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Performance Problems 
in Computer Networks

Congestion - caused by temporary resource 
overloads 

If more traffic suddenly arrives at a router than the 
router can handle, congestion will build up and 
performance will suffer

Structural resource imbalance
For example, if a gigabit communication line is 
attached to a low-end PC, the poor CPU will not be 
able to process the incoming packets fast enough 
and some will be lost
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Performance Problems 
in Computer Networks

Broadcast storm - overloads can also be synchronously 
triggered

For example, if a TPDU contains a bad parameter (e.g., the port for 
which it is destined), in many cases the receiver will thoughtfully send 
back an error notification (recall the ICMP packets)

Lack of system tuning
For example, if a machine has plenty of CPU power and memory but
not enough of the memory has been allocated for buffer space, 
overruns will occur and TPDUs will be lost

Networks with high bandwidth-delay product (bandwidth X 
roundtrip time)

E.g., Gigabit Ethernet
Receiver’s window should be at least as large as bandwidth-delay

Performance Problems in Computer Networks

The state of transmitting one megabit from San Diego to Boston

At t = 0 After 500 μsec

After 20 msec after 40 msec
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Network Performance Measurement

The basic loop for improving network 
performance

Measure relevant network parameters, performance
Try to understand what is going on
Change one parameter
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Network Performance Measurement

Where measurements take place - both physically and 
in the protocol stack
What to measure ?

How long activity takes - start a timer when beginning some 
activity and stop the timer at the end of the activity

− E.g., knowing how long it takes for a TPDU to be acknowledged 

How often some event has happened – use counters
− E.g., number of lost TPDUs

How many / how much
− E.g., the number of bytes processed in a certain time interval
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Network Performance Measurement
Avoid pitfalls during performance measurements

Make sure that the sample size is large enough
Make sure that the samples are representative
Be careful when using a coarse-grained clock
Be sure that nothing unexpected is going on during 
your tests
Caching can wreak 
havoc with measurements
Understand what you 
are measuring
Be careful about 
extrapolating the results
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System Design for Better Performance

Rules of thumb
CPU speed is more important than network speed
Reduce packet count to reduce software overhead
Minimize context switches
Minimize copying
You can buy more bandwidth but not lower delay
Avoiding congestion is better than recovering from it
Avoid timeouts



6

8 November 2005 EEC484/584

11

Wenbing Zhao

System Design for Better Performance

Four context switches to handle one packet
with a user-space network manager

Fast TPDU Processing
TPDU processing overhead has two components: 
overhead per TPDU and overhead per byte
The key to fast TPDU processing is to separate out the 
normal case (one-way data transfer) and handle it 
specially
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Fast TPDU Processing - Sending Side
Headers of consecutive data TPDUs are almost the same. To 
take advantage of this fact, a prototype header is stored within
the transport entity
At the start of the fast path, it is copied to a scratch buffer, word 
by word
Those fields that change from TPDU to TPDU are then 
overwritten in the buffer
A pointer to the full TPDU header plus a pointer to the user data 
are then passed to the network layer
The network layer could use similar approach for fast processing
and minimize copying
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Fast TPDU Processing - Sending Side

In both cases, the shaded fields are taken from the 
prototype without change

TCP header IP header
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Fast TPDU Processing - Receiving Side
Once a TPDU is received, the connection record is located from the 
hash table
The TPDU is then checked to see if it is a normal one

State is ESTABLISHED and neither side is closing, TPDU is expected

The fast path then updates the connection record and copies the 
data to the user
The general scheme of first making a quick check to see if the 
header is what is expected and then having a special procedure 
handle that case is called header prediction
Many TCP implementations use it
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Fast TPDU Processing
Two other areas where major performance gains are 
possible 

Buffer management - avoiding unnecessary copying
Timer management - nearly all timers set do not expire

− They are set to guard against TPDU loss, but most TPDUs arrive 
correctly and their acknowledgements also arrive correctly. 

− It is important to optimize timer management for the case of timers 
rarely expiring.

