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1.1 Introduction 
 

In this set of notes, consideration is restricted to the analysis of the total settlement of fills 
which are so wide, compared with the thickness of the compressible soils that we need not 
consider stress distribution.  Such fills have been called areal fills.  The application of 
areal fills to compressible soils typically generates pore water pressures and some of the pore 
water flows out of the soils leading to time-dependent volume change.  Water flow and 
deformations are along only a vertical axis, so we can refer to the process of time dependent 
volume change as one-dimensional consolidation.  This term will be applied to both 
swelling and compression although our interest will almost exclusively be in compression. 
 
We will be concerned only with saturated, or nearly saturated, soils.  Further, sands and 
gravels are generally so incompressible under one-dimensional loading that we will be 
concerned only with silts and clays. 
 
Analysis of the time rates of consolidation and settlements resulting from concentrated loads 
will be deferred for later sets of notes. 
 
 
1.2 Definition of Terms 
 
In order to calculate one-dimensional settlements it is only necessary to have a one-
dimensional stress-strain curve and know the initial and final stresses.  Because conditions 
are one dimensional, we can utilize only the vertical stresses. 
 
Measurements show that sudden application of pressure to a saturated soil, under conditions 
of no lateral strain, leads to a negligible immediate settlement, thus suggesting that 
settlements cannot be analyzed in terms of total stress.  Measurements also show that the 
sudden application of load generates water pressures and that these water pressures dissipate 
as a time dependent settlement occurs.  In the laboratory, when the pore water pressures 
have decreased back to zero, the rate of settlement diminishes to a relatively small value, i.e., 
the soil essentially comes to equilibrium.  When the water pressure (u) is zero, the total 
stress(σ) must be carried by the framework of mineral particles.  The stress carried by the 
framework of mineral particles is called the effective stress, σ  and for saturated soils it is 
given by (Terzaghi, 1936): 
 
  u−= σσ  (1-1) 

 
The stress-strain curves for soils in one-dimensional compression will always utilize the 
effective vertical stress. 
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One-dimensional (1-D) stress-strain curves can be measured in the laboratory.  A 1-D 

εσ −  curve for a sample of clay which was sedimented in the laboratory is shown in Fig. 
1.1a.   
 

 
Fig. 1.1a Stress-Strain Curve for One-Dimensional Compression of Soft Clay 

 
The εσ −  relationship is nonlinear and it is difficult to study behavior at low stresses while 
still retaining the plot at high stresses.  To facilitate interpretation of the data, we decide to 
rotate the plot so you would move down on the curve for compression and up for swelling, 
just as in the field.  The curve then appears as in Fig. 1.1b.  The appearance of the plot is  

 

 
Fig. 1.1b Rotated Stress-Strain Curve for Soft Clay in One-Dimensional Compression 

 
improved, perhaps, but the data at the low end of the stress scale still cannot be seen clearly 
because of the wide range of stresses used.  This problem occurs in essentially all such tests.  
The obvious solution is to convert the stress axis to a log scale, as shown in Fig. 1.1c.  Use 
of the log scale has also made the curves slightly more linear, although they are all still 
obviously curved. 
 
To facilitate communication we will define a soil as being normally consolidated if the 
existing effective stress is the largest to which the soil has been subjected.  For example, in 
Fig. 1.1c, the soil is normally consolidated between points 1 and 2, 3 and 4, and 5 and 6. 
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Fig. 1.1c Semi-Logarithmic Plot of Stress-Strain Curve Used to Provide More Detail at 

Small Stresses 
 
The stress-strain curve is called a virgin curve for normally consolidated soil.  If the 
existing effective stress is less than the maximum previous value then the soil is said to be 
overconsolidated.  For example, the soil in Fig. 1c is overconsolidated in the region of 
point 7 to 8. The stress-strain curve is typically called a reloading or recompression curve if 
the effective stresses are increasing and a swelling or rebound curve if the effective stresses 
are decreasing. 
 
As a side issue we may note that the definition of an underconsolidated clay is quite 
different.  An underconsolidated clay is one that has finite excess pore water pressures and 
thus is not yet fully consolidated.  An underconsolidated clay can be normally consolidated 
or overconsolidated. 
 
The maximum consolidation pressure to which a soil has been subjected is denoted by maxσ .   
In general, maxσ  is only known in the case of laboratory tests. 
 
 
1.3 One-Dimensional Settlement Analysis 
In the case of an elastic column subject to a uniform axial stress σ∆  we are used to 
calculating the compression ∆S, using Young's modulus (E): 

  σσε ∆==∆=∆ LC
E

LLS  (1.2) 

where L is the length of the column and C is the compressibility (1/E).  A similar equation 
can be developed for soils.  Define the coefficient of volume compressibility, mv, as: 
 

 
σ
ε

d
dmv =  (1.3) 

 
Then, for a layer ∆z thick, subject to a stress increase, ∆σ  the compression, ∆S, is: 
 
 ∆S = mv ∆z ∆σ  (1.4) 
which is analogous to Eq. 1.2. 
 



