
International Journal of Network Security, Vol.2, No.3, PP.219–227, May 2006 (http://isrc.nchu.edu.tw/ijns/) 219

A Memory Symptom-based Virus Detection

Approach

Hsien-Chou Liao and Yi-Hsiang Wang

(Corresponding author: Hsien-Chou Liao)

Department of Computer Science and Information Engineering, Chaoyang University of Technology

168 Gifeng E. Rd., Wufeng Taichung County, Taiwan 413, R.O.C. (Email: hcliao@mail.cyut.edu.tw)

(Received Aug. 5, 2005; revised and accepted Sept. 12, 2005)

Abstract

The widespread use of the Internet has caused computer
security to become an important issue. Currently, anti-
virus software is the primary mechanism that prevents
computers from the damage of viruses. Such a mechanism
relies on the update of virus patterns (or signatures) to
detect new viruses. However, serious damage is usually
caused before the update occurs. In addition, a few mod-
ification of the same virus can pass the pattern matching.
This is one reason that the quantity of new viruses has ex-
ceeded 600 per month. This situation has also caused inef-
ficiency in virus scans. To overcome the above problems, a
new memory symptom-based approach is proposed in this
paper. This idea comes from how diseases are diagnosed
in real life. Doctors diagnose diseases based on the symp-
toms of a patient, such as a fever, a cough, etc., rather
than based on the type of virus. Similarly, the program
execution requires the usage of computer resources, such
as CPU, memory, network, etc. We define the usage of a
resource as a “symptom” of the program. Viruses can be
detected according to their symptoms. In this paper, we
focus on the memory symptom. The memory symptom of
an unknown program is sampled, encoded, and matched
with those of sample programs. Then a certainty factor
(CF) value is computed to represent the possibility that
the unknown program is a virus. In the experimental
study, 109 test programs were detected. According to the
analysis of the confusion matrix, a true positive rate can
be as high as 97 percent, and a false positive rate can
be 13 percent while the unknown rate is only 18 percent.
This shows that the memory symptom-based approach is
effective for virus detection.

Keywords: Computer security, memory symptom, virus
detection

1 Introduction

The widespread use of the Internet and the popularity
of computers have caused computer security to become

an important issue. For many reasons, it is important
to prevent the computers from the damage of viruses.
Currently, anti-virus software is the most frequently used
mechanism against viruses. Anti-virus software relies on
a set of feature instructions, called patterns or signatures.
Patterns are made from known viruses. A new virus can
be detected only when its pattern is extracted and in-
cluded in the pattern database of an anti-virus software.
The period from the breakout of a virus to the extrac-
tion of its pattern is called zero-day. Serious damage is
usually done on zero-day. For example, the famous Code-
Red worm infected 359,000 computers within 14 hours [1].
The effect of the Slammer worm was even more damag-
ing, infecting 75,000 computers within only ten minutes
[4]. This is one problem of pattern-based anti-virus soft-
ware.

In addition, a few modifications of the same virus can
pass the pattern matching of anti-virus software. This is
one reason that the quantity of new viruses has exceeded
600 per month. The increase of viruses also increases
the number of patterns, causing the efficiency of virus
detection to become worse and worse.

Although pattern-based anti-virus software is com-
monly used, three problems still exist:

1) The damage during zero-day is inevitable. Virus de-
tection relies on the update of patterns. Serious dam-
age may be caused during zero-day [7]. Some viruses,
for example, the Netsky virus, can even cause net-
work bandwidths to be occupied in order to prevent
the update of patterns. The longer zero-day is, the
more serious the damage can be.

2) Virus scanning is inefficient. The number of patterns
increases very fast. This causes the time required for
scanning viruses to be longer than ever before.

3) Viruses easily mutate. For example, there were more
than 26 mutations of the Netsky virus within two
months. This problem causes an increase in the num-
ber of patterns. This increase in the number of pat-
terns means that an anti-virus software must update

International Journal of Network Security, Vol.2, No.3, PP.219–227, May 2006 (http://isrc.nchu.edu.tw/ijns/) 220

patterns frequently. Too many patterns cause inef-
ficiency in the scanning of viruses. This is a vicious
circle.

