Chapter 6 Acid-Base and Donor-Acceptor Chemistry | 6-1 | | Acid | Base | Definition | |-----|----|------------------|-------------------------|-----------------------| | | a. | BF ₃ | CIF | Lewis, solvent system | | | b. | HCIO₄ | CH ₃ CN | Lewis, Brønsted-Lowry | | | c. | ICI | PCI, | Lewis, solvent system | | | d. | CIF ₃ | NOF | Lewis, solvent system | | | e. | SO ₂ | CIO ₃ - | Lewis | | | f. | Pt | XeF ₄ | Lewis | | | g. | XeO ₃ | OH. | Lewis | | | h. | SbF ₅ | HF | Lewis, solvent system | | | i. | Sn | NOCI | Lewis | | | j. | PtF ₅ | CIF ₃ | Lewis, solvent system | | | k. | СН₃СООН | (benzyl) ₃ N | Lewis, Brønsted-Lowry | | | l. | H ₂ O | BH ₄ - | Lewis | - 6-2 Al³⁺ is acidic: $[Al(H_2O)_6]^{3+} + H_2O \implies [Al(H_2O)_5(OH)]^{2+} + H_3O^+$ The hydronium ions react with the basic bicarbonate to form CO₂: H₃O⁺ + HCO₃⁻ \longrightarrow 2 H₂O + CO₂† With pK_o values of 5.0 for $[Al(H_2O)_6]^{3+}$, 6.4 for H₃ and 2.0 for HSO₄⁻, the pH is about 3, low enough to convert the bicarbonate to CO₂. - 6-3 An increase in conductivity suggests that ions are formed: $$BrF_3 + AgF \implies BrF_4^- + Ag^+$$ $$BrF_3 + SnF_4 \implies BrF_2^* + SnF_5^*$$ or $$2 BrF_3 + SnF_4 \implies 2 BrF_2^+ + SnF_6^{2-}$$ 6-4 a. 3 ICl I₂Cl* + ICl₂ (see Greenwood and Earnshaw, Chemistry of the Elements, 2nd ed., p. 827) b. Both solutes increase the concentration of ions: - 6-5 SnCl₄ + 2 Cl⁻ → SnCl₆²⁻ is the primary reaction. NH₄Cl in ICl forms NH₄⁺ and ICl₂⁻, and the chloride ions are then transferred to SnCl₄. - 6-6 KF + IF, K* + IF, and the ions conduct electricity. - 6-7 2 H₂SO₄ \Longrightarrow H₃SO₄⁺ + HSO₄⁻ and 2 H₃PO₄ \Rightarrow H₄PO₄⁺ + H₂PO₄⁻ form enough ions to allow conductance in the pure acids. - 6-8 a. The structure has the Br atoms in a staggered structure, resulting in an S_6 symmetry. - b. It may be easier to visualize this by using tetrahedral As. The fourth sp³ orbitals point inward toward the benzene ring. If one is added and one is subtracted, they fit the symmetry of the π orbitals of the benzene ring to form bonding and antibonding orbitals. An essentially nonbonding orbital can be made from the two lobes with the same sign; one side has a bonding interaction with the benzene orbitals and the other has an antibonding interaction. - 6-9 The very high electronegativity of O in comparison with Al pulls the bonding pair very close to O. This increases the repulsion between the bonding pairs and causes the large angle. - 6-10 a. The methyl groups in (CH₃)₃N—SO₃ H₃N—SO₃ (CH₃)₃N—SO₃ donate electrons to the nitrogen, making (CH₃)₃N N—S—O 100.1° 195.7 pm N—S—O 100.1° 97.6° a stronger Lewis base and strengthening and shortening the N—S bond. the greater concentration of electrons in the N—S bond of (CH₃)₃N—SO₃ increases electron-electron (bp-bp) repulsions, opening up the N—S—O bond in comparison with H₃N—SO₃. - 6-11 NO is isoelectronic with O₂ and has the electronic structure σ² π² π² π*1. Bonding with H' depends on which end of the π* orbital carries more electron density. Calculation shows slightly more electron density on N, making HNO the more likely (bent) molecule. NO readily dimerizes to N₂O₂²⁻, with a trans configuration and a combination of π* orbitals from each of the monomers. - 6-12 a. This is similar to the effects described in Section 6-2-8 for I₂. Br₂ forms charge-transfer complexes with donor solvents such as methanol. - 6-27. CH₃NH₂ is a stronger base. The methyl group pushes electron density onto the nitrogen. - Although 2-methylpyridine is the stronger base with smaller acid molecules, the b. methyl group interferes with adduct formation with trimethylboron (F-strain) and the pyridine-trimethylboron formation is stronger. - Trimethylboron forms a stronger adduct with ammonia because the three phenyl rings of triphenylboron cannot bend back readily to allow the boron to become tetrahedral (B-strain). - 6-28. With the acids listed in order of increasing acidity: | | H ₃ AsO ₄ | H ₂ SO ₃ | H ₂ SO ₄ | HMnO ₄ | |----------------|---------------------------------|--------------------------------|--------------------------------|-------------------| | $pK_{o}(9-7n)$ | 2 | 2 | -5 | -12 | | pK_a (8-5n) | 3 | 3 | -2 | -7 | | pK_o (exptl) | 9.2 | 2.2 | 1.8 | -11 | With the acids listed in order of increasing acidity: | | HCIO | HCIO, | HCIO, | HCIO, | |----------------|------|-------|-------|-------| | $pK_{a}(9-7n)$ | 9 | 2 | -5 | -12 | | $pK_{a}(8-5n)$ | 8 | 3 | -2 | -7 | | pK_a (exptl) | 7.4 | 2 | -1 | -10 | - 6-29 Dimethylamine acts as a weak base in water, with a very small amount of OH provided by the reaction (CH₃)₂NH + H₂O (CH₃)₂NH₂+ OH. Acetic acid is a stronger acid than water, so dimethylamine acts as a stronger base and the reaction (CH₃)₂NH + HOAc → (CH₃)₂NH₂* + OAc goes to completion. 2-Butanone is a neutral solvent; there is no significant acid-base reaction with dimethylamine. - SbF, in HF reacts to increase the H⁺ concentration and decrease H₀: 6-30. SbF₅ + HF H + SbF₆ These ions then can react with alkenes.