1. Consider the following problem

$$
\begin{array}{ll}
\max & Z=6 x_{1}+x_{2}+2 x_{3} \\
\text { s.t. } & 2 x_{1}+2 x_{2}+\frac{1}{2} x_{3} \leq 2 \\
& -4 x_{1}-2 x_{2}-\frac{3}{2} x_{3} \leq 3 \\
& x_{1}+2 x_{2}+\frac{1}{2} x_{3} \leq 1 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

Let x_{4}, x_{5}, and x_{6} denote the slack variables for the respective constraints. After you apply the simplex method, a portion of the final tableau is as follows:

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	RHS
Row(0)							
x_{5}				1	1	2	
x_{3}			-2	0	4		
x_{1}			1	0	-1		

Use the theory of simplex method to identify the missing numbers in the final tableau. Show your calculations. (20\%)
2. Consider the following LP problem

$$
\begin{array}{ll}
\max & Z=4 x_{1}+2 x_{2} \\
\text { s.t. } & \left.2 x_{1} \quad \leq 16 \text { (resource }\right) \\
& \left.x_{1}+3 x_{2} \leq 17 \text { (resource } 2\right) \\
& \left.x_{2} \leq 5 \quad \text { (resource } 3\right) \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

(a) Solve the problem graphically. (10\%)
(b) Using graphical analysis to find the shadow prices for the resources. (10\%)
(c) Determine how many additional units of resource 1 would be needed to increase the optimal value of Z by 15. (5\%)
3. Consider the following problem:

$$
\begin{array}{lcl}
\max & Z=2 x_{1}+4 x_{2}-x_{3} & \\
\text { s.t. } & 3 x_{2}-x_{3} \leq 30 & \text { (resource 1) } \\
& 2 x_{1}-x_{2}+x_{3} \leq 10 & \text { (resource 2) } \\
& 4 x_{1}+2 x_{2}-2 x_{3} \leq 40 & \text { (resource 3) } \\
& x_{1}, x_{2}, x_{3} \geq 0 &
\end{array}
$$

The simplex method is used to solve the problem and the optimal tableau is as follows, where x_{4}, x_{5}, and x_{6} denote the slack variables for the respective constraints.

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	RHS
Row(0)	0	0	0	1.5	0.75	0.125	57.5
x_{2}	0	1	0	0.5	0.25	-0.125	12.5
x_{3}	0	0	1	0.5	0.75	-0.375	7.5
x_{1}	1	0	0	0	0.25	0.125	7.5

(a) Find the shadow price for each resource. (5\%)
(b) Suppose that you have a chance to buy an additional unit of resource 2 for $\$ 1$. Should you do it? Why? (5\%)

Suppose that the sensitivity analysis generates the following results.

Allowable range to stay optimal		
Current value	Minimum Maximum	
2	1	∞
4	1	5
-1	-2	$-2 / 3$

Allowable range to stay feasible		
Current value	Minimum Maximum	
30	15	∞
10	0	5
40	-20	60

(c) What is the new optimal objective value Z if $c_{1}=2$ is changed to $c_{1}=1$? (5\%)
(d) Will the optimal objective value Z change if $b_{3}=40$ is changed to $b_{3}=70$? Why? (5\%)
4. Use the two-phase method to solve the following LP problem. (20\%)

$$
\begin{array}{ll}
\min & Z=3 x_{1}+2 x_{2}+4 x_{3} \\
\text { s.t. } & 2 x_{1}+x_{2}+3 x_{3}=60 \\
& 3 x_{1}+3 x_{2}+5 x_{3} \geq 120 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

5. Consider the following LP problem.

$$
\begin{array}{ll}
\min & Z=3 x_{1}-x_{2}+4 x_{3} \\
\text { s.t. } & x_{1}+x_{2}-x_{3} \geq-6 \\
& 3 x_{1}-x_{2}+2 x_{3} \leq 120 \\
& x_{1} \geq-2, x_{2} \text { unrestricted, } x_{3} \geq 0
\end{array}
$$

Transform the problem into a standard form with the objective function is to be maximized, all RHS coefficients are nonnegative, and all variables are nonnegative. (15\%)

