
1

EEC-484/584
Computer Networks

Lecture 17

Wenbing Zhao
wenbing@ieee.org

(Lecture nodes are based on materials supplied by
Dr. Louise Moser at UCSB and Prentice-Hall)

6 November 2005 EEC484/584

2

Wenbing Zhao

Outline
Review of last lecture
The Internet Transport Protocol: TCP

TCP transmission policy
TCP congestion control
TCP timer management
Wireless TCP and UDP
Transactional TCP

Reminder: Midterm #2, Nov 9 Wednesday
Chapters 5-6
Closed book, closed notes

2

6 November 2005 EEC484/584

3

Wenbing Zhao

Connection Release
In practice, three-way
handshake works most of the
time

Host 1 sends DR (Disconnect
Request), starts timer in case
DR lost
Host 2 sends DC (Disconnect
Confirm), starts timer in case
DC lost
When DC arrives, host 1 sends
ACK, deletes connection
When ACK arrives, host 2
deletes connection

Flow Control and Buffering
Dynamic buffer allocation. The arrows show the direction
of transmission. An ellipsis (…) indicates a lost TPDU

3

6 November 2005 EEC484/584

5

Wenbing Zhao

UDP Header

The source port and destination port serve to identify the end
points within the source and destination machines.

When a UDP packet arrives, its payload is handed to the process
attached to the destination port.
This attachment occurs when BIND primitive is used

The UDP length field includes the 8-byte header and the data
The UDP checksum is optional and stored as 0 if not
computed (a true computed 0 is stored as all 1s)

6 November 2005 EEC484/584

6

Wenbing Zhao

The Internet Transport Protocols: TCP

Introduction to TCP
The TCP Service Model
The TCP Protocol
The TCP Segment Header
TCP Connection Establishment
TCP Connection Release
TCP Connection Management Modeling

4

6 November 2005 EEC484/584

7

Wenbing Zhao

The TCP Service Model
Requires both sender and receiver to create socket
Each socket has socket number (address) consisting of IP
address of host and 16-bit port number
Port is TCP name for TSAP
Connections are identified by the socket identifiers at both ends,
i.e., (socket1, socket2)
Port numbers below 1024 are called well-known ports and are
reserved for standard services

E.g., 21 for FTP, 23 for Telnet

Full-duplex, point-to-point

6 November 2005 EEC484/584

8

Wenbing Zhao

TCP Protocol
Sequence numbers used for ACKs and also for window
mechanism
Sender and receiver TCP entities exchange data in the
form of segments
Segment – fixed 20 byte header + optional part
followed by data
TCP software decides size of segments, accumulate
data from several writes into 1 segment, or split data
from one write over multiple segments

5

6 November 2005 EEC484/584

9

Wenbing Zhao

TCP Protocol

Uses sliding window for flow control
Resembles go-back-n protocol
No selective ack, or nack, e.g., if 1-1024 and 2049-
3072 are received, can only ack 1025
RFC 1106 propose a solution, using TCP options

6 November 2005 EEC484/584

10

Wenbing Zhao

The TCP Segment Header

6

6 November 2005 EEC484/584

12

Wenbing Zhao

TCP Transmission Policy

Window management not directly tied to ACKs
Even if the receiver has acked all the segments sent by the
sender, the sender can send new segments only if the receiver
has room to receive them

What if the receiver’s window drops to 0 ?
Sender may not normally send segments with two exceptions
Exception 1: urgent data may be sent, e.g., to allow user to
kill process running on the remote machine
Exception 2: sender may send a 1-byte segment to make the
receiver re-announce the next byte expected and window size

6 November 2005 EEC484/584

13

Wenbing Zhao

TCP Transmission Policy

Window
management
not directly
tied to ACKs

7

6 November 2005 EEC484/584

14

Wenbing Zhao

TCP Transmission Policy

To improve performance
Sender not required to transmit data as soon as gets
data from application
Receiver not required to transmit ACKs immediately

6 November 2005 EEC484/584

15

Wenbing Zhao

TCP Transmission Policy
Problems when the sender sends 1 byte at a time,
e.g., telnet/rsh/ssh program

Sender sends 1 byte (e.g., typed one character in a editor)
A segment of 1 byte is sent to the remote machine (41-byte
IP packet)
Remote machine acks immediately (40-byte IP packet)
Editor (in remote machine) program reads the received 1 byte,
a windows update segment is sent to user (40-byte IP packet)
Editor program echoes the 1 byte received to the user
terminal (41-byte IP packet)
In all, 162 bytes of bandwidth used, 4 segments are sent for
each character typed

8

6 November 2005 EEC484/584

16

Wenbing Zhao

TCP Transmission Policy
Nagle’s algorithm: solution for the 1-byte-at-a-time
sender problem

When sender application passes data to TCP one byte at a time
− Send first byte
− Buffer the rest until first byte ACKed
− Then send all buffered bytes in one TCP segment
− Start buffering again until all ACKed

Implemented widely in TCP, can be disabled/enabled by using
socket options
For some application, it is necessary to disable the Nagle’s
algorithm, e.g., X Windows program over Internet, to avoid
erratic mouse movement, etc.

