
1

EEC-484/584
Computer Networks

Lecture 5

Wenbing Zhao
wenbing@ieee.org

(Lecture nodes are based on materials supplied by 
Dr. Louise Moser at UCSB and Prentice-Hall)

15 September 2005 EEC484/584

2

Wenbing Zhao

Outline

Review of lecture 4
Data Link layer

Data Link Layer Design Issues
Error Detection and Correction



2

15 September 2005 EEC484/584

3

Wenbing Zhao

Physical Layer

Public switched telephone network
Modems, Codecs, DSL, FDM, TDM

Mobile telephone system
CDMA

Cable television

15 September 2005 EEC484/584

4

Wenbing Zhao

Modems
Modem – device used between digital 
computer and analog telephone system. It 
converts digital bit stream into modulated 
analog signal and vice versa
Codec – inverse of a modem. It is a device 
that converts a continuous analog signal into 
a digital bit stream
Baud – number of samples per second. 
During each baud, one symbol is sent. One 
symbol can carry multiple bits



3

15 September 2005 EEC484/584

5

Wenbing Zhao

Modems
(a) A binary signal
(b) Amplitude 

modulation
(c) Frequency 

modulation
(d) Phase modulation

15 September 2005 EEC484/584

6

Wenbing Zhao

Modems

(a) QPSK: Quadrature Phase Shift Keying
(b) QAM-16: Quadrature Amplitude Modulation
(c) QAM-64.

Constellation Diagrams – legal combinations 
of amplitude and phase



4

15 September 2005 EEC484/584

7

Wenbing Zhao

Trunks and Multiplexing

Idea: multiplex many conversations over single 
physical channel with high bandwidth
FDM – Frequency Division Multiplexing

Frequency spectrum divided into logical channel
Each user has exclusive use of own frequency band

TDM – Time Division Multiplexing
Time divided into slots each user has time slot
Users take turns in round robin fashion

15 September 2005 EEC484/584

8

Wenbing Zhao

Analog to Digital Modulation
Encoding systems for digitizing analog signals – use 
statistical techniques to reduce number of bits/channel 
(signal changes slowly compared to sampling 
frequency)

Differential pulse code modulation – output difference 
between current value and previous value rather than 
digitized amplitude
Predictive encoding – Extrapolate previous few values to 
predict next value. Encode difference between actual signal 
and predicted one
Delta modulation – Requires each sampled value to differ 
from its predecessor by +/-1



5

15 September 2005 EEC484/584

9

Wenbing Zhao

Data Link Layer Design Issues
Services Provided to the Network Layer

Point-to-point, source-to-destination
Framing

Physical bit stream divided up into frames
Error Control

Acknowledgements (acks) and negative acks
(nacks)
Sender has timer –within timeout get ack, or send 
again
If frame transmitted multiple times, receiver may 
get several copies - Use sequence numbers

15 September 2005 EEC484/584

10

Wenbing Zhao

Data Link Layer Design Issues

Flow Control
Sender may transmit frames faster than receiver can 
receive them
Throttle sender so sends no faster than receiver can 
receive them



6

15 September 2005 EEC484/584

11

Wenbing Zhao

Functions of the Data Link Layer

Provide service interface to the network layer
Virtual source-to-destination communication 
channel

Dealing with transmission errors
Regulating data flow

Slow receivers not swamped by fast senders

15 September 2005 EEC484/584

12

Wenbing Zhao

Functions of the Data Link Layer

Relationship between packets and frames



7

15 September 2005 EEC484/584

13

Wenbing Zhao

Services Provided to Network Layer

(a) Virtual communication (b) Actual communication

15 September 2005 EEC484/584

14

Wenbing Zhao

Services Provided to Network Layer

Placement of the data link protocol
When frame arrives at router

− hardware verifies checksum
− Passes frame to DL layer software

DL layer software checks if frame is one expected
− If so, gives packet in payload of frame to routing 

software
Routing software chooses appropriate outgoing line 
passes packet back down to DL layer software
DL layer software transmits it



