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Abstract 

This paper constructs a framework using the vine copula-GJR model to capture the struct

ure interdependence of assets and combines it with simulation studies to calculate the optimal 

portfolio, expected shortfall (ES), and component ES. This study aims to investigate the lever

age effects of the top five firms in Shanghai Stock Exchange market, measure their interdepen

dences, forecast their optimal portfolios, and identify the most risky firm at t + 1 period. The 

major empirical results show that the C-vines demonstrate a better performance than the D-vi

nes, and the biggest contributor to the overall risk is PetroChina firm under optimal weights. 
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1. Introduction 

In recent years, multivariate copulas have been commonly used in finance, econometrics, 

economics, and risk management, among others. Guégan and Maugis [2011] presented an 

econometric study of pair construction copulas. Nikoloulopoulos et al. [2012] used vine 

copulas to investigate the asymmetric tail dependence of some European financial markets. 

Czado et al. [2012] used the combination of C-vine copula and maximum-likelihood 

sequential estimation methods to estimate the conditional dependence of exchange rates. 

Evidently, vine copulas have become increasingly mature. Compared with vine copulas, 

standard multivariate copulas, such as multivariate normal and multivariate-t copulas, have 

become inflexible in high dimensions for limiting different dependency structures between 

pairs of variables. By contrast, vine approach is more flexible because bivariate copulas can 

be selected from a wide range of (parametric) families.  

Linear correlation is not invariant under nonlinear strictly increasing transformation. 

Moreover, financial data are more highly correlated during volatile markets and market 

downturns. Therefore, using common multivariate distributions to measure risk presents some 

disadvantages. These disadvantages are attributed to copula, which possesses the properties of 

capturing tail dependence and nonlinear correlation. Some studies have been conducted on 

risk values or expected shortfall (ES) based on copula approach. Songsak et al. [2014] showed 

a framework that uses the Monte Carlo simulation and presented the results of vine copula to 

estimate the ES of an equally weighted portfolio. Huang et al. [2009] estimated the risk value 

of a portfolio using conditional bivariate copula-GARCH method. Deng et al. [2011] 

combined the vine copula-GARCH model with the Monte Carlo simulation and the 

Mean-CVaR model to optimize a portfolio. Mendes and Marques [2012] used robust 

pair-copula-based estimates on expected return and covariance in the mean–variance analysis 

of Markowitz to obtain an efficient diversification of investments. Wu and Chen [2006] 

applied the copula-GARCH model to analyze the risk portfolio of the Chinese stock market. 

Guégan and Maugis [2011] reported an application of vine copulas in estimating the VaR of a 

portfolio. Apart from the analysis of portfolio optimization, systemic identification of 

important institutions and measurement of their contribution to the total loss are also 

indispensable components of risk management. Banulescu and Dumitrescu [2014] proposed 

the component ES (CES) to identify systemically important institutions and access their 

contributions to systemic risk at a specific date. They defined CES as a combination of 

volatility, correlation, conditional expectations on standardized innovative distributions, and 

firm size. Although Banulescu and Dumitrescu [2014] invented the CES equation to analyze 

systemic risks, they used GJR-GARCH and dynamic conditional correlation models to obtain 

linear correlations and conditional expectations.  

Some previous studies have used the vine copula-GARCH model to analyze risks and 
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optimization portfolios in stock markets. However, an analysis of China’s stock market 

portfolio based on vine copula-GJR with CES model has not been reported yet. To more 

comprehensively analyze portfolios, this paper used the vine copula-GJR model, which 

allows the construction of a flexible multivariate distribution with different margins and 

dependent structures by decomposing multivariate density into a series of bivariate copula and 

marginal densities.  

The contribution of this research involves five aspects. First, this study is the first to 

apply vine copula-GJR with CES model to examine optimal portfolios and illustrate the 

approach to analyze the Chinese stock market. Second, this study applies many pair copulas 

to construct C- and D-vine copula structures, thereby improving the flexibility of vine copula. 

Third, time-varying copulas are estimated in all unconditional pair copulas among vine 

structures because unconditional dependence may vary. Lastly, this approach is used to 

analyze the performance of different Chinese stock market portfolios. 

In this study, new and necessary insights on dependence structure, portfolio strategies, 

and risk prevention for investors and financial institutions are obtained using the stock prices 

of the top five firms in Shanghai stock market, namely, PetroChina, Industrial and 

Commercial Bank of China (ICBC), Agricultural Bank of China (ABC), and Bank of China 

(BC) from September 1, 2009 to May 28, 2014. The main findings of this study are as follows. 

First, based on vine copula-GJR model, long-term unexpected shocks cause large impacts on 

the volatilities of the top five firms, whereas the influence of short-term unexpected factors is 

very minimal. Sinopec exhibits leverage effect on the volatility of the structures, but an 

asymmetric effect is not observed in PetroChina, ICBC, ABC and BC. Nevertheless, 

PetroChina and Sinopec show the highest linear and rank correlations, whereas the upper and 

lower dependences of BC and ABC are the highest tail dependences. High degree of 

persistence is also obtained on the structure dependences of BC and ICBC, as well as of BC 

and ABC. Second, the model suggests that investors should invest few proportions in ICBC 

and Sinopec to avoid extreme losses. In addition, the ranks of the top five firms are accurately 

identified according to their risks. The five firms are ranked as PetroChina, BC, ABC, 

Sinopec, and ICBC based on their absolute contribution under optimal weights at 95% and 

99% confidence levels. In summary, the vine copula-GARCH approach enables the 

identification of structure dependence and potential nonlinear dependences among the top five 

firms in China’s stock market. The CES based on vine copula-GJR method with the Monte 

Carlo simulation enables investors to identify high-risk firms and to become perceptive of 

their risk strengths in China’s stock market. 