6 November 2005 EEC484/584

17

Wenbing Zhao

TCP Transmission Policy
Silly window syndrome:
when receiver application
accepts data from TCP
1 byte at a time

9

6 November 2005 EEC484/584

18

Wenbing Zhao

TCP Transmission Policy
Clark’s algorithm (to avoid the silly window
syndrome)

Receiver should not send window update until it can handle
max segment size it advertised when connection established
or its buffer is half empty, whichever is smaller
Sender should wait until it has accumulated enough space in
window to send full segment or one containing at least half of
receiver’s buffer size

Nagle’s algorithm and Clark’s algorithm are
complementary

6 November 2005 EEC484/584

19

Wenbing Zhao

TCP Congestion Control
Two limiting factors on sending rate

Limited network capacity: problem of congestion control
Limited receiver capacity: problem of flow control

Congestion control – slow down data rate by
dynamically changing window size
To detect congestion, use time outs

Assumes the loss of a packet is caused by congestion rather
than corruption during transmission – applicable for wired
network only
Repeated acks for same sequence number is also used to
detect congestion

10

6 November 2005 EEC484/584

20

Wenbing Zhao

TCP Congestion Control
To control the sending rate, each sender
maintains two windows

Window that receiver granted (flow control)
Sender congestion window
Number of bytes sender can transmit = minimum of
two window sizes

6 November 2005 EEC484/584

21

Wenbing Zhao

TCP Congestion Control

A fast network feeding
a low capacity receiver

A slow network feeding
a high-capacity receiver

11

6 November 2005 EEC484/584

22

Wenbing Zhao

Slow Start Algorithm
When connection is established, sender initializes
congestion window size to size of max segment in use
on connection, it then sends one max segment
If segment is acked before timer goes off, it increases
congestion window size by max segment size, it then
sends two segments
Doubling each time (congestion window size is
increased exponentially) until timeout occurs or
receiver’s window size is reached

6 November 2005 EEC484/584

23

Wenbing Zhao

Internet Congestion Control Algorithm

Three parameters
Receiver’s window size
Sender’s congestion window size
Threshold, initially 64KB

When timeout occurs,
Threshold is set to half current congestion window size
Congestion window size is set to one max segment size

Use slow start algorithm but stop when threshold is
reached, then increase congestion window size linearly

12

TCP Congestion Control

An example of the Internet congestion algorithm

6 November 2005 EEC484/584

25

Wenbing Zhao

TCP Congestion Control
Fast retransmission algorithm

An ACK is generated and sent immediately when an out-of-
order segment is received to notify the sender
When 3 or more duplicated ACKs are received in a row, it is
taken as strong evidence that a segment has been lost
The segment that appears to have been lost is retransmitted
before the retransmission timer expires

Fast recovery algorithm
On fast retransmission, slow start algorithm is not used
Why fast recovery ?

− Data are still flowing between two ends

13

6 November 2005 EEC484/584

26

Wenbing Zhao

Fast Recovery Algorithm
When third duplicate ACK is received

Set threshold to half the current congestion window
Set congestion window to (threshold + 3 × segment size)

Each time another duplicate ACK arrives
Increment congestion window by the segment size
Transmit a packet (if allowed by new congestion window)

When the next ACK arrives that acknowledges new
data, set congestion window to threshold value

This should be the ACK of the retransmission from step 1
Additionally, this ACK should acknowledge all the
intermediate segments sent between the lost packet and the
receipt of the first duplicate ACK

6 November 2005 EEC484/584

28

Wenbing Zhao

TCP Timer Management
Retransmission timer (most important)

When TCP segment is sent, retransmission timer is started
If segment is acked before timer expires, timer is stopped
Else, segment is retransmitted, timer is restarted

Question: how long should timeout be?
If too short, unnecessary retransmissions
If too long, long retransmission delay when packet is lost
As congestion occurs, mean and variance can change rapidly

Solution: use dynamic algorithm that adjusts timeout
based on continuous measurement of network
performance

