1. Consider the following problem

$$\max \quad Z = 6x_1 + x_2 + 2x_3$$

s.t.
$$2x_1 + 2x_2 + \frac{1}{2}x_3 \le 2$$
$$-4x_1 - 2x_2 - \frac{3}{2}x_3 \le 3$$
$$x_1 + 2x_2 + \frac{1}{2}x_3 \le 1$$
$$x_1, x_2, x_3 \ge 0$$

Let x_4, x_5 , and x_6 denote the slack variables for the respective constraints. After you apply the simplex method, a portion of the final tableau is as follows:

	x_1	x_2	x_3	x_4	x_5	x_6	RHS
Row(0)							
<i>x</i> ₅				1	1	2	
<i>x</i> ₃				-2	0	4	
x_{l}				1	0	-1	

Use the theory of simplex method to identify the missing numbers in the final tableau. Show your calculations. (20%)

2. Consider the following LP problem

$$\max \quad Z = 4x_1 + 2x_2$$

s.t.
$$2x_1 \leq 16 \quad (\text{resource 1})$$
$$x_1 + 3x_2 \leq 17 \quad (\text{resource 2})$$
$$x_2 \leq 5 \quad (\text{resource 3})$$
$$x_1, x_2 \geq 0$$

- (a) Solve the problem graphically. (10%)
- (b) Using graphical analysis to find the shadow prices for the resources. (10%)
- (c) Determine how many additional units of resource 1 would be needed to increase the optimal value of Z by 15. (5%)

3. Consider the following problem:

$$\begin{array}{ll} \max & Z = 2x_1 + 4x_2 - x_3 \\ s.t. & 3x_2 - x_3 \leq 30 \\ 2x_1 - x_2 + x_3 \leq 10 \\ 4x_1 + 2x_2 - 2x_3 \leq 40 \\ x_1, x_2, x_3 \geq 0 \end{array}$$
(resource 3)

The simplex method is used to solve the problem and the optimal tableau is as follows, where x_4, x_5 , and x_6 denote the slack variables for the respective constraints.

	x_1	x_2	x_3	x_4	x_5	x_6	RHS
Row(0)	0	0	0	1.5	0.75	0.125	57.5
x_2	0	1	0	0.5	0.25	-0.125	12.5
<i>x</i> ₃	0	0	1	0.5	0.75	-0.375	7.5
x_1	1	0	0	0	0.25	0.125	7.5

(a) Find the shadow price for each resource. (5%)

(b) Suppose that you have a chance to buy an additional unit of resource 2 for \$1. Should you do it? Why? (5%)

Suppose that the sensitivity analysis generates the following results.

Allowable range to stay optimal			Allowable range to stay feasible			
Current	Minimum	n Maximum		Current	Minimum	Maximum
value				value		
2	1	~		30	15	∞
4	1	5		10	0	5
-1	-2	-2/3		40	-20	60

(c) What is the new optimal objective value Z if $c_1=2$ is changed to $c_1=1?$ (5%)

(d) Will the optimal objective value Z change if $b_3=40$ is changed to $b_3=70$? Why? (5%)

4. Use the two-phase method to solve the following LP problem. (20%)

min
$$Z = 3x_1 + 2x_2 + 4x_3$$

s.t. $2x_1 + x_2 + 3x_3 = 60$
 $3x_1 + 3x_2 + 5x_3 \ge 120$
 $x_1, x_2, x_3 \ge 0$

5. Consider the following LP problem.

min
$$Z = 3x_1 - x_2 + 4x_3$$

s.t. $x_1 + x_2 - x_3 \ge -6$
 $3x_1 - x_2 + 2x_3 \le 120$
 $x_1 \ge -2, x_2$ unrestricted, $x_3 \ge 0$

Transform the problem into a standard form with the objective function is to be maximized, all RHS coefficients are nonnegative, and all variables are nonnegative. (15%)