
1

EEC-484/584
Computer Networks

Lecture 16

Wenbing Zhao
wenbing@ieee.org

(Lecture nodes are based on materials supplied by
Dr. Louise Moser at UCSB and Prentice-Hall)

6 November 2005 EEC484/584

2

Wenbing Zhao

Outline
Review

Services provided by transport layer
Connection management

Today’s topics
Connection management (cont’d)
Flow control and buffering
UDP
TCP part 1

Section 6.3 “A simple transport protocol” not required
for exam

2

6 November 2005 EEC484/584

3

Wenbing Zhao

Transport Layer – Design Goals

To provide efficient, reliable, cost-effective
service to the transport layer users
To allow application programs to be written
using a standard set of primitives and to have
programs work on a variety of networks
To enhance the quality of service provided by
the network layer below it

6 November 2005 EEC484/584

4

Wenbing Zhao

Services Provided to the Upper Layers
Transport Entity - The hardware and/or software
within the transport layer that does the work
The transport layer fulfills the key function of
isolating the upper layers from the technology,
design, and imperfections of the subnet

Transport service provider - The bottom four layers
Transport service user - the upper layer(s)

3

6 November 2005 EEC484/584

5

Wenbing Zhao

Berkeley Sockets
Socket – an endpoint to which connections can be
attached from bottom (OS) and to which processes
can be established from top
Socket primitives for TCP

6 November 2005 EEC484/584

6

Wenbing Zhao

Connection Establishment

Problem of Delayed Duplicates
Solution

Sequence number based approach
Ensure each packet has finite life using hop count or
time stamp

4

6 November 2005 EEC484/584

7

Wenbing Zhao

Connection Establishment
Three-way handshake – to
establish a connection, need to
agree on initial sequence numbers
(instead of using clock). Again,
need to prevent delayed duplicates

Host 1 chooses sequence number x,
sends it to host 2 in a control TPDU
Host 2 replies with a control TPDU,
acks x, announces its own sequence
number y
Host 1 sends its first data TPDU,
using x, acks y

6 November 2005 EEC484/584

8

Wenbing Zhao

Connection Release

Asymmetric release
is abrupt and may
result in data loss

5

6 November 2005 EEC484/584

9

Wenbing Zhao

Connection Release
Symmetric release – to avoid data loss, each side
must wait to disconnect until it is sure that other
side is prepared to disconnect

It works when each process has a fixed amount of data
to send and clearly knows when it has sent it
Cannot guarantee no message loss otherwise – two
army problem

Connection Release
Two army problem – the only way to win is if both blue
armies attack. If only one attacks, it will be destroyed

Blue armies communicate by messengers, but messengers can be
caught, and their messages can be lost
If no message loss, wait for message from each army, attack if
none objects
If message loss, impossible to decide whether or not to attack

6

6 November 2005 EEC484/584

11

Wenbing Zhao

Connection Release
In practice, three-way
handshake works most of the
time

Host 1 sends DR (Disconnect
Request), starts timer in case
DR lost
Host 2 sends DC (Disconnect
Confirm), starts timer in case
DC lost
When DC arrives, host 1 sends
ACK, deletes connection
When ACK arrives, host 2
deletes connection

6 November 2005 EEC484/584

12

Wenbing Zhao

Connection Release

If host 1’s ACK is lost
Host 2’s timer saves the
day

7

6 November 2005 EEC484/584

13

Wenbing Zhao

Connection Release

If DC or DR is lost
Host 1 will not receive
DC
Host 1’s timer times out
Host 1 starts over

6 November 2005 EEC484/584

14

Wenbing Zhao

Connection Release
All repeated attempts to
retransmit DR fail
After n tries, host 1
gives up, deletes
connection
Host 2 times out,
deletes connection

8

6 November 2005 EEC484/584

15

Wenbing Zhao

Connection Release
Three-way handshake can fail if initial DR and
n retransmissions are all lost

Host 1 gives up, deletes connection
Host 2 knows nothing about attempts to disconnect,
remains fully active
Result: half-open connection
To kill off half-open connection, need timer
Rule: if no TPDUs arrive in some number of
seconds, disconnect connection

6 November 2005 EEC484/584

16

Wenbing Zhao

Flow Control and Buffering

Like DLL, sliding window to prevent fast transmitter
overwhelming slow receiver
With unreliable network service, sender must buffer all
TPDUs sent until they are acknowledged
With reliable network service