The paper is organized as follows. Section 2 presents the data, and Section 3 introduces 

the methodologies, including the GJR model, copulas, and C- and D-vine constructions. 

Section 4 discusses the portfolio optimization model, and Section 5 analyzes the empirical 

results. Lastly, Section 6 concludes the paper. 



4 財金論文叢刊，2016 年 6 月，第二十四期 

 

2. Data 

The data of this study consist of the top five firms in Shanghai Stock Exchange, namely, 

PetroChina, ICBC, ABC, BC, and Sinopec, which account for 22.8% of market capitalization. 

These data are obtained from September 1, 2009 to May 28, 2014, which yield a total of 877 

observations for each series. Figure 1 shows the close price trends of each firm, which shows 

high rank correlations. Datasets are transformed logarithmically, and their differences from 

the initial datasets are obtained; thus, the data obtained correspond to asset returns. 

Table 1 presents the descriptive statistics for the asset returns of the stock prices of the 

top five firms. All the series show approximately zero means, negative skewness except that 

in ABC, and excessive kurtosis. Moreover, the data for each variable are not normally 

distributed because the Jarque–Bera test rejected the null hypothesis for each index return. 

Results show that PetroChina, ICBC, BC, and Sinopec are skewed to the left, whereas ABC is 

skewed to right; all variables are peak and fat-tailed. Table 1 also shows that the empirical 

Kendall’s  of the components of each pair are closely related; the biggest dependence is 

observed between PetroChina and Sinopec. 

 

 

 

Figure 1 Top five stock prices of China 
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Table 1. Data Description and Statistics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Methodology 

According to studies in recent years, vine copulas have fixed application mode. As a 

general rule, the ARMA-GJR model is used first to fit the time series, which is assumed to 

have skewed student-t or skewed generalized error distributions. The corresponding 

standardized residuals of each margin are then considered as i.i.d. sample over time. Second, 

using cumulative distribution, the corresponding standardized residuals are transformed to 

obtain a uniform distribution between 0 and 1. Third, the preferred sequences of the vine 

copulas in different variable orders are selected according to their influence. In addition, the 

best family for each bivariate copula model is selected and estimated among the available 

copula families. Normally, the sequential maximum-likelihood method is used to obtain the 

starting values, then the maximum-likelihood method is used to estimate the parameters of the 

vine copulas, and the Akaike information criterion (AIC) values are evaluated to determine 

the best copulas. Remarkably, the empirical Kendall’s , Spearman’s ρ, and degree of 

freedom of the T copula can be used to determine the extent of the influence, which is similar 

to the studies of Aas et al. [2009] and Czado et al. [2012]. 

 

3.1 Specification for marginal distribution 

Glosten, Jagannathan and Runkle [1993] proposed GJR-GARCH model to judge 

whether there exist leverage effect in stock market. The form of the ARMA (P, Q)-GJR (K, L) 

model can be expressed as 

1 1

p q

t i t i i t i t

i i

r c r    

 

    
                                             

(1) 

 PetroChina ICBC ABC BC Sinopec 

 Mean -0.0003 -0.0002 -0.0001 -0.0003 -0.0006 

 Median  0.0000  0.0000  0.0000  0.0000 -0.0012 

 Maximum  0.1111  0.0717  0.0964  0.0615  0.0953 

 Minimum -0.1227 -0.1233 -0.0459 -0.0673 -0.3052 

 Std. Dev.  0.0115  0.0116  0.0110  0.0097  0.0180 

 Skewness -0.0990 -0.7637  0.8145 -0.2914 -5.3763 

 Kurtosis  28.5616  22.6663  11.6464  10.2380  96.8675 

 Jarque-Bera  23877.69  14218.31  2828.880  1926.801  326197.9 

 Probability  0.0000  0.0000  0.0000  0.0000  0.0000 

Kendall’s tau      

PetroChina 1.0000    0.3364 0.3180 0.3495 0.5198 

ICBC 0.3363      1.0000 0.5182 0.5169 0.3206 

ABC 0.3180      0.5181 1.0000 0.5171 0.2951 

BC 0.3495      0.5169 0.5171 1.0000 0.3532 

Sinopec 0.5198      0.3206 0.2951 0.3532 1.0000 
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t t th  
                                                             

(2) 
                                                    

 

2 2 2 2

1 1 1

[ 0]
K K L

t j t j j t j t j i t i

j j i

h h         

  

       
                             

(3) 

where 
1

1
p

i

i




 , 0  , 0i  , 0i  , 0j j    and 
1 1 1

1
1

2

K L K

i i i

j i j

  
  