8

15 September 2005 EEC484/584

15

Wenbing Zhao

Services Provided to Network Layer

15 September 2005 EEC484/584

16

Wenbing Zhao

Services Provided to Network Layer

Types of service
Unacked connectionless

− Ok if low error rate, real time applications

Acked connectionless
Connection-oriented

− Each frame sent is received exactly once in right order



9

15 September 2005 EEC484/584

17

Wenbing Zhao

Services Provided to Network Layer

Three phases of connection-oriented
Connection established, variables and counters 
initialized
Frames transmitted
Connection released, buffers, variables, etc. freed

15 September 2005 EEC484/584

18

Wenbing Zhao

Framing

DL layer divides physical bit stream into frames
Checksum computed by source included in 
frame
Checksum recomputed by destination and 
checked against checksum included in the frame

Discard/recover bad frame, notify source



10

15 September 2005 EEC484/584

19

Wenbing Zhao

How Does DL Layer Form Frames?

Insert time gaps between frames
Too risky, no timing guarantees, not used

Character count
Flag bytes with byte stuffing
Starting and ending flags, with bit stuffing

15 September 2005 EEC484/584

20

Wenbing Zhao

How Does DL Layer Form Frames?

Physical layer coding violations
Applies only if encoding on medium contain some 
redundancy
Example: encode 1 bit with 2 bits

− 1 => 10
− 0 => 01
− Can use 00 or 11 to delimit frames



11

15 September 2005 EEC484/584

21

Wenbing Zhao

Framing – Based on Character Count

Use field in header to indicate number of 
characters in frame

Count might be garbled, not used

15 September 2005 EEC484/584

22

Wenbing Zhao

Framing – Based on Character Count

(a) Without errors

(b) With one error



12

15 September 2005 EEC484/584

23

Wenbing Zhao

Framing – Based on Byte Stuffing

Each frame starts and ends with a special flag 
byte

Problem: flag byte might appear in data
Solution: 

− Source inserts ESC (DL escape) before each flag byte; 
ESC before each ESC

− Destination removes inserted ESC bytes

Disadvantage: depends on 8-bits characters in 
ASCII

15 September 2005 EEC484/584

24

Wenbing Zhao

Framing – Based on Byte Stuffing



13

15 September 2005 EEC484/584

25

Wenbing Zhao

Framing – Based on Bit Stuffing

Each frame begins and ends with special bit 
patterns, 01111110 (in fact, a flag byte)

When source’s data contains 11111, stuff 0 
When destination receives 111110, deletes 0
Advantages: 

− Allows arbitrary number of bits per frame
− Allows arbitrary number of bits per character

15 September 2005 EEC484/584

26

Wenbing Zhao

Framing – Based on Bit Stuffing



14

15 September 2005 EEC484/584

27

Wenbing Zhao

Error Detection and Correction
Causes of errors

Transmission errors on phone lines due to thermal 
noise
Data transmission errors due to impulse noise
Signals are separated, distorted, recombined
Crosstalk between physically adjacent wires
Compression and decompression
Receiver out of synch with sender

Errors usually occur in bursts

15 September 2005 EEC484/584

28

Wenbing Zhao

Error-Correcting Codes

n-bit codeword – an n-bit unit containing data 
and check bits (m bits of data, r bits 
redundant/check bits)
Given any two codewords, it is possible to 
determine how many corresponding bits differ, 
using exclusive OR and counting number of 1 
bits in the result



15

15 September 2005 EEC484/584

29

Wenbing Zhao

Error-Correcting Codes

Hamming distance – number of bit positions in 
which two codewords differ

If two codewords are a Hamming distance d apart, it 
will require d single-bit errors to convert one into 
the other

15 September 2005 EEC484/584

30

Wenbing Zhao

Error-Correcting Codes

In general, all 2m possible data messages are 
legal, but not all 2n possible codewords are used
Given the algorithm for computing the check 
bits, it is possible to 

Construct a complete list of legal codewords
Find two codewords whose Hamming distance is 
minimum
This distance is the Hamming distance of the 
complete code



16

15 September 2005 EEC484/584

31

Wenbing Zhao

Error-Correcting Codes

To detect d errors, need a distance d+1 code
No way that d single-bit errors can change a valid 
codeword into another valid codeword

