Chapter 6 Acid-Base and Donor-Acceptor Chemistry

6-1		Acid	Base	Definition
	a.	BF ₃	CIF	Lewis, solvent system
	b.	HCIO₄	CH ₃ CN	Lewis, Brønsted-Lowry
	c.	ICI	PCI,	Lewis, solvent system
	d.	CIF ₃	NOF	Lewis, solvent system
	e.	SO ₂	CIO ₃ -	Lewis
	f.	Pt	XeF ₄	Lewis
	g.	XeO ₃	OH.	Lewis
	h.	SbF ₅	HF	Lewis, solvent system
	i.	Sn	NOCI	Lewis
	j.	PtF ₅	CIF ₃	Lewis, solvent system
	k.	СН₃СООН	(benzyl) ₃ N	Lewis, Brønsted-Lowry
	l.	H ₂ O	BH ₄ -	Lewis

- 6-2 Al³⁺ is acidic: $[Al(H_2O)_6]^{3+} + H_2O \implies [Al(H_2O)_5(OH)]^{2+} + H_3O^+$ The hydronium ions react with the basic bicarbonate to form CO₂:

 H₃O⁺ + HCO₃⁻ \longrightarrow 2 H₂O + CO₂† With pK_o values of 5.0 for $[Al(H_2O)_6]^{3+}$, 6.4 for H₃ and 2.0 for HSO₄⁻, the pH is about 3, low enough to convert the bicarbonate to CO₂.
- 6-3 An increase in conductivity suggests that ions are formed:

$$BrF_3 + AgF \implies BrF_4^- + Ag^+$$

$$BrF_3 + SnF_4 \implies BrF_2^* + SnF_5^*$$
 or

$$2 BrF_3 + SnF_4 \implies 2 BrF_2^+ + SnF_6^{2-}$$

6-4 a. 3 ICl

I₂Cl* + ICl₂ (see Greenwood and Earnshaw, Chemistry of the Elements, 2nd ed., p. 827)

b. Both solutes increase the concentration of ions:

- 6-5 SnCl₄ + 2 Cl⁻ → SnCl₆²⁻ is the primary reaction. NH₄Cl in ICl forms NH₄⁺ and ICl₂⁻, and the chloride ions are then transferred to SnCl₄.
- 6-6 KF + IF, K* + IF, and the ions conduct electricity.
- 6-7 2 H₂SO₄ \Longrightarrow H₃SO₄⁺ + HSO₄⁻ and 2 H₃PO₄ \Rightarrow H₄PO₄⁺ + H₂PO₄⁻ form enough ions to allow conductance in the pure acids.
- 6-8 a. The structure has the Br atoms in a staggered structure, resulting in an S_6 symmetry.
 - b. It may be easier to visualize this by using tetrahedral As. The fourth sp³ orbitals point inward toward the benzene ring. If one is added and one is subtracted, they fit the symmetry of the π orbitals of the benzene ring to form bonding and antibonding orbitals. An essentially nonbonding orbital can be made from the two lobes with the same sign; one side has a bonding interaction with the benzene orbitals and the other has an antibonding interaction.
- 6-9 The very high electronegativity of O in comparison with Al pulls the bonding pair very close to O. This increases the repulsion between the bonding pairs and causes the large angle.
- 6-10 a. The methyl groups in (CH₃)₃N—SO₃ H₃N—SO₃ (CH₃)₃N—SO₃ donate electrons to the nitrogen, making (CH₃)₃N N—S—O 100.1° 195.7 pm N—S—O 100.1° 97.6° a stronger Lewis base and strengthening and shortening the N—S bond. the greater concentration of electrons in the N—S bond of (CH₃)₃N—SO₃ increases electron-electron (bp-bp) repulsions, opening up the N—S—O bond in comparison with H₃N—SO₃.
- 6-11 NO is isoelectronic with O₂ and has the electronic structure σ² π² π² π*1. Bonding with H' depends on which end of the π* orbital carries more electron density. Calculation shows slightly more electron density on N, making HNO the more likely (bent) molecule. NO readily dimerizes to N₂O₂²⁻, with a trans configuration and a combination of π* orbitals from each of the monomers.
- 6-12 a. This is similar to the effects described in Section 6-2-8 for I₂. Br₂ forms charge-transfer complexes with donor solvents such as methanol.

- 6-27. CH₃NH₂ is a stronger base. The methyl group pushes electron density onto the nitrogen.
 - Although 2-methylpyridine is the stronger base with smaller acid molecules, the b. methyl group interferes with adduct formation with trimethylboron (F-strain) and the pyridine-trimethylboron formation is stronger.
 - Trimethylboron forms a stronger adduct with ammonia because the three phenyl rings of triphenylboron cannot bend back readily to allow the boron to become tetrahedral (B-strain).
- 6-28. With the acids listed in order of increasing acidity:

	H ₃ AsO ₄	H ₂ SO ₃	H ₂ SO ₄	HMnO ₄
$pK_{o}(9-7n)$	2	2	-5	-12
pK_a (8-5n)	3	3	-2	-7
pK_o (exptl)	9.2	2.2	1.8	-11

With the acids listed in order of increasing acidity:

	HCIO	HCIO,	HCIO,	HCIO,
$pK_{a}(9-7n)$	9	2	-5	-12
$pK_{a}(8-5n)$	8	3	-2	-7
pK_a (exptl)	7.4	2	-1	-10

- 6-29 Dimethylamine acts as a weak base in water, with a very small amount of OH provided by the reaction (CH₃)₂NH + H₂O (CH₃)₂NH₂+ OH. Acetic acid is a stronger acid than water, so dimethylamine acts as a stronger base and the reaction (CH₃)₂NH + HOAc → (CH₃)₂NH₂* + OAc goes to completion. 2-Butanone is a neutral solvent; there is no significant acid-base reaction with dimethylamine.
- SbF, in HF reacts to increase the H⁺ concentration and decrease H₀: 6-30.

SbF₅ + HF

H + SbF₆ These ions then can react with alkenes.