In order to overcome the above problems, a memory
symptom-based virus detection approach is proposed in
this paper. It differs from the pattern-based approach.
The idea comes from understanding how diseases are di-
agnosed in real life. Doctors diagnose diseases based on
the symptoms that a patient has, such as a fever, a cough,
etc., rather than the type of virus. Although a disease
may be caused by many kinds of viruses, its symptoms
are almost the same. Similarly, if a virus can be detected
based on the symptoms it causes, regardless of how the
virus mutates, it can still be detected.

In this paper, we mainly focus on the memory symp-
tom of a program. The memory is consumed after the
execution of a program. The memory symptom is the
timely memory usages of program execution. Memory
usage is sampled in fixed intervals and analyzed to detect
whether a program is a virus or not. Basically, it is easy
to generate a new viruses but difficult for them to cause
new symptoms. The symptom-based approach is a new
approach for detecting viruses.

The rest of the paper is organized as follows. Section
2 presents some related works. Section 3 explains further
what the memory symptom is. Section 4 presents the
proposed symptom-based approach. Section 5 presents
the experimental study. And, finally, section 6 gives the
conclusion of this paper.

2 Related Works

Many studies were conducted on how to detect computer
viruses. For example, Lee et al. proposed a Virus In-
struction Code Emulation (VICE) system [3]. The sys-
tem provides a virtual environment for the execution of
suspicious programs. A series of executed instructions
are matched with those in a well-defined knowledge base
in order to judge whether the program is a virus or not.
3,562 viruses were used in the experiment. 74.5 percent
of the viruses were detected successfully.

In addition, Okamoto et al. proposed a novel approach
for recovering infected files [6]. A set of heterogeneous
agents is installed in different computers connected via
network. Files are stored in more than one computer.
An agent compares files with the same files in different
computers. A file is judged to be infected when the same
file in two computers is different. The infected file is re-
covered from the uninfected one. In other words, virus
detection is the backing up and restoring of files. How-
ever, the approach cannot detect infected files without
any modifications on themselves but their execution may
cause malicious actions. For example, the execution of a
file sends a large amount of e-mails.

Wang et al. used data mining technology incorporating
the decision tree and Bayesian network to detect viruses
[9]. A set of feature instructions is mined from a set

Time(s)

8273645546372819101

M
em

o
ry

U
sa

g
e(

K
B

)

9000

8000

7000

6000

5000

4000

3000

NetSky

MediaPlayer

Figure 1: Memory usages of two programs

of viruses. The feature instructions are learned by the
decision tree and Bayesian network. Then the decision
tree and Bayesian network are used for detecting viruses.
The accuracy rate was 79.4 percent in their experimental
study.

Schultz et al. also utilized data mining technology for
virus detection [8]. A tool, Hexdump, is used to convert
a binary file into a series of hex codes. A sequence of
bytes is extracted from the hex codes. Then the byte
sequence is learned using the multi-naive Bayes algorithm.
The learning results are used for virus detection. The
experimental results showed that the accuracy rate was
97.76 percent.

These studies used pattern-based approaches. The
problems presented in the previous section still exist.

3 The Memory Symptom of Pro-

gram Execution

A symptom is defined as the usage of computer resources
when a program is running. Among all the resources, the
CPU and the memory are necessary for program execu-
tion. In this study, memory symptom is used for virus
detection. The memory usage of two programs is shown
in Figure 1. One is a normal program (Media Player) and
the other is a virus (Netsky). The x-axis represents the
time and y-axis represents the memory usage in kilobytes.
It is easy to distinguish the two curves.

Two examples are also shown in Figure 2 and Figure 3.
In Figure 2, ten curves for ten mutations of the Netsky
virus are shown. It can be clearly seen that the ten curves
are almost the same.

In Figure 3, eight curves for the memory usage in Pow-
erPoint is shown. Different sizes of PowerPoint files were
opened to illustrate the influence of file size on memory
usage. The ending “ 1” given to the names of the curves

International Journal of Network Security, Vol.2, No.3, PP.219–227, May 2006 (http://isrc.nchu.edu.tw/ijns/) 221

Tims(s)

8273645546372819101

M
em

or
y

U
sa

ge
(K

B
)

5000

4000

3000

2000

NetSky.ad

NetSky.b

NetSky.c

NetSky.d

NetSky.k

NetSky.p

NetSky.t

NetSky.y

NetSky.z

NetSky.ac

Figure 2: Memory usages of ten Netsky virus mutations

indicates that the respective PowerPoint file was not used
after it was opened. The ending “ 2” given to the names
of the curves indicates that the respective file was used
after it was opened. These curves are almost the same
except for the curve “PPT 3.56M 2”. The rapid increase
in memory usage is caused by a series of copy-paste oper-
ations of picture objects. According to these curves, the
file size has only a little effect on memory usage. The
file being worked on by a user may affect memory usage
more. In general, file-type viruses usually do not have a
user interface. A user working on a file is not considered
in our research.

