Coping with Delayed Duplicates
Sequence number based approach

When start, set sequence number = time on processor’s local
clock
If sequence number and time increase indefinitely, no
problem of delayed duplicates

Problem
Memory is finite so sequence numbers and time stamps must
wrap around, so delayed duplicates is a problem
Memory is lost if processor crashes. If processor recovers, it
can send message in its new life with same sequence number
as in previous life

21

26 October 2005 EEC484/584

41

Wenbing Zhao

Coping with Delayed Duplicates

Essential: ensure each packet has finite life
using hop count or time stamp

In practice, a packet’s life time, T, is multiple of its
true life time so that the all its acks are also dead
If we wait a time T after a packet is sent, we can be
sure that all traces of it are now gone

− Requiring T dead time after a crash might not be practical

26 October 2005 EEC484/584

42

Wenbing Zhao

Connection Establishment
Three-way handshake – to
establish a connection, need to
agree on initial sequence numbers
(instead of using clock). Again,
need to prevent delayed duplicates

Host 1 chooses sequence number x,
sends it to host 2 in a control TPDU
Host 2 replies with a control TPDU,
acks x, announces its own sequence
number y
Host 1 sends its first data TPDU,
using x, acks y

22

26 October 2005 EEC484/584

43

Wenbing Zhao

Connection Establishment

Three-way handshake (abnormal scenarios)