If receiver has plenty of buffer space, sender does not need to
buffer TPDUs sent
If receiver does not have enough buffer space, sender must
buffer all TPDUs sent because ACK from the network layer
only means the network layer at the other end received them

9

6 November 2005 EEC484/584

17

Wenbing Zhao

Organization of Buffers

Same size TPDUs – use pool of equal size
buffers with one TPDU per buffer
Variable size TPDUs

Buffer size = max TPDU size – wasted space within buffers
Buffer size < max TPDU size – some TPDUs need several
buffers
Variable size buffers – better buffer utilization, but more
complex management
One large circular buffer per connection – better buffer
utilization

6 November 2005 EEC484/584

18

Wenbing Zhao

Flow Control and Buffering

Source buffering vs. destination buffering
Low bandwidth bursty traffic

− Acquire buffers dynamically
− Sender must keep TPDU until its is acked
− Better to buffer at sender

High bandwidth traffic
− Better to buffer at receiver
− Receiver should allocate full window of buffers to allow

data to be sent at max speed

10

6 November 2005 EEC484/584

19

Wenbing Zhao

Dynamic Buffer Allocation
Initially, the sender requests certain number of
buffers. The receiver then grants as many of
these as it can afford
Every time the sender transmits a TPDU, it must
decrement its allocation, stopping altogether
when the allocation reaches zero
The receiver then separately piggybacks both
acknowledgements and buffer allocations onto
the reverse traffic

Flow Control and Buffering
Dynamic buffer allocation. The arrows show the direction
of transmission. An ellipsis (…) indicates a lost TPDU

11

6 November 2005 EEC484/584

21

Wenbing Zhao

Crash Recovery

Router crash / recovery – easy to handle
How to cope with server host crash and
recovery

Problem is caused by the non-atomicity of sending
ack and delivery of TPDU
Problem like this in layer N can only be solved by
N+1

6 November 2005 EEC484/584

22

Wenbing Zhao

Crash Recovery
Different combinations of client and server
strategy

12

6 November 2005 EEC484/584

23

Wenbing Zhao

The Internet Transport Protocols: UDP

Introduction to UDP
Remote Procedure Call
The Real-Time Transport Protocol

6 November 2005 EEC484/584

24

Wenbing Zhao

Introduction to UDP
UDP (User Datagram Protocol) - provides a way
for applications to send encapsulated IP
datagrams and send them without having to
establish a connection
It does not do flow control, error control, or
retransmission upon receipt of a bad segment
UDP transmits segments consisting of an 8-byte
header followed by the payload

13

UDP Header

The source port and destination port serve to identify the end
points within the source and destination machines.

When a UDP packet arrives, its payload is handed to the process
attached to the destination port.
This attachment occurs when BIND primitive is used

The UDP length field includes the 8-byte header and the data
The UDP checksum is optional and stored as 0 if not
computed (a true computed 0 is stored as all 1s)

6 November 2005 EEC484/584

26

Wenbing Zhao

Remote Procedure Call
RPC - to make a remote procedure call look as much as
possible like a local one.

In the simplest form, to call a remote procedure, the client
program must be bound with a small library procedure, called
the client stub, that represents the server procedure in the
client's address space.
Similarly, the server is bound with a procedure called the
server stub. These procedures hide the fact that the
procedure call from the client to the server is not local.

RPC and UDP are a good fit when the parameters or
results are smaller than the maximum UDP packet and
when the operation requested is idempotent

14

6 November 2005 EEC484/584

27

Wenbing Zhao

Remote Procedure Call

Steps in making a remote procedure call
The stubs are shaded

6 November 2005 EEC484/584

28

Wenbing Zhao

The Real-Time Transport Protocol
RTP is used in many multimedia applications

E.g., Internet radio, Internet telephony, music-on-demand,
videoconferencing, video-on-demand

RTP runs in user space and normally over UDP
It is a transport protocol that is implemented in the
application layer

Basic function of RTP
Multiplex several real-time data streams onto a single stream
of UDP packets.
The UDP stream can be sent to a single destination
(unicasting) or to multiple destinations (multicasting)

15

6 November 2005 EEC484/584

29

Wenbing Zhao

The Real-Time Transport Protocol

The position of RTP
in the protocol stack Packet nesting

6 November 2005 EEC484/584

30

Wenbing Zhao

The Real-Time Transport Protocol

Each packet sent in an RTP stream is given a number
one higher than its predecessor