     .  The 

leverage coefficient 
j  is applied to negative standardized residuals, giving negative 

changes additional weight. t  is called standardized residuals, which is assumed to be the 

skewed student-t or skewed generalized error distribution in this study. They can capture the 

characteristics of heavy tail and asymmetry. Fernandez and Steel [1998] proposed skewed 

student-t distribution, the formula is shown as follow, 

[0, ) ( ,0)

2
( , ) ( ) ( ) ( ) ( )

1
i

i v i v i ip v f I f I


    




 

 
  

 
,         (4) 

and the skewed generalized error distribution can be expressed as  

1( , ) (2 (1/ )) exp( )
(1 ( ) )

v

t

sged t v v

t

f v v v
sign x

 
  

  




   
 

                    (5) 

where  
0.5 0.5(2 / ) (1/ ) (3 / )A v v v      

2 2 2( ) 1 3 4S A      

12 ( )AS      

0.5 1(3 / ) (1/ ) ( )v v S      

 

where fv(.) is unimodal and symmetric around zero, and   is the skewness parameter that is 

defined from 0 to ∞; Ι denotes the indicator function and v is degree of freedom.  

 

3.2 Copulas 

Traditionally, we would use classical families of bivariate distributions such as bivariate 

normal, student-t, lognormal, and extreme value distributions to fit the sample data and to 

estimate the pairwise dependence. However, these classical families restrict the individual 

behavior of each variable because the individual behaviors have to be described by the same 

parametric family of univariate distribution.  

Copula models are able to completely circumvent this restriction. A copula function can 
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decompose the joint distribution into two parts: marginal distribution and dependence 

structure. Sklar [1959] was the first person to give the definition of a copula: Let x =

(x1, x2, ⋯ xn) be a random vector with the joint distribution function H and the marginal 

distribution F1, F2, ⋯ Fn; then, there exists a function C which is called a copula function. 

F(x1, x2, ⋯ , xn) = C(F1(x1), F2(x2),⋯ , Fn(xn))                            (6) 

In the light of formula (6), the copula function can be expressed as follows: 

1 1 1

1 2 1 1 2 2( , , , )= ( ( ), ( ), , ( ))n n nC u u u F F u F u F u                                     (7) 

If iF  is an absolutely continuous function that is strictly increasing, we have the density 

function as follows: 

1
1

1

1

1

1

( , , )
( , )

( , ) ( )

( , ) ( )

n
n

n

n i

n i

n i i

F x x
f x x

x x

C u u F x

u u x

c u u f x




 

 
 

  

                                                

(8) 

 

Copulas have many merits that help tremendously in studying dependence structures. It 

is worth mentioning that copulas can measure both the rank dependence and the tail 

dependence. Generally, we use Kendall’s tau to reflect the size of a nonlinear correlation. 

Rank correlation reflects the monotonic dependence between variables. The empirical 

Kendall’s tau coefficient is defined as follows: 

2( )
=

( 1)

c d c d

c d n n


 


                                                          
 (9) 

where c is the number of concordant pairs, and d is the number of discordant pairs. In addition, 

the Kendall’s tau coefficient can be calculated using the copula function (see Nelsen [2006] 

for details) as 

                                                                       (10) 

 

where X and Y are continuous random variables and C is the copula function, and u1 and u2 

are the values of the marginal probability distribution functions. Moreover, there is the 

possibility that the tail dependence may divide into upper tail and lower tail dependences, the 

definitions of which are written as  

 

                                                                        (11) 

 

and  

1 1

1 1

1 2 ( , )
: lim [ ( ) | ( )] lim

1
up

u u

u C u u
P Y G u X F u

u


 

 

 

 
   

  ,                    
(12) 

2, 1 2 1 2
[0,1]

4 ( , ) ( , ) 1X Y K C u u dC u u   

1 1

0 0

( , )
: lim [ ( ) | ( )] limL

u u

C u u
P Y G u X F u

u


 
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where F and G are the marginal cumulative distribution functions of X and Y, respectively. 

Some copulas, such as the Gaussian and Frank copulas, possess the characteristic 

0up L   , while most copulas can capture upper tail and/or lower tail dependence. For 

instance, Clayton copula can measure lower tail dependence, and Gumbel copula can measure 

upper tail dependence, while student-t copula reflects symmetric tail dependence. 

Patton [2006] proposed the time-varying copulas that include the Gaussian and 

symmetric Joe copulas. Manner and Reznikova [2012], Wu et al. [2012] further researched 

the time-varying copulas. In our study, we follow the formula of the research of Wu et al. 

[2012]. The formula of time-varying T copula can be expressed as
 

* *

1 1 1( 0.5)( 0.5)t t t tc u v                                               (13) 

where * ln[(1 ) / (1 )]t t t      , which is used to ensure the correlation fall within (-1, 1). 

We fix the parameter degree of freedom of T copula. So the time-varying correlation is 

reflected by the linear correlation  . 

 

3.3 C-vine and D-vine constructions 

Vine copulas are a kind of multivariate copulas which use bivariate copulas to construct 

multivariate distributions, and specify the dependence and conditional dependence of selected 

pairs of random variables and all marginal distribution functions. A d-dimensional vine copula 

is decomposed into d(d-1)/2 pair-copulas, and the densities of multivariate vine copulas can 

be factorized in terms of pair-copulas and margins. Bedford and Cooke [2001, 2012] proposed 

two subclasses of PCC, which we call as C-vine and D-vine copulas. Note that C-vine and 

D-vine copulas have been widely used in finance asset returns and other data, for example, in 

studies conducted by Aas et al. [2009], Min and Czado [2010], and Czado [2010]. 