Department of Construction Engineering  營建電腦化專論 
Chaoyang University of Technology   --Areal Fills-- 

 4 2008/3/5 

Some engineers are bothered by the fact that the layer thickness (∆z) changes with effective 
stress and prefer to define a strain scale using the height of the solid mineral grains rather 
than the total height.  The strain scale is denoted as ∆e instead of ε and:  
 

 
sL
Le ∆

=∆  (1.5) 

 
where Ls is the height of mineral grains in the total height L.  Because there is no change in 
height of mineral grains, ∆L is actually a change in height of voids, ∆Lv.  If we substitute 
∆Lv for ∆L in Eq. 1.5 and multiply numerator and denominator by any arbitrary area of 
interest (typically a unit area), then: 
 

 
s

v

V
Ve ∆

=∆  (1.6) 

 
where ∆Vv is the change in volume of voids and Vs is the volume of solids.  The form of Eq. 
1.6 is such that it seems logical to define a variable e, which has been called the void ratio, 
as: 
 

 e = 
Vv
Vs

  (1.7) 

 
We may now choose to plot void ratio in place of strain, converting the plot in Fig. 1.1c to 
the one in Fig. 1.1d.  
 
The strain scale can be ∆e or just e, as in Fig. 1.1d.  We now have the option of plotting the 
strain axis using ε, ∆e or e.   

 

 
Fig. 1.1d Stress-Strain Curve for Soft Clay, Plotted using Logarithmic Stress Axis and Void 

Ratio for Strain 
 
If we choose to plot e, then we can still use Eq. 1.5 to calculate a compression ∆S (∆L in Eq.  
1.5) as: 
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 ∆S = -Ls ∆e (1.8) 
 
The minus sign is used because we choose to have settlement increase as e decreases.  It is 
generally preferable to replace the height of solids, Ls, with an expression involving the total 
height, L.  We note that: 
 
 L = Lv + Ls (1.9) 

 
We divide through Eq. 1.9 by Ls, note that Lv/Ls = e, and solve for Ls: 
 

 Ls = 
L

 l + e  (1.10) 

 
Equation 1.10 is substituted into Eq. 1.8 to obtain: 
 

 L
e

eS
+
∆

−=∆
1

 (1.11) 

 
In Equation 1.11, L/(l + e) is the constant height of solids so the e in the denominator must be 
defined when the layer thickness is L.  Many engineers use the symbol L for the height of 
the zone of interest but put a sub-o on the e (eo) to make it clear that this is the original void 
ratio.  Most engineers drop the minus sign in Eq. 1.11 and define ∆e to be positive. 
 
Equation 1.11 is a general solution similar to: 
 
 ∆S = ∆ε L (1.12) 

 
and does not involve any assumption about the shape of the stress-strain curve.  If we 
assume a linear e - σ   relationship, then we can define a coefficient of compressibility, av, 
as: 
 

 
σd

deav −=  (1.13) 

 
and convert Eq. 1.11 to: 
 

 z
e

aS v ∆⋅∆
+

=∆ σ
1

 (1.14) 

 
a form written to be analogous to Eq. 1.4 obviously: 
 

 mv = 
av

(l + e)  (1.15) 

 
Equations 1.4 and 1.14 are written using compressibilities, mv, and av.  They could just as 
easily be developed using modulii, such as E, and engineers in some countries do prefer 
modulii because the equations then come out looking like ones seen in mechanics classes and 
encountered in structural design. 
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For soils, ε - σ  or e - σ   curves can usually be assumed to be linear for only a small 
change in s on a semilogarithmic scale in Figs. 1.1c and 1.1d.  Linearity has been improved 
slightly and the new curves are easier to use in the low-stress range.  For a range in s where 
the ε-log s curve can be considered linear, the slope (R) is: 
 

 
)log(log

)(
)(log 12

12

σσ
εε

σ
ε

−
−

==
d

dR  (1.16) 

 
Thus if the soil is at point 1 in the field and is to be loaded to point 2, then from Eqs. 1.12 and 
1.16: 

 ∆S = R L log
1

2

σ
σ  (1.17) 

 
In cases where the soil is consolidated through a reloading curve and out onto the virgin 
curve, the ε-log s curve may be approximated as two straight lines.  For example, in Fig. 1.2, 
curve 1-2 can be drawn tangent to the reloading curve and 2-3 tangent to the virgin curve. 
 

 
Fig. 1.2 Use of Bilinear Stress-Strain Curve to Approximate Actual Curve 

 
If the reloading curve is drawn to start at the overburden stress, so, and ends at the final field 
stress, sf, with the two straight lines intersecting at si (same as point 2 in Fig. 1.2). Then: 
 

 ∆S = Rr L log 
0σ

σ i + Rc L log 
i

f

σ
σ

 (1.18) 

 
where Rr and Rc are the slopes (Eq. 1.16) of the reloading and virgin curves, respectively, 
and are termed the recompression ratio and compression ratio respectively.  Note that the 
stress at the intersection of the two straight lines, iσ , is not the maximum previous 
consolidation pressure, maxσ . 
 