14

6 November 2005 EEC484/584

29

Wenbing Zhao

TCP Timer Management

Probability density of ACK
arrival times in the data link layer

Probability density of
ACK arrival times for TCP

6 November 2005 EEC484/584

30

Wenbing Zhao

TCP Timer Management
The algorithm generally used by TCP is due to
Jacobson (1988)
For each connection, TCP maintains a variable, RTT,
that is the best current estimate of the round-trip time to
the destination in question
RTT is updated according to formula
RTT = αRTT + (1-α)M

M is the newly measured roundtrip time
α is a smoothing factor that determines how much weight is
given to the old value. Typically α = 7/8

15

6 November 2005 EEC484/584

31

Wenbing Zhao

TCP Timer Management
Timeout = βRTT

Constant value was inflexible because it failed to respond
when the variance went up
Need another smoothed variable, D, the deviation.
Whenever an acknowledgement comes in, the difference
between the expected and observed values, | RTT - M |, is
computed.
A smoothed value of this is maintained in D by the formula
D = αD + (1-α)|RTT – M|
Time out is set to RTT + 4×D

6 November 2005 EEC484/584

32

Wenbing Zhao

TCP Timer Management

How to update RTT if there is a timeout?
Karn’s algorithm: The timeout is doubled on each
failure until the segments get through the first time

− Do not update RTT on any segments that have been
retransmitted

16

6 November 2005 EEC484/584

33

Wenbing Zhao

Persistence Timer
Persistence timer – used on the sending side. Designed to
prevent the following deadlock

The receiver sends an acknowledgement with a window size of 0, telling
the sender to wait.
Later, the receiver updates the window, but the packet with the update is
lost.
Now both the sender and the receiver are waiting for each other to do
something.

When the persistence timer goes off, the sender transmits a
probe to the receiver.
The response to the probe gives the window size. If it is still zero,
the persistence timer is set again and the cycle repeats. If it is
nonzero, data can now be sent

6 November 2005 EEC484/584

34

Wenbing Zhao

TCP Timer Management
Keepalive timer - when a connection has been idled
for a long time, the keepalive timer may go off to cause
one side to check whether the other side is still there. If
it fails to respond, the connection is terminated
The last timer used on each TCP connection is the one
used in the TIMED WAIT state while closing

It runs for twice the maximum segment lifetime to make
sure that when a connection is closed, all packets created by
it have died off

17

6 November 2005 EEC484/584

35

Wenbing Zhao

Wireless TCP and UDP
The correctness of TCP protocol is independent of the
technology of the underlying network layer. However, it
matters a lot on the performance of TCP
The principal problem is the congestion control algorithm

If there is a timeout (or repeated ACKs), a network congestion is
assumed by TCP, consequently, the sending rate is reduced
sharply
In wireless network, the probability of packet loss is significant
due to unreliable transmission link
In effect, when a packet is lost on a wired network, the sender
should slow down. When one is lost on a wireless network, the
sender should retransmit

6 November 2005 EEC484/584

36

Wenbing Zhao

Wireless TCP
Indirect TCP - split the TCP connection into two
separate connections.

The first connection goes from the sender to the base station.
The second one goes from the base station to the receiver.
The base station simply copies packets between the connections
in both directions

18

6 November 2005 EEC484/584

37

Wenbing Zhao

Problems with Indirect TCP

Violate TCP semantics:
Since each part of the connection is a full TCP
connection, the base station acknowledges each TCP
segment in the usual way
Receipt of an acknowledgement by the sender does
not mean that the receiver got the segment, only that
the base station got it

6 November 2005 EEC484/584

38

Wenbing Zhao

Wireless TCP – Using Snooping Agent
A snooping agent runs in the base station. It observes
and caches TCP segments going out to the mobile host
and ACKs coming back from mobile

It uses a timer with short timeout for retransmission. The
timer is started when it sees a segment sent to the mobile
It suppresses duplicated ACKs from mobile
It sends NACK for specific segments if a gap in sequence
number is seen for incoming segments

Drawback
Cannot completely avoid the sender from invoking the
congestion control algorithm if wireless link is too lossy

19

6 November 2005 EEC484/584

39

Wenbing Zhao

Wireless UDP
Main trouble is that programs use UDP expecting it to
be highly reliable

They know that no guarantees are given, but they still expect
it to be near perfect
In a wireless environment, UDP will be far from perfect
For programs that can recover from lost UDP messages but
only at considerable cost, going from an environment where
messages theoretically can be lost but rarely are, to one in
which they are constantly being lost can result in a
performance disaster

Transactional TCP
RPC using TCP might not be efficient
T/TCP - an experimental TCP variant

Modify the standard connection setup sequence slightly to
allow the transfer of data during setup