For C-vines and D-vines, the densities are, respectively [2009], 

1

1 2 1: 1, 1, , 1 1: 1

1 1 1

( , , , ) ( ) ( ( ), ( ))
d jd d

d k j j i jj i j j i j j

k j i

f x x x f x c F x x F x x


    

  

          (14) 

1

1 2 1: 1, 1, , + 1 1 1: 1

1 1 1

( , , , ) ( ) ( ( ), ( ))
d jd d

d k i i i j i ji i j i i j i i i j

k j i

f x x x f x c F x x F x x


         

  

    (15) 

where ( )F    is the conditional distribution which can be got from the first deviation of 

copulas, for example, 

 1 2, 1 2

1 2

2

( ( ), ( ))
( | ) ,

( )

x xC F x F x
F x x

F x





                                          

 (16) 
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is the conditional distribution, given one variable. The marginal conditional distributions of 

given multivariate variables can be expressed by the form F(X|υ), 

,
( ( | ), ( | ))

( | ) ,
( | )

j j
j j jx

j j

C F x F
F x

F

 
  


 


 








                                    

(17) 

where  stands for all the conditional variables. The copula family used in our work includes 

Gaussian copula, T copula, Clayton copula, Gumbel copula, Frank copula, BB1, BB7, BB8, 

and rotate copulas. Different copulas have different characteristics. In order to accurately 

capture the dependency, we apply copulas as much as possible. 

In this study, we turn to the sequential maximum likelihood estimation method for 

obtaining the initial values, and then use the maximum likelihood estimation method to 

estimate the parameters of the C-vine and D-vine copulas. Aas et al. [2009] and Czado et al. 

[2012] introduced the detailed calculation process. A brief process of sequential maximum 

likelihood estimation can be described as follows. First, the maximum likelihood estimation 

method is used to estimate the parameters of each non-conditional copula; second, the 

observations are computed by using the conditional distribution function (Formula (16)) and 

the known non-conditional copulas in the first step; third, the parameters of the conditional 

copulas are estimated on one variable; fourth, the observations for the copulas are computed, 

given two variables, by using Formula (17); and, last, the copulas, given two variables, are 

estimated using the observations from the fourth step. Through these five steps, we can get 

the initial values of the 4-dimensional vine copulas. If there are more 4-dimensional 

variables, the observations may be obtained by using Formula (17) as well.  

 

4. Portfolio Optimization Model 

In risk management, VaR is probably the most popular risk measure. But, it does not 

satisfy the property of subadditivity. There is an alternative method which is called as 

expected shortfall, which satisfies the property of subadditivity and provides a more 

conservative measure of losses relative to VaR. Also, the component expected shortfall might 

be useful as a supplement to expected shortfall in terms of measuring systemic risk. By 

following the method discussed by Rockafellar and Uryasev [2002], the optimization 

approach-based minimum expected shortfall can be formulated as follows: 

 
1

1
min ( ) min{ ( ) [ ( )] },

(1 )

q
T

k

k

ES W VaR W W r VaR W
q

  






   


              (18) 

where [t]+=max(t, 0) and 
1

1
n

i

i

w


 . ( )VaR W  is the VaR under the   confidence level 

and the W portfolio allocations, and rk is the return vector from the Monte Carlo simulation of 

the vine copula. 

Banulescu and Dumitrescu [2014] defined the component expected shortfall as that 
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which measures the absolute contribution of a firm to the risk of the financial system; the 

systemic risk can be measured by linearly aggregating the component losses, as well. They 

are given by  

, 1( ( ))m t

it it

it

ES VaR W
CES w

w





                                              (19) 

1

( ( ))
% ( ( )) 100

( ( ))

it

it

t

CES VaR W
CES VaR W

SES VaR W







                                     (20) 

and 
1

1

( ( )) ( ( ))
n

t it

i

SES VaR W CES VaR W 



                                    (21) 

With these formulas, the absolute contribution of a firm and the systemic risk can be 

measured under given optimal weights, based on the minimum ES portfolio. For 

out-of-sample systemic risk, Banulescu and Dumitrescu [2014] show it may be solved using 

(22): 

  
, 1

, 1

, 1

1

( )
% ( )

( )

i T

i T n

i T

i

CES C
CES C

CES C












                                        (22) 

where C  is set to be the out-of-sample VaR-HS for cumulative market returns at a coverage 

rate of 1%, 5% and 10%. 

 In this study, the forecasting of the t+1 period optimization portfolios is carried out by 

combining the vine copula-GJR model with ES and CES, and a collection of the return rk at 

period t+1 is generated by the Monte Carlo simulation. The process, to summarize, can be 

illustrated probably in four steps. First, use the estimation results of the preferred vine copula 

to generate the random number 10,000. Second, use the inverse function of the corresponding 

marginal distribution (skewed student-t or skewed generalized error distribution) of each 

variable to get the standardized residuals. Third, forecast the value of each variable at the t+1 

period by using the ARMA-GJR model; thus, 10,000 possible returns are generated at the t+1 

period for each variable, which can be expressed as  

, 1 , , 1 , , 1 , 1 , 1

1 1

ˆˆ ˆˆ ,
p q

n n

m t m i m t i m i m t i m t m t

i j

r c r h         

 

    
                           

(23) 

where n=1,2, 10,000, m equals to the number of variables, 
1

, 1 , 1=F ( )n n

m t m m tu 

  , and um is from 

the simulation of the preferable vine copula, , 1
ˆ
m th   is forecasted by variance equation of 

ARMA-GJR model. Last, by giving an unknown weight to each variable, the optimal 

portfolio weights of the selected assets are estimated under the minimum ES framework. 