Based on the above examples, we can see that the mem-
ory symptom represents specific characteristics of pro-
grams. It is feasible to detect viruses based on the mem-
ory symptom.

4 The Virus Detection Approach

The procedure of the proposed approach is shown in Fig-
ure 4. It consists of the following three steps:

1) Sample memory usage: Memory usages are sampled
over a fixed interval.

2) Encode: Memory usages are encoded as a series of
codes, called curve codes.

3) Match and compute the CF value: The memory
symptom of an unknown program is matched with
symptoms of sample programs, and a CF value is
computed to represent the probability that the un-
known program could be a virus.

A set of viruses and normal programs are chosen as
samples. They are processed using steps one and two
and then their memory symptoms are stored in the sam-
ple database. An unknown program is processed using

Time(s)

8273645546372819101

M
em

o
ry

U
sa

ge
(K

B
)

80000

60000

40000

20000

0

PPT_245K_1

PPT_245K_2

PPT_3.56M_1

PPT_3.56M_2

PPT_665K_1

PPT_665K_2

PPT_2.59M_1

PPT_2.59M_2

Figure 3: Memory usages of PowerPoint for different file
sizes and user operations

Table 1: The sampled memory usage of the Netsky virus

Time (sec.) Memory Usage (KB)
1 3,868
4 3,984
7 4,020
10 4,060
.

the same steps. Then its memory symptom is matched
with those in the sample database, and a CF value is
outputted. The above three steps are presented in more
detail as follows:

1) Sample memory usage
Memory usage is sampled for a fixed interval and
period after the program is executed. Assume the
interval is three seconds and the period is 90 seconds.
The memory usages of the Netsky virus are listed in
Table 1. It is obvious from this table that the memory
usages of the Netsky virus stay around four kilobytes
after program execution.

2) Encode
The sampled memory usages are encoded in this step.
The encoded result, the curve code, is defined to rep-
resent the curve of the memory usage. The difference
between two successive sampled memory usages is
computed. Then the curve code is generated accord-
ing to the encoding table given in Table 2. There are
39 codes in the encoding table. The ’value’ column
is defined for the next step. Each code represents a
range of memory usages. For example, the range for
code ’R’ is from 3,000 to 3,999 kilobytes. Therefore,
if the difference of two successive sampled usages be-

International Journal of Network Security, Vol.2, No.3, PP.219–227, May 2006 (http://isrc.nchu.edu.tw/ijns/) 222

Sample

Memory Usage

Encode

Match and Compute

the CF value

Unknown Program

Output CF Value

Samples

Database

Sample Programs

Sample

Memory Usage

Encode

Figure 4: The procedure for the memory symptom-based
virus detection approach

longs in this range, code ’R’ is generated. Since the
difference may be positive or negative, code ’Z’ is
used when the difference is zero. Codes ’A’ to ’S’ are
used when the difference is positive. Codes ’a’ to ’s’
are used when the difference is negative. The ranges
of codes are not equal. They are defined according to
our observation of the memory usages of programs.
The sampled memory usages shown in Table 1 are
encoded into the curve codes listed in Table 3.

Table 3 shows 30 samples for the 90-second sampling
period, and 29 curve codes are generated and listed
at the bottom of the table.

3) Match and compute the CF value
In this step, a virus is detected by matching the un-
known program with the sample programs. There
are four measurements for the matching step.

a. CodeSum: It measures the sum of the curve
codes.

b. CodeDiffSum: It measures the sum of the dif-
ferences of the curve codes.

c. UsageSum: It measures the sum of the memory
usages.

d. UsageDiffSum: It measures the sum of the dif-
ferences of the memory usages.

