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FIGURE 4-19 Rotation of Plane-Polarized Light.

FIGURE 4-20 Chiral Tsomers of
[Ru(NH\CH.CH,NH, )2

Dy symmetry (Figure 4-20). Mirror images of this molecule look much like Jeft- and
right-handed three-bladed propellers. Further examples will be discussed in Chapter 9.

4-4-2 MOLECULAR VIBRATIONS

Symmetry can be helpful in determining the modes of vibration of molecules. Vibra-
tional modes of water and the stretching modes of CO in carbonyl compiexes are exam-
ples that can be treated quite simply, as described in the following pages. Other
molecules can be studied using the same methods.

Water (C;, symmetry)

Because the study of vibrations is the study of motion of the individual atoms in a mol-
¥ - ecule, we must first attach a set of x, y, and - coordinates to each atom. For convenience,

O

z y _:_ . - we assign the z axes paraliel to the C axis of the molecule, the x axes in the plane of the
T y \ T ¥ molecule, and the y axes perpendicular to the plane (Figure 4-213. Each atom can move
Ho H—u in all three directions, so a total of nine transformations (motion of each atom in the x,
FIGURE 4-21 A Set of Axesfor . ¥» 40d Z directions} must be considered. For N atoms in a molecule, there are 3N total
the Water Moiecule, " motions, known as degrees of freedom. Degrees of freedom for different geometries

are summarized in Table 4-9. Because water has three atoms, there must be nine differ-
ent motions.

We will use transformation marrices to determine the symmetry of all nine mo-
tions and then assign them to translation, rotation, and vibration. Fortunately, it is only
necessary to determine the characters of the transformation matrices, not the individual
matrix elements.

In this case, the initjal axes make a column matrix with nine elements, and each
transformation matrix is 9 X 9. A nonzero entry appears along the diagonal of the ma-
trix only for an atom that does not change position. If the atom changes position during
the symmetry operation, a 0 is entered. If the atom remains in its original location and
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TABLE 4-9

Degrees of Freedom

Number of Total Degrees of Transtational Rorational Vibrational
Atoms Freedom Modes Modes Modes
N (linear) IN 3 2 AN -3
3 (HCN) 9 3 2 4

N (nonlinear) N 3 3 IN -6
3 (Hs0) 9 3 3 3

the vector direction is unchanged, a 1 is entered. If the atom remains but the vector di-
rection is reversed, a —1 is entered. (Because all the operations change vector directions
by 0° or 180° in the Cs,, point group, these are the only possibilities.) When all nine vec-
_ tors are summed, the character of the reducible representation I is obtained. The full
9 X 9 matrix for Cy is shown as an example; note that only the diagonal entries are used
in finding the character, - FUTE tR b a g

2

"7 -1 0 0D 0 0 0!0 0 07
o<y 0 -1 0 0 0 0 0 0 0fy! 0
Z o 0 1.0 0 0 0 0 0:

X 0 0 0 0 0 0 -i 0 ofx
Hod [y !={ 0 0 0 0 0 0 0 -1 of ]|,
0o 0 0 0 0 0 0 0 1|l:

X 0 0 0 -1 0 0 0o 0 o«

Hyd | v 0 0 0 0 -1 0 0 0 oly]|H,
Lzl Lo o o o o 1 o o ol-

The H, and H, entries are not on the principal diagonal because H,, and H,, ex-
change with each other in a C; rotation, and x'(H;) = —x{H,), ¥'{H,) = —y(H,),
and z'(H,} = z(H,). Only the oxygen atom contributes to the character for this opera-
tien, for a total of —1.

The other entries for I can also be found without writing out the matrices, as follows:

E: All nine vectors are unchanged in the identity operation, so the char-
acter is 9.