Repeating 1000 times these four steps, it can able to obtain 1000 weights for each variable. 

Therefore, the mean value of weights and standard error can be obtained for each variable, 
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respectively. In addition, CES%i,t+1 can be obtained by equation 22. 

In addition, a C-vine copula is used to generate random numbers. The specific process of 

generation—for example, take the generation of the C-vine copula of four variables — can 

probably be summarized in the following steps:   

(1) Independently generate z1, z2, z3, and z4 from the uniform distribution on [0, 1]. 

(2) Let z1=u1 and z2=F(u2|u1); then, u2 can be calculated using the inverse function of Formula 

(16), namely, u2=F-1(z2|u1). 

(3) Assume that 2 1 3 1
3 3 1 2

2 1

( ( | ), ( | ))
( | , )

( | )

C F u u F u u
z F u u u

F u u


 


; then, u3= F-1(z3|u1,u2). 

(4) By the same token, we assume that 

3 1 2 4 1 2
4 4 1 2 3

3 1 2

( ( | , ), ( | , ))
( | , , )

( | , )

C F u u u F u u u
z F u u u u

F u u u


 


 

Then we can get u4= F-1(z4|u1,u2,u3). Regardless of the number of variables that are 

present, it is advisable that we use Formula (17) to generate the recursive random numbers of 

the C-vine or D-vine copula structure. 

 

5. Application to China Sector Indices 

5.1 Results of ARMA-GJR model 

ARMA (1, 1)-GJR (1, 1), ARMA (2, 2)-GJR (1, 1), and ARMA (1, 0)-GJR (1, 1) are 

selected as the financial return data for PetroChina and Sinopec, ABC and BC, and ICBC, 

respectively. Table 2 shows the results of ARMA-GJR models for all the asset returns. With 

the assumption that the standardized residuals of PetroChina, ABC, BC, and Sinopec have 

skewed student-t distributions and that of ICBC have skewed generalized error distribution, 

the α and β parameters are found significant at 90% confidence level. This result indicates that 

all returns exhibit clustered and persistent volatilities. Furthermore, the asymmetric parameter 

 for Sinopec is significant and exhibits leverage effect on structural volatility, but an 

asymmetric effect is not observed in PetroChina, ICBC, ABC, and BC markets. The skewness 

parameter  and degree of freedom  are significant at 99.99% confidence level, which imply 

that the skewed student-t and skewed generalized error distributions fit very well for each 

asset returns. 

Prior to copula analysis, the marginal distribution of each series is tested if it satisfies the 

assumptions of serial independence and uniform distribution (0, 1). If any of these two 

assumptions is rejected, then inaccurate specification of the marginal distribution may cause 

incorrect fit to the copulas. Thus, testing these two assumptions for marginal distribution and 

model specification is critical in constructing multivariate distribution models using copulas 

[2006]. The Box–Ljung and Kolmogorov–Smirnov (KS) tests are used to evaluate the serial 

independence of the marginals and their distribution specifications, respectively. The test 

results in Table 3 show that none of the probability values obtained in the KS test rejected the 
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null hypothesis at 95% confidence level. Moreover, all the return data passed the Box–Ljung 

test at 90% confidence level. Therefore, both tests have confirmed the use of the skewed 

student-t and skewed generalized error distributions to fit the margins. The margins are also 

found to satisfy the assumptions of uniform i.i.d. on (0, 1). 

 

Table 2 Results of ARMA-GJR Model 

 
PetroChina ICBC ABC BC Sinopec 

Ar1 
0.8132*** 

(0.0799) 

-0.6653*** 

(0.0358) 

-0.1729*** 

(0.0395) 

-0.1579*** 

(0.0106) 

-0.9282*** 

(0.0935) 

Ar2 --- --- 
0.7841*** 

(0.0408) 

-0.9549*** 

(0.0020) 
--- 

Ma1 
-0.8736*** 

(0.0655) 

0.6148*** 

(0.0371) 

0.1234*** 

(0.0238) 

0.1352*** 

(0.0040) 

0.9431*** 

(0.0820) 

Ma2 --- --- 
-0.8110*** 

(0.0706) 

0.9531*** 

(0.0040) 
--- 

  
0· 

(0) 

0** 

(0) 

0· 

(0) 

0 

(0) 

0* 

(0) 

  
0.0683* 

(0.0332) 

0.1548** 

(0.0517) 

0.0811* 

(0.0321) 

0.0749· 

(0.0432) 

0.1099*** 

(0.0092) 


 

0.8941*** 

(0.0428) 

0.7279*** 

(0.0772) 

0.8934*** 

(0.0428) 

0.7858*** 

(0.1118) 

0.8771*** 

(0.0336) 