This numbering allows the destination to determine if any
packets are missing.
If a packet is missing, the best action for the destination to
take is to approximate the missing value by interpolation

Each RTP payload may contain multiple samples, and
they may be coded any way the application wants

16

6 November 2005 EEC484/584

31

Wenbing Zhao

The Real-Time Transport Protocol

Timestamping - allow the source to associate a
timestamp with the first sample in each packet

The timestamps are relative to the start of the stream
Allows the destination to do a small amount of
buffering and play each sample the right number of
milliseconds after the start of the stream (reduce the
effects of jitter)
Allows multiple streams to be synchronized with
each other

RTP Header

The P bit indicates that the packet has been padded to a multiple of 4
bytes. The last padding byte tells how many bytes were added
The X bit indicates that an extension header is present

The format and meaning of the extension header are not defined. This is an
escape hatch for any unforeseen requirements

The CC field tells how many contributing sources are present, from
0 to 15

17

RTP Header
The M bit is an application-specific marker bit

It can be used to mark the start of a video frame, the start of a word in
an audio channel, etc.

The Payload type field tells which encoding algorithm used
E.g., uncompressed 8-bit audio, MP3, etc.

The Sequence number is a counter that is incremented on each
RTP packet sent
The timestamp is produced by the stream's source to note
when the first sample in the packet was made
The Synchronization source identifier tells which stream the
packet belongs to

It is the method used to multiplex and demultiplex multiple data
streams onto a single stream of UDP packets.

The Contributing source identifiers, if any, are used when
mixers are present in the studio

6 November 2005 EEC484/584

34

Wenbing Zhao

Realtime Transport Control Protocol

RTCP is a sister protocol of RTP
RTCP handles feedback, synchronization, and
the user interface but does not transport any data

Feedback – increase data rate when network
functions well, decrease data rate when network is
congested
Synchronization – handles inter-stream
synchronization. Different streams may use different
clocks

18

6 November 2005 EEC484/584

35

Wenbing Zhao

The Internet Transport Protocols: TCP

Introduction to TCP
The TCP Service Model
The TCP Protocol
The TCP Segment Header
TCP Connection Establishment
TCP Connection Release
TCP Connection Management Modeling

6 November 2005 EEC484/584

36

Wenbing Zhao

Introduction to TCP

TCP – Transmission Control Protocol
Provide a reliable end-to-end byte stream over an unreliable internetwork
Each machine supporting TCP has a TCP transport entity that manages TCP
streams and interfaces to the IP layer
A TCP entity accepts user data streams from local processes, breaks them up
into pieces and sends each piece as a separate IP datagram
When datagrams containing TCP data arrive at a machine, they are given to
the TCP entity, which reconstructs the original byte streams

Best reference book on TCP/IP
TCP/IP Illustrated, Volume 1: The Protocols (By W. Richard Stevens)
http://proquest.safaribooksonline.com/0201633469

19

6 November 2005 EEC484/584

37

Wenbing Zhao

The TCP Service Model
Requires both sender and receiver to create socket
Each socket has socket number (address) consisting of IP
address of host and 16-bit port number
Port is TCP name for TSAP
Connections are identified by the socket identifiers at both ends,
i.e., (socket1, socket2)
Port numbers below 1024 are called well-known ports and are
reserved for standard services

E.g., 21 for FTP, 23 for Telnet

Full-duplex, point-to-point

6 November 2005 EEC484/584

38

Wenbing Zhao

The TCP Service Model

Some assigned ports
Port Protocol Use
21 FTP File transfer
23 Telnet Remote login
25 SMTP E-mail
69 TFTP Trivial File Transfer Protocol
79 Finger Lookup info about a user
80 HTTP World Wide Web

110 POP-3 Remote e-mail access
119 NNTP USENET news

20

6 November 2005 EEC484/584

39

Wenbing Zhao

The TCP Service Model
TCP connection is byte stream, not message stream,
no message boundaries
TCP may send immediately or buffer before sending

PUSH – do not accumulate, send data immediately
URGENT – stop accumulating and send immediately