To correct d errors, need a distance 2d+1 code
Legal codewords are so far part that even with d
changes, original codeword is still closer than any 
other codeword, so it can be uniquely determined

15 September 2005 EEC484/584

32

Wenbing Zhao

Error-Correcting Codes

Parity bit – a single bit is appended to the data
Parity bit is chosen so that number of 1 bits in the 
codeword is even or odd
Given 1011010

− with even parity => 10110100
− With odd parity => 10110101

A code with a single parity bit has a distance 2
− Since any single-bit error produces a codeword with 

wrong parity => can be used to detect single bit errors



17

15 September 2005 EEC484/584

33

Wenbing Zhao

Error-Correcting Codes

Example for error-correcting code
Consider a code with only four valid codewords

− 0000000000, 0000011111, 1111100000, 1111111111

This code has a distance 5 => can correct double 
errors

− If 0000000111 arrives, receiver knows the original must 
have been 0000011111

− However, if triple error changes 0000000000 to 
0000000111, the error will not be corrected properly

15 September 2005 EEC484/584

34

Wenbing Zhao

Theoretical Lower Limit

Want to design a code with m message bits and r check 
bits that will allow all single errors to be corrected
Each of 2m legal messages has n illegal codewords at a 
distance 1 from it

Formed by systematically inverting each of the n bits in the 
n-bit codeword formed from it

Thus, each of the 2m legal messages requires n+1 bit 
patterns dedicated to it



18

15 September 2005 EEC484/584

35

Wenbing Zhao

Theoretical Lower Limit

Since total number of bit patterns is 2n, must 
have (n+1)2m <= 2n

n = m+r => (m+r+1) <= 2r

Given m, this puts a lower limit on the number of 
check bits needed to correct single errors

15 September 2005 EEC484/584

36

Wenbing Zhao

Hamming Code

This lower limit can be achieved using a 
method due to Hamming

The bits of codeword are numbered consecutively, 
starting with bit 1 at the left end, bit 2 to its 
immediate right and so on
The bits that are powers of 2 (1,2,4,8,16,etc) are 
check bits

− The rest are filled up with the m data bits



19

15 September 2005 EEC484/584

37

Wenbing Zhao

Hamming Code
Each parity bit calculates the parity for some of the bits in the 
code word. The position of the parity bit determines the 
sequence of bits that it alternately checks and skips. 

− Position 1: check 1 bit, skip 1 bit, check 1 bit, skip 1 bit, etc. 
(1,3,5,7,9,11,13,15,...)

− Position 2: check 2 bits, skip 2 bits, check 2 bits, skip 2 bits, etc. 
(2,3,6,7,10,11,14,15,...)

− Position 4: check 4 bits, skip 4 bits, check 4 bits, skip 4 bits, etc. 
(4,5,6,7,12,13,14,15,20,21,22,23,...)

− Position 8: check 8 bits, skip 8 bits, check 8 bits, skip 8 bits, etc. (8-
15,24-31,40-47,...)

− etc. 

15 September 2005 EEC484/584

38

Wenbing Zhao

Hamming Code

Set a parity bit to 1 if the total number of ones in the 
positions it checks is odd. Set a parity bit to 0 if the 
total number of ones in the positions it checks is 
even (assuming even parity is used)



20

15 September 2005 EEC484/584

39

Wenbing Zhao

Hamming Code - Example

Data (character ‘H’): 1001000
Create the data word, leaving spaces for the 
parity bits: 

_ _ 1 _ 0 0 1 _ 0 0 0

15 September 2005 EEC484/584

40

Wenbing Zhao

Hamming Code - Example
Calculate the parity for each parity bit 

Position 1 checks bits 1,3,5,7,9,11: 
− ? _ 1 _ 0 0 1 _ 0 0 0. Even number of 1’s, set position 1 to 0: 

0 _ 1 _ 0 0 1 _ 0 0 0
Position 2 checks bits 2,3,6,7,10,11:

− 0 ? 1 _ 0 0 1 _ 0 0 0. Even number of 1’s, set position 2 to 0: 
0 0 1 _ 0 0 1 _ 0 0 0

Position 4 checks bits 4,5,6,7:
− 0 0 1 ? 0 0 1 _ 0 0 0. Odd number of 1’s, set position 4 to 1: 

0 0 1 1 0 0 1 _ 0 0 0
Position 8 checks bits 8,9,10,11,12:

− 0 0 1 1 0 0 1 ? 0 0 0. Even number of 1’s, set position 8 to 0: 
0 0 1 1 0 0 1 0 0 0 0

Code word: 00110010000



21

15 September 2005 EEC484/584

41

Wenbing Zhao

Hamming Code
When a codeword arrives, 

Receiver initializes a counter to 0, 
It then examines each check bit, k, to see if it has the right 
parity. 