Cs: The hydrogen atoms change position in a C» rotation, so all their vec-
tors have zero contribution to the character. The oxygen atom vectors
in the x and y directions are reversed. each contributing — 1. and in the
< direction they remain the same. contributing I, for a total of —1. [The
sum of the principal diagonal = x(C3) =(—1)={—1)+(1)= —1.]

ay(xz):  Reflection in the plane of the molecule changes the direction of all the
v vectors and leaves the x and  vectors unchanged. for a total of
3-3+3=4

oy'(¥z): Finally, reflection perpendicular to the plane of the molecule changes
the position of the hydrogens so their contribution is zero: the x vector
on the oxygen changes direction and the y and £ vectors are unchanged,
for a total of 1,

Because ali nine direction vectors are included in this representation, it represents
all the motions of the molecule, three translations, three rotations, and (by ditference)
three vibrations. The characters of the reducible representation I” are shown as the last
row below the irreducible representations in the C»,, character table.
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Reducing representations to irreducible
representations

.. The next step is to separate this representation into its component irreducible represen-
tations. This requires another property of groups. The number of times that any irre-

. ducible representation appears in a reducible representation is equal to the sum of the
products of the characters of the reducible and irreducible representations taken one
operation at a time, divided by the order of the group. This may be expressed in equa-
tion form, with the sum taken over ail symmetry operations of the group.4

Number of nreducible 1 number character of character of
representations of = a E of operations | X reducible X | irreducible
a given type order °x in the class representation representation

In the water example, the order of (5, 1s 4, with one operation in each class
(E, Cy, 0. 03"} The results are then

may = L)1)+ (~1)(1) + ()1 + (1)(1)] = 3

rae = 1O = (D) = (B)-1) = (1)) = 1

5, = 31O = (F1)(=1) + B0+ ()17 =3

nay = 101 = (=1)(=1) = (3)(=1) + (1)} =2
TR e The reducible representation for all motions of the water molecule is therefore
Stoeat BoenZe o reduced to 3A) + Ay b 3By + 2B,.

L - Examination of the columns on the far right in the character table shows that

'© translation along the x, v, and z directions is Ay + By + Ba(translation is motion along
the x, ¥, and 7 directions, so it transforms in the same way as the three axes) and that
rotation in the three directions (R, R,. R_) is A, + By + B;. Subtracting these from
the total above leaves 24, + By, the three vibrational modes, as shown in Table 4-10.
The number of vibrational modes equals 3N - 6, as described earlier. Two of the
modes are totaliy symmetric (A4 ) and do not change the symmetry of the molecule. but

" one is antisymmetric to C; rotation and to refiection perpendicular to the plane of the
molecule (By). These modes are illustrated as symmetric stretch, symmetric bend, and
antisymmetric stretch in Table 4-11.

#This procedure shounld yield an integer for the number of irreducible representations of each type;
obtaining a fraction in this step indicates a calculation error.
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TABLE 4-10
Symmetry of Molecular Motions of Water
Translation Roration Vibration
Afl Motions {x. v, 1) (R,.R,.R.) {Remuaining Modes)
34, A 24
Az 14’1
18, B B, B
2B, Ba B
TABLE 4-11
The Vibrational Modes of Water
A 0 Symmetric siretch: change in dipole moment; more distance
&7 between positive hydrogens and negative oxygen
H H IR active
ip 0 Antisymmetric siretch: change in dipole moment; change in
AN distances between positive hydrogens and negative oxygen
H H IR active
A Symmetric bend: change in dipole moment;

H"*/ O}H angle between H— O vectors changes
IR active

A molecular vibration is infrared active (has an infrared absorption) only if it re-
sults in a change in the dipole moment of the molecule. The three vibrations of water
can be analyzed this way to determine their infrared behavior. In fact, the oxygen atom
also moves. Its motion is opposite that of the hydrogens and is very small, because its
mass is so much larger than that of the hydrogen atoms. The center of mass of the mol-
ecule does not move in vibrations.

Group theory can give us the same information (and can account for the more
complicated cases as well: in fact, group theory in principle can account for all vibra-
tional modes of a molecuie). In group theory terms, a vibrational mode is active in the

infrared if' it correspends to an irreducible representation that has the same symmetry

[foritransforms) as the Cartesian coordinates x, v, or 2, because a vibrational motion that
* shifts the center of charge of the molecule in any of the x, v, or ;7 directions results in a
“change in dipole moment. Otherwise, the vibraticnal mode is not infrared active.

Reduce the following representations to their irreducibie representations in the point group
indicated (refer to the character tables in Appendix C):

In 3 | E Cg ! Iy

r | 4 0 2 2
Solution:

iy = 3T = 0)1) = 230) + (0] =2

iy = ﬁ[m}(u F 0 =) = (2)(1) + {2~ 1]

Ly

Il

I
o

ny = 55(4}(1) £ 01 = ((-1) + (2} (=1

ng, = i[mm FO)(=1) = (=1} + ()1} = 1