Timer management schemes:
A linked list of timer events sorted by expiration time
Timing wheel
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Fast TPDU Processing
Timing wheel – An array for 
timer management. A more 
efficient approach if 
maximum timer interval is 
bounded and known in 
advance

Each slot corresponds to one 
clock tick
To add a timer, an entry is made 
into an appropriate slot   
To cancel a timer, the 
corresponding slot is located 
and the entry is removed
When the clock ticks, the 
current time pointer is advanced 
by one slot (circularly)
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Protocols for Gigabit Networks
Problems of old network protocols on Gigabit networks

Sequence number recycling
− The assumption that the time to use up the entire sequence space

would greatly exceed the maximum packet lifetime no longer hold 
true

− Many protocols use 32-bit sequence numbers. It take as little as 34 
sec to cycle through, well under the 120 sec maximum packet lifetime 
on the Internet

Communication speeds have improved much faster than 
computing speeds

− Fast network traffic can easily saturate CPU
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Protocols for Gigabit Networks
Problems of old network protocols on Gigabit networks 
(continued)

go back n protocol performs poorly on lines with a large 
bandwidth-delay product
Gigabit lines are fundamentally different from megabit lines 
in that long gigabit lines are delay limited rather than 
bandwidth limited
For many gigabit applications, such as multimedia, the 
variance in the packet arrival times is as important as the 
mean delay itself

Protocols for Gigabit Networks
Time to transfer and acknowledge a 1-megabit file 
over a 4000-km line

Latency is determined by the speed of light for  high enough 
bandwidth
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Protocols for Gigabit Networks: 
Design Principle

Design for speed, not for bandwidth optimization
Feedback issues

Use rate-based protocol in stead of sliding window 
protocol
Resource reservation based protocol in stead of slow 
start algorithm

Header should contain as few fields as possible, 
and each field should be large enough
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Protocols for Gigabit Networks: 
Design Principle

The header and data should be separately 
checksummed

First, to make it possible to checksum the header but 
not the data
Second, to verify that the header is correct before 
copying the data into user space
It is desirable to do the data checksum at the time the 
data are copied to user space
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Protocols for Gigabit Networks: 
Design Principle

The maximum data size should be large, to 
permit efficient operation even in the face of 
long delays 

1500 bytes is too small

Send a normal amount of data along with the 
connection request
On protocol software

concentrating on the successful case
Minimize copying
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Review for Midterm #2

Chapter 5: Network layer
Chapter 6: Transport layer
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Network Layer

Main concern: end-to-end transmission
Perhaps over many hops at intermediate nodes

Network Layer Design Issues
Services Provided to the Transport Layer

− Routing
− Congestion control
− Internetworking – connection of multiple networks

Goals – services should
− Be independent of subnet technologies
− Shield transport layer from number, type, topology of subnets
− Uniform network addresses across LAN/WAN
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Routing Algorithms

Sink Tree
Shortest Path Routing
Flooding
Distance Vector Routing
Link State Routing
Broadcast Routing
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Sink Tree
Sink tree – the set of optimal routes from all sources 
to a given destination form a tree rooted at the 
destination

A subnet A sink tree for router B
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Shortest Path Routing
Shortest in what sense?

Number of hops, geographical distance, least queueing and 
transmission delay

Dijkstra’s Algorithm
Each node labeled with distance from source node along best 
known path
Initially, no paths known all nodes labeled with infinity
As algorithm proceeds, labels may change reflecting shortest 
path
Label may be tentative or permanent, initially, all tentative
When label represents shortest path from source to node, 
label becomes permanent
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Flooding
Idea: every incoming packet is sent out on every outgoing line 
except the one it arrived on
Adv: flooding always chooses shortest path, no other 
algorithm has shorter delay
Disadv: generates lots of duplicates
Methods to damper this effect

Header of each packet has hop counter that is decremented at each hop; 
packet discarded when counter reaches 0
Source router puts sequence number in each packet it receives from its 
hosts

− Each router has list for each source router telling which sequence numbers 
originating at that source have already been seen

− Each list augmented with counter k, meaning all sequence numbers up 
through k have been seen

− If packet is duplicate, router discards it
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Distance Vector Routing

Also called Bellman-Ford or Ford-Fulkerson. Used in ARPANET
Idea: each router maintains a table (a vector), giving best known 
distance to each destination and which line to use to get there

Table is updated by exchanging info with neighbors
Table contains one entry for each router in network with

− Preferred outgoing line to that destination
− Estimate of time or distance to that destination

Once every T msec, router sends to each neighbor a list of estimated delays 
to each destination and receives same from those neighbors
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Link State Routing –
Used in Internet

Idea: Each router must do the following:
Discover its neighbors, learn their network address
Measure the delay or cost to each of its neighbors
Construct a packet telling all it has just learned
Send this packet to all other routers
Compute the shortest path to every other router
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Building Link State Packets
Packets contain identity of sender, sequence number, 
age, list of neighbors and delay to that neighbor
When are link state packets constructed?

