姓名 吳臻燾(Zhen-Tao Wu) 電子郵件信箱 frednice99@hotmail.com
畢業系所 營建工程系碩士班(Department and Graduate Institute of Constrction Engineering)
畢業學位 碩士(Master) 畢業時期 93學年第2學期
論文名稱(中) 利用現地監測驗證國道礫石土邊坡土釘工法之研究
論文名稱(英) Utilizing Monitoring System to Prove a Freeway Gravel Slope of Soil Nailing Method
檔案
  • etd-0822105-105225.pdf
  • 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
    請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
    論文使用權限 校內外均一年後公開
    論文語文/頁數 中文/174
    摘要(中) 南部國道沿線礫石土邊坡於設計階段時,採用植生帶舖植及薄層噴植工法等二種護坡工法,此路段邊坡易受雨水侵蝕導致細粒料流失及南部旱季雨量少導致植生不易,未能達到保護坡面之效果,因此本研究目的為建議適合之工法應用於現地礫石土邊坡上,並進行礫石土邊坡穩定性探討。
    首先,利用試驗邊坡監測系統驗證鄭偉豐(2003)礫石土邊坡土釘工法之可行性及適用性;本研究續以FLAC 4.0模擬監測點觀測,探討礫石土邊坡與不同土釘+植生網毯之破壞模式與破壞機制;研究範圍(古坑交流道至梅山交流道)之護坡工法(薄層噴植)及試驗邊坡之三種不同的工法(無土釘+植生網毯、壓入土釘+植生網毯及置入土釘+植生網毯),經安全、經濟及美觀生態效益進行不同工法之成效評估;最後並建立一套適合南部國道沿線礫石土邊坡之預警系統。
      本研究結果顯示:(1)現地礫石土邊坡之破壞面均屬淺層滑動破壞。(2)土釘系統能有效的將礫石土邊坡破壞面往後移動。(3)經三種狀態不同工法分析後得知,暴雨狀態為影響邊坡穩定性之最大影響因子。(4)現地監測及模擬監測之數據相差大小均在現地監測儀器誤差範圍內,因此可知平時狀態之礫石土邊坡穩定分析時所用之假設參數為合理值。(5)礫石土邊坡穩定分析後得知礫石土邊坡加入土釘系統後於暴雨狀態時之邊坡破壞模式屬旋轉破壞。(6)礫石土邊坡成效評估後得知,壓入式土釘+植生網毯亦為符合安全、經濟及美觀生態之工法。(7)最後依據間接模式(FLAC 4.0模擬分析)及經驗模式(日本經驗)建立國道三號礫石土邊坡預警系統。
    摘要(英) The gravel slope design of the South Highway 3, vegetation belt pavement method and thin layer hydrograsser method slope protection methods were used. When it rains, the slope corrodes easily, and form ditches that drains the fine topsoil. As a result, during the dry season in southern Taiwan, it is difficult for plant life to grow, and does not achieve the necessary effect. The goal of this research is to suggest which method is more suitable for the existing gravel slopes, and carry out a discussion on the stability of the gravel slope.
    First, an on-site experiment on the feasibility and serviceability of Wei-Feng Zheng (2003) gravel slope soil nailing method. This research continues with FLAC 4.0 simulation observation point, and analyzes gravel slope with different soil nailing + ecromat failure model and mechanism; research scope soil protection methods (thin layer hydrograsser method) on (Ku-Kang interchange to Mei-Shan interchange) and three slope experiments with different methods (without soil nailing + ecromat, press type soil nailing + ecromat and put type soil nailing + ecromat), and a thorough result appraisal on the safety, economical, and ecology efficient of the three different methods. Lastly, to establish a gravel slope monitoring system that conforms to the South Highway 3.
      This finding shows that: (1) Failure on all existing gravel soil slope are due to shallow slipping. (2) Soil nailing can effectively reverse failure surface on gravel soil slope. (3) Know the three kinds of conditions for different analysis, the most powerful influence factor heavy rainfall condition that influence slope stability. (4) Data of difference site monitor and simulation monitor in site monitor instrumental error scope therefore may know the normal conditions of gravel slope stability analysis when condition using the supposition parameter of reasonable value. (5) Know from the analysis of gravel slope stability, the conditions of gravel slope with soil nailing system after heavy rainfall and slope failure model belongs to circular rotational failure. (6) Know from the result appraisal of gravel slope, put type soil nailing + erocomat is the safest, economical and ecological efficient method. (7) Finally according to the indirect model (FLAC 4.0 simulations analyses) and the experience model (Japan experiences) to establish the gravel slope monitoring system on the South Highway 3.
    關鍵字(中)
  • 成效評估
  • 植生網毯
  • 土釘
  • 礫石土
  • FLAC
  • 預警系統
  • 關鍵字(英)
  • ecromat
  • gravel
  • appraisal
  • montoring system
  • soil nailing
  • FLAC
  • 指導教授
  • 林商裕
  • [回到前頁查詢 | 重新查詢]