  
-0.0290 

(0.0320) 

-0.0631 

(0.0634) 

-0.0416 

(0.0373) 

-0.0184 

(0.0447) 

-0.1015*** 

(0.0089) 

  
1.0680*** 

(0.0413) 

1.0079*** 

(0.0249) 

1.0196*** 

(0.0377) 

1.0848*** 

(0.0470) 

1.1208*** 

(0.0406) 

  
3.5434*** 

(0.4738) 

1.0896*** 

(0.0671) 

3.6564*** 

(0.5122) 

3.7450*** 

(0.4767) 

3.3876*** 

(0.3996) 

LogL 2851.619 2826.319 2819.515 2924.174 2924.174 

AIC -6.4849 -6.4272 -6.4071 -6.6458 -6.6458 

Note: Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘·’0.1. 

The numbers in the parentheses are the standard deviations. 

 

 

 

Table 3 KS Test and Box-Ljung Test 

 PetroChina ICBC ABC BC Sinopec 

KS test statistics 0.0322 0.0410 0.0420 0.0394 0.0209 

P value 0.3240 0.1051 0.0905 0.1308 0.8378 

P value of LM test       

First moment 0.7350 0.9885 0.4214 0.9587 0.1382 

Second moment 0.1584 0.7897 0.6235 0.5997 0.8737 

Third moment 0.6561 0.9899 0.3467 0.7639 0.5636 

Fourth moment 0.1098 0.8695 0.8512 0.8107 0.9229 
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5.2 Results for copulas 

In this paper, copula families, including the Gaussian, T, Clayton, Frank, Gumbel, Joe, 

BB1, BB6, BB7, BB8, and rotate copulas, are used. Further details regarding these copula 

families, which include their properties and characteristics, are discussed by Liu and 

Sriboonchitta [2012] and Sriboonchitta et al. [2013]. 

According to the maximum rank correlation principle of the empirical Kendall’s  

method, the orders of C- and D-vine copula structures are 4, 1, 2, 3, 5 and 1, 5, 4, 2, 3, 

respectively, with 1, 2, 3, 4, and 5 representing PetroChina, ICBC, ABC, BC, and Sinopec, 

respectively. Tables 4 and 5 present the estimated results for the C- and D-vine copulas. Table 

4 shows that the C-vine copula has smaller values than that of the D-vine copula in Table 5, 

which explains the preference for C-vine copula over D-vine copula in this study.  

The following discussions attempt to explain the estimated results in Tables 4 and 5. The 

first column of each table shows all the best copula families among the candidates based on 

AIC. As shown, the T, T, T, T, T, Frank, T, Frank, Clayton, and Clayton copulas are more 

suitable than the other families under the C-vine copula structure, whereas the T, T, T, T, 

Frank, Rotate Gumbel 180 degrees, T, Gumbel, Frank, and Frank copulas are the suitable 

copula families under the D-vine copula structure. As noted above, the C-vine copula better 

accounts for the potential asymmetry of structure dependence. Considering that four of the 

selected C-vine copulas are non-elliptical, different C-vine copulas are selected, namely, the 

Gaussian and the student-t copulas. In addition, half of the D-vine copulas are non-elliptical. 

The choice of flexible vine copula model for the joint distribution of asset returns in this study, 

which accounts for possible tail dependence between variables, is well justified. 

The results show the highest linear and rank correlations between 1 (PetroChina) and 5 

(Sinopec). The linear correlation and Kendall’s  are equal to 0.7036 and 0.5059, respectively. 

The upper and lower dependences between 4 (BC) and 3 (ABC) are the highest tail 

dependences. However, unconditional and conditional bivariate copulas exist in vine copulas. 

The implications of unconditional copulas can be directly interpreted compared with that of 

conditional dependences, which are more difficult to explain. Nonetheless, the conditional 

copulas are explained by comparing them with unconditional copulas. First, the dependence 

parameter between 2 (ICBC) and 5 conditional on 1 and 4 is not significant, which implies 

that ICBC and Sinopec are independent from PetroChina and BC. Conversely, the estimated 

parameter between 2 and 5 conditional 4 is significant, which indicates that PetroChina 

affects the dependence between ICBC and Sinopec. Second, the C41 and C41|5 are compared. 

Sinopec converts the T copula structure of 1 and 4 to Frank copula and modifies their 

Kendall’s  values from 0.3601 to 0.1757. Third, both C15 and C15|4 are T copula, and the 

estimated parameter changes are not large. Thus, the effect of BC on the dependence between 

1 and 5 is assumed to be relatively low. Lastly, when PetroChina, ICBC, and BC are set as 

condition variables, the dependence between ABC and Sinopec becomes independent. 
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Therefore, as more information is provided, the correlations become lower. 