The measurements of the curve codes and memory usages
can provide information from two different aspects. The
results of the four measurements are then computed as the
CF value according to the certainty factor model. These
four measurements are described in more detail as follows:

Table 2: The encoding table for memory usages

Code Value Difference (KB)
S 19 ≥ 4, 000
R 18 3, 000 ∼ 3, 999
.
B 2 5 ∼ 9
A 1 1 ∼ 4
Z 0 0
a -1 −1 ∼ −4
b -2 −5 ∼ −9
.
r -18 −3, 000 ∼ −3, 999
s -19 ≤ 4, 000

1) CodeSum: The curve code is the difference between
two successive memory usages. If the curve codes are
summed, the result is usually small. For example,
the sum of the curve codes of the Netsky virus in
Table 4 is only 25. Therefore, the sum from the first
to the ith code is accumulated. The accumulated
values of the Netsky curve codes are shown in Table
4. The measurement of CodeSum is based on the
accumulated values.

Assume there are n curve codes. The ith curve code
of the sample program and unknown program is de-
noted by CSi and CUi, respectively. The accumu-
lated values of the sample and unknown programs are
denoted as CS Sumi and CU Sumi, respectively.
The equations of CodeSum are shown below.

CS Sumi =

i∑

j=1

CSJ (1)

CU Sumi =

i∑

j=1

CUJ (2)

CodeSum =
min(

∑n

i=1
|CS Sumi|,

∑n

i=1
|CU Sumi|)

max(
∑n

i=1
|CS Sumi|,

∑n

i=1
|CU Sumi|)

(3)

Equations (1) and (2) are used for the computa-
tion of the ith accumulated value. In Equation
(3), CodeSum is defined as the minimum sum of
CS Sumi or CU Sumi divided by the maximum
sum. However, CS Sumi or CU Sumi may be neg-
ative. CodeSum is based on the absolute value of
CS Sumi and CU Sumi. The result of CodeSum
is within zero to one. If the result is close to one,
this means that the CodeSums of the sample and
unknown programs are close. Otherwise, the result
is close to zero. For example, assume that the val-
ues of two curve codes, ’SBb’ and ’OAC’, are 19, 2,
-2 and 16, 1, 3, respectively. Their corresponding

International Journal of Network Security, Vol.2, No.3, PP.219–227, May 2006 (http://isrc.nchu.edu.tw/ijns/) 223

Table 3: The curve codes of the Netsky virus

Sample Time (sec.) Memory Usage (KB) Difference Code
1 3,868
4 3,984 116 G

7 4,020 36 D

10 4,060 40 E

.
Curve Code = GDEBCAZBAZZZZZZZZZZZZZZZZZZZZ

accumulated values are 19, 21, 19 and 16, 17, 20, re-
spectively. The sums of the accumulated values are
59 and 53, respectively. Therefore, the measurement
of CodeSum equals 53/59, or, 0.89.

2) CodeDiffSum: This measurement is based on the
sum of differences of curve codes. Its equation is
shown below.

minCurveCode = the minimum value among

CSi and CUi for 1 ≤ i ≤ n

CodeDiffSum =

1 −

∑n

i=1
|CSi − CUi|∑n

i=1
[max(CSi, CUi) − minCurveCode]

(4)

In Equation (4), minCurveCode is defined as the
minimum value among all of CSi and CUi. The sum
of the differences of the curve codes is divided by the
sum of the maximum CSi or CUi. However, CSi

or CUi may be negative or positive. Each maxi-
mum value is subtracted minCurveCode to ensure
that the denominator is larger than the numerator.
The division result is within zero to one. Then the
number one is subtracted from the above result in
order to represent the same meaning of CodeSum.
That is, if CodeDiffSum is close to one, it means
that the curve codes of the sample and unknown pro-
grams are similar. Otherwise, the CodeDiffSum is
close to zero. For the same curve codes ’SBb’ and
’OAC’, the values are 19, 2, -2 and 16, 1, 3, respec-
tively. minCurveCode equals -2. CodeDiffSum
equals 1 − (3 + 2 + 5)/(21 + 4 + 5) , i.e., 0.7.

3) UsageSum: The measurement is based on the sum of
memory usages. Assume there are n memory usages.
The ith usage of the sample and unknown program
is denoted by USi and UUi, respectively. The com-
putation of UsageSum is shown in Equation (5). In
this equation, the minimum sum of memory usages is
divided by the maximum sum of the memory usages.
The result is within zero to one. If the result is close
to one, it means that the usage sum of two programs
is similar. Otherwise, the result is close to zero. For
example, the usages of two programs are 3868, 3984,
4020 and 4000, 3510, 2000, respectively. UsageSum

Table 4: An example of accumulated values of curve codes

Codes Value Accumulated Value
G 7 7
D 4 11
E 5 16
B 2 18
C 3 21
A 1 22
Z 0 22
B 2 24
A 1 25
Z 0 25
. . . 0 25
Z 0 25

equals (4000 + 3510 + 2000)/(3868 + 3984 + 4020),
i.e., 0.8.