Periodically at regular intervals
When link or nodes goes down or comes back

A subnet The link state packets for this subnet
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Possible Strategies for Broadcast Routing

Source sends separate copy of packet to all 
destinations
Flooding
Multi-destination routing
Spanning tree – the sink tree (no loops) rooted at 
source that includes all routers. A router copies an 
incoming broadcast packet onto all the spanning tree 
lines except the one it arrived on
Reverse path forwarding: if router gets packet on 
optimal (reverse) path to root, then it forwards the 
packet
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Warning Bit

Signal the warning state by setting a special bit 
in the packet’s header

When packet arrived at its destination, transport 
entity copied the bit into the next ack sent back to 
the source
The source then cut back on traffic
Every router along the path could set the warning bit, 
traffic increases only when no router is in trouble
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Choke Packets
Tell the source directly to reduce traffic

Each router monitors utilization of each of its output lines
When utilization becomes greater than threshold, output line 
enters warning state
For each newly arriving packet, check if output line in 
warning state
If so, router sends choke packet back to source giving it the 
destination found in the packet
Packet is tagged so does not generate any more choke packets 
and forwarded as usual
When source receives choke packet, it must reduce traffic to 
specific destination

Hop-by-Hop 
Choke Packets
The router that receives a 
choke packet must reduce 
the flow to its downstream 
router

This is achieved by 
allocating more buffer to the 
incoming flow
The router also passes the 
choke packet to its upstream 
router

A choke packet that 
affects only the source

A choke packet 
that affects each 
hop it passes 
through
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Load Shedding

RED - Random Early Detection
Having routers drop packets before situation becomes 
hopeless
Routers maintain a running average of their queue lengths
When average queue length on some line exceeds a threshold, 
the line is said to be congested and action is taken
Just discard selected packet and not report it.
Sender respond to lost packets by slowing down transmission 
rate
Appropriate for wired networks

The Leaky Bucket Algorithm
No matter what rate water enters the bucket, water flows out 
of the bucket at constant rate ρ (provided bucket is not empty)

When bucket is full, water slops over sides and is lost
Analogous to finite queue in network switch
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The Token Bucket Algorithm
The bucket hosts tokens in 
stead of data packets
A token represents a packet or 
k bytes
Tokens are added into the 
bucket with a constant rate
Bucket has certain capacity. 
If bucket is full, new tokens 
are thrown away
A data packet can be 
transmitted only if enough 
tokens present in bucket
Token bucket algorithm 
allows some burstiness
because a full bucket of 
tokens saved can be used all 
at once
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Tunneling
Tunneling – common solution for 
interconnecting multiple heterogeneous 
networks when the source and destination 
hosts are on the same type of network

Multiprotocol router extracts the IP packet, inserts it 
in the payload field of the WAN network layer 
packet, and addresses the latter to the WAN address 
of the destination multiprotocol router
Destination multiprotocol router removes the IP 
packet and sends it the destination host
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The IP Protocol
The IPv4 (Internet Protocol) header
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CIDR – Classless InterDomain Routing
Shortage of IP addresses caused by the classful addressing

A class is obviously too large for any organization
C class is too small (only 256 addresses available)
B class is requested and allocated, but it is still too large for most 
organizations => many IP addresses are wasted