 

Table 4. Estimated Results of C-vine Copula  

Copulas parameters 
Lower and 

upper tail  

Kendall’s 

tau 
AIC 

T (C41) 

0.5359*** 

(0.0237) 
0.1824 

0.3601 -291.6867 
6.2036*** 

(1.3194) 
0.1824 

T (C42) 

0.6992*** 

(0.0165) 
0.3024 

0.4929 -616.7345 
6.0000*** 

(1.1377) 
0.3024 

T (C43) 

0.7050*** 

(0.0185) 
0.4455 

0.4981 -669.0335 
3.1063*** 

(0.4451) 
0.4455 

T (C45) 

0.5351*** 

(0.0241) 
0.1702 

0.3595 -300.1966 
6.5815*** 

(1.6589) 
0.1702 

T (C12|4) 

0.2092*** 

(0.0328) 
0.0112 

0.1341 -44.7292 
12.2468** 

(4.7366) 
0.0112 

Frank ( C13|4) 
1.2472*** 

(0.2012) 
0 0.1364 -32.5288 

T ( C15|4) 

0.6065*** 

(0.0223) 
0.2115 

0.4148 -404.7854 
6.5987*** 

(1.5949) 
0.2115 

Frank ( C23|14) 
2.4140*** 

(0.2193) 
0 0.2539 -127.5699 

Clayton ( C25|14) 
0.0470 

(0.0338) 
0 0.0229 -0.1826 

Clayton ( C35|124) 
0.0261 

(0.0289) 
0 0.0129 1.0987 

Sum  
  

2.5036 -2486.349 

Note: The significant codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “·”0.1. 

The numbers in the parentheses are the standard deviations. 
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Table 5. Estimated Results of D-vine Copula  

Copulas parameters 
Lower and 

upper tail  

Kendall’s 

tau 
AIC 

T (C15) 

0.7136*** 

(0.0169) 
0.3761 

0.5059 -643.8708 
4.5386*** 

(0.8920) 
0.3761 

T (C54) 

0.5327*** 

(0.0246) 
0.2022 

0.3576 -301.0207 
5.5783*** 

(1.2841) 
0.2022 

T (C42) 

0.6991*** 

(0.0165) 
0.3274 

0.4928 -617.2735 
5.3542*** 

(0.8414) 
0.3274 

T (C23) 

0.6988*** 

(0.0168) 
0.3296 

0.4925 -611.6604 
5.2930*** 

(0.9795) 
0.3296 

Frank (C14|5) 
1.6228*** 

(0.2106) 
0 0.1757 -58.3364 

R-Gumbel ( C25|4) 
1.0921*** 

(0.0238) 
0.1135 0.0843 -21.8005 

T ( C34|2) 

0.4566*** 

(0.0295) 
0.1629 

0.3018 -194.5773 
5.6065*** 

(1.2888) 
0.1629 

Gumbel ( C12|45) 
1.1031*** 

(0.0257) 
0.1254 0.0934 -23.8564 

Frank ( C35|24) 
0.5245** 

(0.2097) 
0 0.0581 -4.5265 

Frank ( C13|245) 
0.5452** 

(0.2052) 
0 0.0604 -5.0871 

Sum  
  

2.5036 -2482.01 

Note: The significant codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “·”0.1. 

The numbers in the parentheses are the standard deviations. 

 

Despite the outstanding performance of vine copula in multivariate distributions, the 

unconditional dependence may still vary. Thus, time-varying copulas are estimated for all 

unconditional bivariate copulas of the vine structures. Considering that all unconditional 

copulas are T copula, the time-varying T copula model is used. The estimated results of 

time-varying copulas are shown in Table 6. In terms of AIC, the time-varying C42 and C43 

demonstrate better explanations than the static T copula, whereas other copulas exhibit the 

opposite. The autoregressive parameters α in the time-varying T copulas C42 and C43 are equal 

to 0.9257 and 0.9202, respectively, which imply a high degree of persistence on the structure 

dependences of BC and ICBC, BC, and ABC. The dynamic Kendall’s  from the T copulas 

C42 and C43 are illustrated in Figure 2. The smallest and largest Kendall’s  values on BC and 

ICBC are approximately 0.38, and 0.62, respectively, which indicate a constant shift of 
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nonlinear correlations with time. For BC and ABC, the smallest and largest Kendall’s  values 

are 0.42 and 0.63, respectively. In addition, the dependences between BC and ICBC as well as 

BC and ABC show similar volatility structures. 

 

Table 6. Estimated Results of Time-Varying Copulas  

Copulas          AIC 

T (C41) 2.3235 *** 

(0.1491) 

-0.9598 *** 

(0.0081) 

0.5479  

(0.3709) 

5.7218 *** 

(1.5020) 

-290.5702 

T (C42) 0.0891 *** 

(0.0237) 

0.9257 *** 

(0.0115) 

0.7879 ** 

(0.2927) 

5.4658 *** 

(1.0152) 

-621.0715 

T (C43) 0.1051** 

(0.0325) 

0.9202*** 

(0.0177) 

0.7754* 

(0.3334) 

3.0363*** 

(0.4425) 

-672.6256 

T (C45) 1.0367 

(2.0488) 

0.1462 

(1.6588) 

0.1198 

(0.9831) 

5.2537*** 

(1.1603) 

-296.4920 

T (C15) 2.5425· 

(1.5229) 

-0.3837 

(0.8111) 

0.4988 

(0.8214) 

4.8271*** 

(1.0272) 

-639.4169 

T (C23) 3.5097*** 

(0.1429) 

-0.9543*** 

(0.0315) 

-0.3686 

(0.2485) 

5.4145*** 

(0.5441) 

-609.1286 

Note: The significant codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “·”0.1. 

The numbers in the parentheses are the standard deviations. 