UsageSum =
min(

∑n

i=1
USi,

∑n

i=1
UUi)

max(
∑n

i=1
USi,

∑n

i=1
UUi)

(5)

4) UsageDiffSum: This measurement is used to real-
ize the difference of memory usages at every sample
time. The computation of UsageDiffSum is shown
in Equation (6). The numerator is the sum of us-
age differences, and the denominator is the sum of
maximum memory usages. One minus the division
result causes the result to have the same meaning
as the other measurements. That is, if the result is
close to one, it means that the memory usages of
the two programs are similar. For the example with
the memory usages 3868, 3984, 4020 and 4000, 3510,
2000, the usage differences are 132, 474, and 2020.
UsageDiffSum equals 1− (132+474+2000)/(4000
+ 3984 + 4020), i.e., 0.64.

UsageDiffSum = 1 −

∑n

i=1
|USi − UUi|∑n

i=1
(USi, UUi)

(6)

In order to compute the final measurement from the
above four measurements, each measurement is assigned
a weight instead of the four measurements being simply
averaged. Assume the weights are 1, 1, 5, and 5. An

International Journal of Network Security, Vol.2, No.3, PP.219–227, May 2006 (http://isrc.nchu.edu.tw/ijns/) 224

Sample 1 Sample 2 Sample m

CodeSum

CodeDiffSum

UsageSum

UsageDiffSum

MD MB

CF

Sample 1 Sample 2 Sample n

W
e
igh

1

W
eigh 2

W
eig

h
3

W
e
ig

h
4

W
eigh 3

W
eig

h
4

W
e
ig

h
1

Weigh
2

Normal Samples Virus Samples

CodeSum

CodeDiffSum

UsageSum

UsageDiffSum

Figure 5: The procedure for matching and computing the CF value

example of computing the final measurement is shown in
Table 5. In the table, an unknown program is matched
with two samples. The final measurement of Sample-1 is
(0.25× 1 + 0.4 × 1 + 0.28× 5 + 0.44× 5)/(1 + 1 + 5 + 5),
i.e., 0.35.

The certainty factor model is then used to represent
the possibility that the unknown program is a virus [5].
Sample programs are split into two groups. One is the
virus sample, and the other is the normal sample. The fi-
nal measurement represents the similarity of the unknown
program to the sample program. If the sample is a virus,
the final measurement is defined as a measure of belief
(MB), i.e., the unknown program is believed to be a virus.
If the sample is a normal program, the final measurement
is defined as a measure of disbelief (MD), i.e., the un-
known program is not believed to be a virus. According
to the CF-model, the equation for calculating CF from
the MB and MD is as follows:

CF =
MB − MD

1 − min(|MB|, |MD|)
(7)

The range of CF is between -1 and 1. If CF is close
to -1, it means that the unknown program is normal. If
CF is close to 1, it means that the unknown program is a
virus. If the unknown program has a CF value between -
0.2 and 0.2, the CF value is treated as insignificant. That
is, it is too weak to support or deny that the unknown
program is a virus.

An example of CF computation is shown in Table 6.
There are three normal and three virus samples. The
’MB/MD’ column is the average of the final measurements
of normal or virus samples. The CF equals 0.86. This
means that the unknown program has a higher possibility

Table 5: An example of the computation of the final mea-
surement

Measurement Weight Sample-1 Sample-2
CodeSum 1 0.25 0.20

CodeDiffSum 1 0.40 0.34
UsageSum 5 0.28 0.21

UsageDiffSum 5 0.44 0.35
Final Measurement 0.35 0.28

Table 6: An example of CF calculation

Samples Final Measurement MD/MB CF
Normal-1 0.35
Normal-2 0.28 MD=0.35
Normal-3 0.41 0.86
Virus-1 0.96
Virus-2 0.90 MB=0.91
Virus-3 0.88

of being a virus.
The third step, match and compute the CF value, is

shown in the following figure.