Solution – for the remaining IP addresses, CIDR is used
Allocate remaining IP addresses in variable-sized blocks, without regard to 
the classes
The starting address must fall on the boundary of the block size
E.g., if a site needs, say, 2000 addresses, it is given a block of 2048 addresses 
on a 2048-byte boundary
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Routing with CIDR
Each routing table is extended by giving it a 32-bit mask
A single routing table for all networks consisting of an array of 
(IP address, subnet mask, outgoing line) triples
When a packet comes in, its destination IP address is first 
extracted
Then, the routing table is scanned entry by entry, masking the 
destination address and comparing it to the table entry looking 
for a match
It is possible that multiple entries (with different subnet mask
lengths) match, in which case the longest mask is used

E.g., if there is a match for a /20 mask and a /24 mask, the /24 mask is 
used
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NAT – Network Address Translation

Temporary solution – network address translation
Each company or family is assigned a single IP address (or a 
small number of them)
Within the company, every computer gets a unique private IP 
address, which is used for routing intramural traffic
When a packet exits the company and goes to the ISP, an 
address translation takes place
Three ranges of IP addresses have been declared as private:

− 10.0.0.0 – 10.255.255.255 (16,777,216 hosts)
− 172.16.0.0 – 172.31.255.255/12 (1,048,576 hosts)
− 192.168.0.0 – 192.168.255.255/16 (65,536 hosts)
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NAT – What about the Incoming Traffic?
Solution is based on the assumption all traffic is TCP/UDP
TCP/UDP has two port fields, one for source port, the other for 
destination port, each 16 bits wide
The source port is used as an index to an internal table maintained 
by the NAT box
The internal sender’s private IP and original port info are stored in 
the table
When the reply comes back, it will carry the index as the 
destination port, the NAT box then translates the address back
For both outgoing and incoming address translations, the 
TCP/UDP and IP header checksums are recomputed
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Internet Control Protocols
ICMP – Internet Control Message Protocol
ARP – find the mapping of IP addresses to data link layer 
addresses
RARP - This protocol allows a newly-booted diskless-
workstation (e.g., X terminal) to broadcast its Ethernet 
address and ask for its IP address

RARP server responds to a RARP request with the assigned IP 
address

BOOTP– uses UDP
DHCP - Allows both manual IP address assignment and 
automatic assignment. DHCP has largely replaced RARP and 
BOOTP



24

8 November 2005 EEC484/584

47

Wenbing Zhao

Internet Routing Protocols

OSPF
Within area, each router has same link state database
Each router periodically floods LINK STATE 
UPDATE packets to each of its adjacent routers
Each router constructs the graph for its area and 
computes shortest path
Backbone router also does:

Accepts info from area border routers
Computes best route from each area border router to every 
other area border router
This info propagated back to area border routers which 
advertise it within their areas

Using this info, router about to send interarea packet 
selects best exit router to backbone
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Exterior Gateway Routing Protocol
Border Gateway Protocol (BGP)

Used between autonomous systems 
Main concerns: politics, security, economic
Uses distance vector routing except keeps track of exact path 
instead of cost to destination and periodically tells its neighbors 
that path

8 November 2005 EEC484/584

50

Wenbing Zhao

Transport Layer
Transport Entity - The hardware and/or software 
within the transport layer that does the work. The 
transport entity can be located in

Operating system kernel, a separate user process, a library 
package bound into network applications, or conceivably on 
the network interface card

The transport layer fulfills the key function of isolating 
the upper layers from the technology, design, and 
imperfections of the subnet

Transport service provider - The bottom four layers 
Transport service user - the upper layer(s)
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The TCP Service Model
Requires both sender and receiver to create socket
Each socket has socket number (address) consisting of IP 
address of host and 16-bit port number
Port is TCP name for TSAP
Connections are identified by the socket identifiers at both ends, 
i.e., (socket1, socket2)
Port numbers below 1024 are called well-known ports and are 
reserved for standard services

E.g., 21 for FTP, 23 for Telnet

Full-duplex, point-to-point
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TCP Protocol
Sequence numbers used for ACKs and also for window 
mechanism
Sender and receiver TCP entities exchange data in the 
form of segments
Segment – fixed 20 byte header + optional part  
followed by data
TCP software decides size of segments, accumulate 
data from several writes into 1 segment, or split data 
from one write over multiple segments
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TCP Protocol