 
Figure 2. Dependence estimates (Kendall’s tau ) from T copula 
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5.3 Portfolio optimization  

As stated in the section entitled “Portfolio Optimization Model,” the minimum ES (MES) 

and C-vine copula with Monte Carlo simulation framework is calculated at 90%, 95%, and 

99% confidence levels. Table 7 shows the optimal portfolio-based MES values at 90%, 95%, 

and 99% confidence levels. W1, W2, W3, W4, and W5 represent the weight of PetroChina, 

ICBC, ABC, BC, and Sinopec, respectively. MES is the minimum expected shortfall under 

optimal portfolios, and EWES is the equally weighted expected shortfall. As shown in Table 7, 

all mean weight values are significant at 1% confidence level, and the ES under optimal 

portfolio is less than the EWES on each confidence level. These results suggest that the 

optimal portfolios are beneficial in reducing investment risk. The weights of ICBC show the 

lowest investment allocation at all confidence levels, whereas the weights of PetroChina show 

the highest investment allocation. The weights of ICBC, BC, and Sinopec gradually increase 

as the risk increases, which indicates that the three assets largely contribute to the risk. The 

weights of ABC decrease from 21.14% to 17.81% because investors become more risk 

tolerant to achieve higher expected returns at higher confidence levels. Table 8 shows the 

absolute contribution of each share based on CES. Two types of absolute contributions are 

calculated. One is based on optimal portfolios, and the other is based on equal weight. First, 

all CES under optimal weights are smaller than equally weighted CES. This result verifies the 

importance of investment allocation in reducing speculative risk. Second, the absolute 

contributions of PetroChina and Sinopec are found negative at 90% confidence level, which 

indicates a portfolio risk diversification. In addition, the absolute contributions of each share 

have large differences under equally weighted CES. Therefore, more contributions are 

considered to have more risk. Lastly, the institutions are accurately ranked according to their 

risks. Based on their absolute contribution under optimal weights at 95% and 99% confidence 

levels, the ranking of the top five firms is PetroChina, BC, ABC, Sinopec, and ICBC. 

 

Table 7. Optimal Portfolio Based on Minimum Expected Shortfall 

 W1 W2 W3 W4 W5 MES EWES 

90% 0.4346*** 

(0.0013) 

0.0001** 

(0) 

0.2114*** 

(0.0015) 

0.3491*** 

(0.0016) 

0.0048*** 

(0.0004) 

0.0082*** 

(0) 

0.0092*** 

(0) 

95% 0.4362*** 

(0.0016) 

0.0012*** 

(0.0002) 

0.2032*** 

(0.0018) 

0.3542*** 

(0.0021) 

0.0052*** 

(0.0004) 

0.0109*** 

(0) 

0.0121*** 

(0) 

99% 0.4231*** 

(0.0027) 

0.0106*** 

(0.0007) 

0.1781*** 

(0.0031) 

0.3806*** 

(0.0037) 

0.0075*** 

(0.0005) 

0.0184*** 

(0) 

0.0203*** 

(0) 

Note: The significant codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “·”0.1. 

The numbers in the parentheses are the standard deviations. 
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Table 8. The Absolute Contribution of Each Share Based on Component Expected Shortfall 

 PetroChina ICBC ABC BC Sinopec SES 

EW90 -0.0128 0.7696 0.3371 0.0364 -0.1303 0.0121 

Weight90 0.0835 0 0.3537 0.5558 0.0069 0.0113 

EW95 0.1836 0.2306 0.2364 0.1196 0.2296 0.0132 

Weight95 0.3916 0.0016 0.2375 0.3667 0.0025 0.0131 

EW99 0.1682 0.1958 0.1665 0.1697 0.2995 0.0477 

Weight99 0.4225 0.0102 0.1699 0.3865 0.0107 0.0390 

Note: EW90, EW95, and EW99 represent the equal-weight CES at confidence levels 90%, 95%, and 99%, 

respectively. Weight90, weight95, and weight99 represent the optimal portfolio obtained from Table 7. SES 

represents the systemic risk. 

 

 

6. Conclusions 

In this paper, the combination of vine copula-GJR model with ES and CES is used to 

model the structure dependence of multivariate China stock exchange market and fitted 

models are used to simulate data and assess the variability of the risk measures.  

First, the daily data are analyzed. The marginals are modeled using the skewed student-t 

and generalized error distributions. Sinopec exhibits leverage effect on the volatility structures, 

but an asymmetric effect is not observed in PetroChina, ICBC, ABC, and BC markets. Second, 

the C-vine copula is observed to perform better in terms of AIC. The T, T, T, T, T, Frank, T, 

Frank, Clayton, and Clayton are the best copulas among the candidates for 5D C-vine 

structures. The Kendall  rank correlation and tail dependence are also reported. Third, a high 

degree of persistence on structure dependence between BC and ICBC as well as BC and ABC 

is found. Fourth, the risk measures of equally weighted and optimal portfolios are assessed 

using simulations. The ES and component shortfall are calculated using the simulation from 

C-vine copula structure instead of that from multivariate distribution because the C-vine 

copula structure is possibly more credible considering that vine copulas allow different 

structure dependences between pairs of variables and can also identify tail dependence. 

Finally, the findings revealed that investors become more risk tolerant to achieve higher 

expected returns. 
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