5 Experimental Study

5.1 Experimental Metrics

The accuracy of the detection approach is estimated by
using the confusion matrix, as shown in Table 7 [2]. The

International Journal of Network Security, Vol.2, No.3, PP.219–227, May 2006 (http://isrc.nchu.edu.tw/ijns/) 225

Table 7: A representation of the confusion matrix

Virus Normal
Detected as a Virus a d
Detected as Normal b e

Unknown c f

detection results of the test programs can be classified
into six categories. The size of the programs in each cat-
egory is filled into the corresponding cell in Table 7. In
the table, the values ‘a’ and ‘e’ represent the number of
correct detection. They should be as large as possible.
The values ‘b’ and ‘d’ represent the number of error de-
tection. They should be as small as possible. The values
‘c’ and ‘f ’ represent the number of unknown detections,
i.e., the CF value is between -0.2 and 0.2. They should
be as small as possible.

According to the theory of the confusion matrix, three
accuracies are defined as shown below:

1) True positive rate: Its equation is a/(a+ b+ c). This
indicates the rate that virus programs are detected
as viruses among all the virus programs.

2) False positive rate: Its equation is d/(d+e+f). This
indicates the rate that normal programs are detected
as viruses among all the normal programs.

3) Unknown rate: It indicates the rate of unknown pro-
grams among all of the programs. It equation is
(c + f)/(a + b + c + d + e + f).

These rates are used to verify the proposed approach.

5.2 Experimental Results

A tool for recording memory usages was implemented. A
screen shot of the tool is shown in Figure 6. The memory
usages of all the processes are listed on the screen and
stored into log files. Several parameters were defined in
the experiment as follows:

• Sampling period: 90 seconds

• Sampling interval: three seconds

• The size of sample programs: 24 (12 normal and 12
virus)

• The size of test programs: 109 (48 normal and 61
virus)

• Measurement weights: The values were 1, 1, 5, and
5 for CodeSum , CodeDiffSum, UsageSum, and
UsageDiffSum, respectively.

A variety of normal programs and viruses was used. In
the selection of sample programs, the types of memory
usages were mainly considered. The memory usages of

Table 8: The listing of virus and normal samples

Samples Name
PowerPoint
ACDSee5
Flash5

MediaPlayer
Vb.net

Normal Samples Word
(12) Visio

CuteFTP
NotePad
WordPad
WinRar
ClockX
Sobig.f

Beagle.a
Sasser.a

Tanatos.a
SdBoter.a

Virus Samples LovGate.n
(12) Netsky.a

Deborm.y
Fizzer
Bagle.y
Elkern.c
Wozer.f

normal programs were from a few megabytes up to one
hundred megabytes. Sample programs were selected from
those with small, medium, and large memory usages. The
virus samples were mainly selected from those causing
serious damage. The selected 24 samples are listed in
Table 8.

There were a total of 109 test programs. Many popular
programs were included in the test programs. In addition,
15 mutations of the Netsky virus were also included in
the test programs in order to determine whether all of
them can be detected. A partial experimental result of
detection using the proposed approach is listed in Table
9.

In Table 9, the symbols ‘©’, ‘×’, and ’U’, denote that
detection is correct, wrong, and unknown, respectively.
The sizes of the programs were counted and filled into
the confusion matrix. The matrix is shown in Table 10.

Based on the above matrix, three rates were computed
as follows:

• True positive rate: It equaled 59/(59+0+2), i.e., 97
percent.

• False positive rate: It equaled 6/(6 + 24 + 18), i.e.,
13 percent.

• Unknown rate: It equaled (2 + 18)/109, i.e., 18 per-
cent.

International Journal of Network Security, Vol.2, No.3, PP.219–227, May 2006 (http://isrc.nchu.edu.tw/ijns/) 226

