1. Consider the following LP problem

$$
\begin{array}{ll}
\max & Z=-5 x_{1}+5 x_{2}+13 x_{3} \\
\text { s.t. } & -x_{1}+x_{2}+3 x_{3} \leq 20 \\
& 12 x_{1}+4 x_{2}+10 x_{3} \leq 90 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

If we let x_{4} and x_{5} be the slack variables for the respective constraints, the simplex method yields the following final tableau:

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	RHS
Row(0)	0	0	2	5	0	100
x_{2}	-1	1	3	1	0	20
x_{5}	16	0	-2	-4	1	10

Now you are to conduct sensitivity analysis by independently investigating each of the following changes in the original model. For each change, revise the final tableau and convert it into the proper form. Then, test this solution for feasibility and optimality. If either test fails, re-optimize to find a new optimal solution.
(a) Change the RHS of constraint 2 to $b_{2}=70$. (5\%)
(b) Determine the allowable range to stay feasible for b_{2}. 5%)
(c) Change the coefficients of x_{1} to $\left[\begin{array}{l}c_{1} \\ a_{11} \\ a_{21}\end{array}\right]=\left[\begin{array}{c}-2 \\ 0 \\ 5\end{array}\right]$. (5\%)
(d) Change the coefficients of x_{2} to $\left[\begin{array}{l}c_{2} \\ a_{12} \\ a_{22}\end{array}\right]=\left[\begin{array}{l}6 \\ 2 \\ 5\end{array}\right] .(10 \%)$
(e) Determine the allowable range to stay optimal for c_{2}. (10\%)
(f) Introduce a new variable x_{6} with coefficients $\left[\begin{array}{l}c_{6} \\ a_{16} \\ a_{26}\end{array}\right]=\left[\begin{array}{c}10 \\ 3 \\ 5\end{array}\right]$. (5\%)
(g) Introduce a new constraint $2 x_{1}+3 x_{2}+5 x_{3} \leq 50$. (Denote its slack variable by $\left.x_{6}.\right)(10 \%)$
2. Construct the dual problem of the following LP problem. (15\%)

$$
\begin{array}{ll}
\min & Z=4 x_{1}+2 x_{2}-3 x_{3} \\
\text { s.t. } & 2 x_{1}-x_{2}+3 x_{3} \leq 15 \\
& x_{1}+3 x_{2}-x_{3}=20 \\
& 4 x_{2}+x_{3} \geq 5 \\
& x_{1} \text { unrestrucited in sign }, x_{2} \geq 0, x_{3} \leq 0
\end{array}
$$

3. Consider the following problem:

$$
\begin{array}{ll}
\max & Z=2 x_{1}+5 x_{2}+3 x_{3}+4 x_{4}+x_{5} \\
\text { s.t. } & x_{1}+3 x_{2}+2 x_{3}+3 x_{4}+x_{5} \leq 6 \\
& 4 x_{1}+6 x_{2}+5 x_{3}+7 x_{4}+x_{5} \leq 15 \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \geq 0
\end{array}
$$

(a) Construct the dual problem. (5\%)
(b) Solve graphically the dual problem in (a). (10\%)
(c) Using the results obtained in (b) and the complementary slackness theorem to identify the optimal solution for the primal problem. (10\%)
4. The starting and current tableaux of a given problem are shown. Find the values of the unknowns a through l. (10\%)

Starting Tableau

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	RHS
Row(0)	a	-1	3	0	0	0
	b	c	d	l	0	σ
	-1	2	e	0	1	1

Current Tableau

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	RHS
Row(0)	0	$1 / 3$	j	k	l	4
	g	$2 / 3$	$2 / 3$	$1 / 3$	0	f
	h	i	$-1 / 3$	$1 / 3$	l	3