− If not, adds k to the counter. 

If counter is 0 after all check bits, the codeword is accepted as 
valid. 
If counter is nonzero, it contains the number of the incorrect bit

− e.g., if 1, 2, 8 in error, bit in position 11 is inverted
− Can only correct single-bit error

15 September 2005 EEC484/584

42

Wenbing Zhao

Hamming code

Hamming code simulation (Java applet)
http://www.frontiernet.net/~prof_tcarr/Hamming/applet.html#APPLET



22

15 September 2005 EEC484/584

43

Wenbing Zhao

Hamming code
Trick to permit Hamming 
codes to correct burst 
errors

A sequence of k
consecutive codewords are 
arranged as a matrix
Transmit a column at a time
Matrix a reconstructed at 
receiver

− If a burst error occurs, at 
most 1 bit in each of the k
codewords will have been 
affected

15 September 2005 EEC484/584

44

Wenbing Zhao

Error-Detecting Codes
If a single parity bit is appended to a block, error 
detecting probability is only 0.5 if burst error occurs
This can be improved by treating a block as a matrix, n
bits wide and k bits high, 

A parity bit is computed for each column and affixed to the 
matrix as the last row
The matrix is transmitted one row at a time
Probability of accepting bad block is 2-n



23

15 September 2005 EEC484/584

45

Wenbing Zhao

Error-Detecting Codes
Polynomial code, also known as CRC (Cyclic 
Redundant Code)

Treat bit string as polynomial with 0 and 1 coefficients
M-bit frame: M(x) = bm-1xm-1 + … + b0

Example: 11011010 => M(x) = x7 + x6 + x4 + x3 + x1

Use modulo 2 arithmetic
− No carries or borrows - XOR

15 September 2005 EEC484/584

46

Wenbing Zhao

Cyclic Redundant Code
Sender and receiver agree on generate polynomial G(x), with 
high and low order bits = 1
To compute checksum for some frame with m bits corresponding 
to M(x)

m > deg G(x) = r

Append checksum to end of frame so polynomial T(x) 
corresponding to checksummed frame is divisible by G(x)
When receiver gets checksummed frame, divides T(x) by G(x)
If remainder R(x) != 0, then transmission error



24

15 September 2005 EEC484/584

47

Wenbing Zhao

Algorithm to Compute CRC Checksum

Let m = deg M(x), r = deg G(x)
Append r 0 bits to lower-order end of frame to obtain 
corresponding polynomial xrM(x)
Divide bit string corresponding to xrM(x) by bit string 
corresponding to G(x)
Subtract remainder R(x) from bit string corresponding to xrM(x)

Result is checksummed frame
Let T(x) be its polynomial

− xrM(x) = Q(x)G(x) + R(x)
− xrM(x) – R(x) = Q(x)G(x) = T(x)

15 September 2005 EEC484/584

48

Wenbing Zhao

Compute CRC 
Checksum



25

15 September 2005 EEC484/584

49

Wenbing Zhao

International Standard Polynomials
CRC-12 G(x) = x12 + x11 + x3 + x2 + x1 + 1

Used for 6-bit characters

CRC-16 G(x) = x16 + x15 + x2 + 1
CRC-CCITT G(x) = x16 + x12 + x5 + 1

Used for 8-bit characters

CRC-32 G(x) = x32 + x26 + x23 + x22 + x16 + x11 + x10 + 
x8 + x7 + x5 + x4 + x2 + x1 + 1

Used in IEEE 802
Detects all bursts of length 32 or less and all bursts affecting
an odd number of bits