The 2048 bytes of data
delivered to the application
in a single READ CALL

Four 512-byte segments sent
as separate IP datagrams

6 November 2005 EEC484/584

40

Wenbing Zhao

TCP Protocol
Sequence numbers used for ACKs and also for window
mechanism
Sender and receiver TCP entities exchange data in the
form of segments
Segment – fixed 20 byte header + optional part
followed by data
TCP software decides size of segments, accumulate
data from several writes into 1 segment, or split data
from one write over multiple segments

21

6 November 2005 EEC484/584

41

Wenbing Zhao

TCP Protocol

Uses sliding window for flow control
Resembles go-back-n protocol
No selective ack, or nack, e.g., if 1-1024 and 2049-
3072 are received, can only ack 1025
RFC 1106 propose a solution, using TCP options

6 November 2005 EEC484/584

42

Wenbing Zhao

The TCP Segment Header

22

6 November 2005 EEC484/584

43

Wenbing Zhao

The TCP Segment Header
Source port and destination port: identify local end points of the
connection

Source and destination end points together identify the connection

Sequence number: identify the byte in the stream of data from
sending TCP to receiving TCP that the
first byte of data in this segment represents
Acknowledgement number: the next sequence number that the
sender of the ack expects to receive

Last received seq num + 1

TCP header length – number of 32-bit words in header

6 November 2005 EEC484/584

44

Wenbing Zhao

The TCP Segment Header
URG – indicates urgent pointer field is set
Urgent pointer used to indicate byte offset from current sequence
number at which urgent data can be found
ACK – acknowledgement number is valid
SYN – used to establish a connection

Connection request: ACK = 0, SYN = 1
Connection confirm: ACK=1, SYN = 1

FIN – release a connection, sender has no more data
RST – reset a connection that is confused (due to delayed
duplicate SYNs or host crashes)
PSH – receiver asked to deliver data upon arrival, not wait until
buffer full

23

6 November 2005 EEC484/584

45

Wenbing Zhao

The TCP Segment Header
Window size – variable-sized sliding window used for
flow control, number of bytes that may be sent beyond
byte acked
Checksum – add the header, the data, and the
conceptual pseudoheader as 16-bit words, take 1’s
complement of sum
Options – provides a way to add extra facilities not
covered by the regular header

E.g., communicate buffer sizes during set up

6 November 2005 EEC484/584

46

Wenbing Zhao

The TCP Segment Header

The pseudoheader included in the TCP checksum

24

6 November 2005 EEC484/584

47

Wenbing Zhao

TCP Connection Establishment

Uses 3-way handshake, to establish connection
Client executes CONNECT, specifying IP address
and port to which it wants to connect, max TCP
segment size it is willing to accept, and optional user
data (e.g., password)
The CONNECT primitive sends a TCP segment with
SYN bit on, ACK bit off and the client's initial
sequence number (ISN) and waits for a response
TCP entity at server check if process is listening on
port given in TCP segment header field (i.e., if there
is a process that has done a LISTEN on the port)

6 November 2005 EEC484/584

48

Wenbing Zhao

TCP Connection Establishment

If not, server sends reply with RST bit set to reject
the connection
Else server responds with its own SYN segment
containing the server's initial sequence number, an
ack (client’s ISN plus one) for the client's SYN. A
SYN consumes one sequence number.
The client must acknowledge this SYN from the
server by ACKing the server's ISN plus one

25

6 November 2005 EEC484/584

49

Wenbing Zhao

TCP Connection Establishment

TCP connection establishment
in the normal case

Call collision. The result of these
events is that just one connection
is established, not two because
connections are identified by
their end points

6 November 2005 EEC484/584

50

Wenbing Zhao

TCP Connection Release
Either side can send TCP segment with FIN set, i.e., no
more data to transmit
When FIN is ACKed, that direction is shut down
When both directions are shut down, connection is
released
Normally, 4 TCP segments to release connection:
1 FIN, 1 ACK in each direction
Timers are used to avoid two-army problem

If response to FIN does not arrive in two max packet
lifetimes, sender of FIN releases connection, other side also
times out

26

6 November 2005 EEC484/584

52

Wenbing Zhao

TCP Connection Management Modeling

The states used in the TCP connection
management finite state machine

TCP Connection Management Modeling

TCP connection
management finite state
machine

Heavy solid line - normal
path for a client

Heavy dashed line -
normal path for a server.

Light lines - unusual
events

Each transition is
labeled by the event
causing it and the action
resulting from it,
separated by a slash.