Figure 6: The screen shot of a tool for recording memory usages

Table 9: A partial experimental result of 109 test pro-
grams

No. Type MD MB CF Result
1 normal 0.55 0.23 -0.42 ©
2 normal 0.55 0.44 -0.20 U
3 normal 0.55 0.45 -0.19 U
4 normal 0.60 0.29 -0.44 ©
5 normal 0.42 0.70 0.48 ×
6 normal 0.53 0.41 -0.21 ©
7 normal 0.37 0.57 0.32 ×
8 normal 0.56 0.52 -0.08 U
9 normal 0.54 0.24 -0.40 ©
10 normal 0.57 0.36 -0.33 ©
11 normal 0.57 0.56 -0.03 U
12 normal 0.54 0.54 -0.01 U
13 normal 0.40 0.18 -0.26 ©
14 normal 0.56 0.35 -0.33 ©
.
95 virus 0.45 0.76 0.57 ©
96 virus 0.42 0.73 0.53 ©
97 virus 0.33 0.54 0.31 ©
98 virus 0.52 0.64 0.26 ©
99 virus 0.48 0.79 0.58 ©
100 virus 0.51 0.81 0.61 ©
101 virus 0.45 0.79 0.61 ©
102 virus 0.45 0.79 0.61 ©
103 virus 0.45 0.79 0.61 ©
104 virus 0.46 0.79 0.61 ©
105 virus 0.47 0.78 0.58 ©
106 virus 0.52 0.72 0.43 ©
107 virus 0.45 0.74 0.53 ©
108 virus 0.45 0.76 0.57 ©
109 virus 0.44 0.76 0.57 ©

Table 10: The confusion matrix of the experimental result

Virus Normal
Detected as a virus 59 6
Detected as normal 0 24

Unknown 2 18

According to the above results, 97 percent of viruses
were detected correctly. 13 percent of normal programs
were misjudged as viruses. That is not very high. 18 per-
cent of programs could not be determined. Most of them
were normal programs. This means that most viruses
were detected correctly.

6 Conclusion and Future Works

Currently, anti-virus software relies mainly on the update
of virus patterns. However, they still suffer from the prob-
lems of damage occurring on zero-day, virus scan ineffi-
ciency, and mutation of viruses. In this paper, a memory
symptom-based virus detection approach was proposed.
Viruses can be detected after it starts executing. The
experimental results show that viruses can be detected
correctly. In the future, other symptoms, such as network
bandwidth usages, can be incorporated into this approach
to increase the accuracy of virus detection.

References

[1] CAIDA Analysis of Code-Red, http://www.caida.
org/analysis/security/code-red/index.xml.

International Journal of Network Security, Vol.2, No.3, PP.219–227, May 2006 (http://isrc.nchu.edu.tw/ijns/) 227

[2] Confusion Matrix, http://www2.cs.uregina.ca/ hamil-
ton/courses/831/notes/confusion matrix/
confusion matrix.html.

[3] J. S. Lee, J. Hsiang, and P. H. Tsang, “A generic
virus detection agent on the Internet,” in Proceedings
of the Thirtieth Hawaii International Conference on
System Science, vol. 4, pp. 210–219, Jan. 1997.

[4] D. Moore, V. Paxson, S. Savage, C. Shannon,
S. Stanford, and N. Weaver, “Inside the slammer
worm,” IEEE Security & Privacy Magazine, vol. 1,
issue 4, pp. 33–39, July-Aug. 2003.

[5] M. Negnevitsky, Artificial Intelligence - A Guide
to Intelligent Systems, Addison-Wesley, pp. 74–80,
2002.

[6] T. Okamoto and Y. Ishida, “A distributed ap-
proach to computer virus detection and neutraliza-
tion by autonomous and heterogeneous agents,” in
The Fourth International Symposium on Integration
of Heterogeneous Systems, pp. 328–331, Mar. 1999.

[7] E. Schultz, “Worms and viruses: Are we losing con-
trol?,” Science Computers and Security, vol. 23, no.
3, pp. 179–180, 2004.

[8] M. G. Schultz, E. Eskin, F. Zadok, and S. J. Stolfo,
“Data mining methods for detection of new malicious
executables,” in Proceedings of IEEE Symposium of
Security and Privacy, pp. 38–49, May 14-16, 2001.

[9] J. H. Wang, P. S. Deng, et al., “Virus detection using
data mining techniques,” in Proceedings of the 37th
IEEE International Carnahan Conference on Secu-
rity Technology, pp. 71–76, Oct. 2003.

Hsien Chou Liao is an assistant pro-
fessor of computer science of informa-
tion engineering at Chaoyang univer-
sity of technology (CYUT), Taiwan,
ROC. He received his B.S. and Ph.D.
degree from National ChiaoTung Uni-
versity, Taiwan, ROC, in 1991 and
1998. Dr. Liao is a senior member

of IEEE. His research interests include computer security,
pervasive computing, and software engineering.

Yi-Hsiang Hwang received the M.S.
in Computer Science and Informa-
tion Engineering from the Chaoyang
University of Technology (CYUT),
Taichung, Taiwan, ROC, in 2004. His
current research interests are in the
area of network and computer security.