Uses sliding window for flow control
Resembles go-back-n protocol
No selective ack, or nack, e.g., if 1-1024 and 2049-
3072 are received, can only ack 1025
RFC 1106 propose a solution, using TCP options
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The TCP Segment Header
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TCP Connection Release
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TCP Transmission Policy
Nagle’s algorithm: solution for the 1-byte-at-a-time 
sender problem

When sender application passes data to TCP one byte at a time
− Send first byte 
− Buffer the rest until first byte ACKed
− Then send all buffered bytes in one TCP segment
− Start buffering again until all ACKed

Implemented widely in TCP, can be disabled/enabled by using 
socket options
For some application, it is necessary to disable the Nagle’s 
algorithm, e.g., X Windows program over Internet, to avoid 
erratic mouse movement, etc.
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TCP Transmission Policy
Clark’s algorithm (to avoid the silly window 
syndrome)

Receiver should not send window update until it can handle 
max segment size it advertised when connection established 
or its buffer is half empty, whichever is smaller
Sender should wait until it has accumulated enough space in 
window to send full segment or one containing at least half of 
receiver’s buffer size

Nagle’s algorithm and Clark’s algorithm are 
complementary
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Slow Start Algorithm
When connection is established, sender initializes 
congestion window size to size of max segment in use 
on connection, it then sends one max segment
If segment is acked before timer goes off, it increases 
congestion window size by max segment size, it then 
sends two segments
Doubling each time (congestion window size is 
increased exponentially) until timeout occurs or 
receiver’s window size is reached
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Internet Congestion Control Algorithm

Three parameters
Receiver’s window size
Sender’s congestion window size
Threshold, initially 64KB

When timeout occurs, 
Threshold is set to half current congestion window size
Congestion window size is set to one max segment size

Use slow start algorithm but stop when threshold is 
reached, then increase congestion window size linearly
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Fast Retransmission and Recovery
Fast retransmission algorithm

An ACK is generated and sent immediately when an out-of-
order segment is received to notify the sender
When 3 or more duplicated ACKs are received in a row, it is 
taken as strong evidence that a segment has been lost
The segment that appears to have been lost is retransmitted 
before the retransmission timer expires

Fast recovery algorithm
On fast retransmission, slow start algorithm is not used
Why fast recovery ?

− Data are still flowing between two ends



31

8 November 2005 EEC484/584

61

Wenbing Zhao

Fast Recovery Algorithm
When third duplicate ACK is received

Set threshold to half the current congestion window
Set congestion window to (threshold + 3 × segment size)

Each time another duplicate ACK arrives
Increment congestion window by the segment size 
Transmit a packet (if allowed by new congestion window)

When the next ACK arrives that acknowledges new 
data, set congestion window to threshold value

This should be the ACK of the retransmission from step 1
Additionally, this ACK should acknowledge all the 
intermediate segments sent between the lost packet and the 
receipt of the first duplicate ACK
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TCP Timer Management
The algorithm generally used by TCP is due to 
Jacobson (1988)
For each connection, TCP maintains a variable, RTT, 
that is the best current estimate of the round-trip time to 
the destination in question
RTT is updated according to formula 
RTT = αRTT + (1-α)M

M is the newly measured roundtrip time
α is a smoothing factor that determines how much weight is 
given to the old value. Typically α = 7/8
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TCP Timer Management
Timeout = βRTT

Constant value was inflexible because it failed to respond when the 
variance went up. Need another smoothed variable, D, the deviation
Whenever an acknowledgement comes in, the difference between the
expected and observed values, | RTT - M |, is computed. 
A smoothed value of this is maintained in D by the formula 
D = αD + (1-α)|RTT – M|
Time out is set to RTT + 4×D

Karn’s algorithm: The timeout is doubled on each failure until 
the segments get through the first time

Do not update RTT on any segments that have been retransmitted
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TCP Timer Management
Persistence timer – used on the sending side. Designed to 
prevent the deadlock caused by the loss of window update packet 
when receiver’s window is 0
Keepalive timer - when a connection has been idled for a long 
time, the keepalive timer may go off to cause one side to check 
whether the other side is still there. If it fails to respond, the 
connection is terminated. 
The last timer used on each TCP connection is the one used in the 
TIMED WAIT state while closing. It runs for twice the maximum 
segment lifetime to make sure that when a connection is closed, 
all packets created by it have died off