If the engineer chooses to plot void ratios instead of strains, then the slope of the 
consolidation curve is: 
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)(logσd

deC −=  (1.19) 

 
For a range in void ratio where the e-log s relationship can be approximated as linear, Eq. 
1.19 can be inserted into Eq. 1.11 to obtain: 
 

 
1

2log
1 σ

σL
e

CS
+

=∆  (1.20) 

 
For a reloading curve C is replaced with Cr, the recompression index, whereas for a virgin 
curve C is replaced with Cc, the compression index.  For a bilinear curve: 
 

 
i

fcir L
e

CL
e

CS
σ
σ

σ
σ log

1
log

1 0 +
+

+
=∆  (1.21) 

 
It should be noted that most texts in soil mechanics use H in place of L but they also use H 
for a different dimension in time-rate-of-settlement analyses and thus may cause confusion. 
 
In cases where the soil is overconsolidated but the applied load will consolidate the soil out 
onto the virgin curve, the analysis could be further simplified by assigning Rr (or Cr) a value 
of zero so there is no reloading settlement and treating the soil as normally consolidated with 

0σ  set equal to iσ .  The calculations are so simple, however, that use of the two straight 
lines (Fig. 1.2) with reasonable slopes seems proper. 
 
Note that there is no reason why the designer shouldn't just approximate the whole curve as a 
series of short straight lines and rewrite equations such as Eqs. 1.18 and 1.21 into forms such 
as: 

 ∑
= −

=∆
N

j j

j
j LRS

1 1

)log(
σ
σ

 (1.22) 

and 

 ∑
= −+

=∆
N

j j

jj L
e

C
S

1 1

)log(
1 σ

σ
 (1.23) 

 
where i just denotes the point number on the stress-strain curve, with point 0 at the original 
field stress and point N being at the final field stress.  A computer program would logically 
be used to perform the calculations.  The designer can then track any desired curve.   
 
An alternative, and preferable approach, is to input the coordinates of points on the stress-
strain curve, and have the computer program find the void ratios or strains corresponding to 
the initial and final field stresses, by interpolation, and then apply Eqs. 1.11 or 1.12.  We use 
this latter approach. 

The designer clearly has a variety of options available.  The use of the bilinear curves goes 
back to a time when slide rules were used for analyses and it would have been unreasonably 
laborious to try to track the entire stress-strain curve.  With modern microcomputers, it 
makes little sense not to track the whole stress-strain curve. 
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1.4 Examples 

 
Site in Louisiana 
 
If there is only a single consolidation curve (σ - ε , σ - e) for a layer of soil then it is usually 
easiest to use the non-linear stress-strain curve directly in the analysis.  For example, 
suppose that the stress-strain curves shown in Fig. 1.1 are the actual field curves, rather than 
laboratory curves.   Suppose that the layer is five feet thick, the average initial effective 
stress is 135 psf, and we will apply a stress of 2000 psf.  From the stress-strain curve in Fig. 
1c, the initial strain is 42.2% and the final strain (assumed to be at 2135 psf) is 57.6% (both 
strains found by interpolation using the source data for the plots) so the settlement is (0.576-
0.422) (5) = 0.77 feet. 
 
Site in New Hampshire 
 
As a further example of settlement analyses, consider a site in New Hampshire where the soil 
profile consists of three layers of compressible soils overlying a relatively incompressible 
sand.  The properties of the compressible soils are as follows: 
 

Layer 
No. 

Soil Description Thickness
ft. 

γ' 
pcf 

Rr Rc iσ  
psf 

1 fibrous peat 10 4 0.06 0.50 450 
2 amorphous peat 10 14 0.05 0.45 300 
3 organic silt 5 31 0.05 0.30 1000 

 
The site is to be covered with a wide fill and the top of the fill is to be at an elevation 20 feet 
above the elevation of the original ground surface, after consolidation is complete.  The 
water table is at the elevation of the original ground surface and remains at that elevation.  
The fill will have total and submerged unit weights of 125 pcf and 70 pcf, respectively.  The 
initial effective stresses at the centers of three layers are 20 psf, 110 psf, and 257.5 psf.  The 
stress applied by the fill is (20) (125) = 2500 psf.  Equation 18 is applied.  For layer 1: 

 

∆S1 = (0.06) (10) log⎝⎜
⎛

⎠⎟
⎞450

20   + (0.50 (10) log⎝⎜
⎛

⎠⎟
⎞ 2520

450  = 0.81 + 3.74 = 4.55 feet 

 
For layers 2 and 3 the compressions (∆S) are 4.45 feet and 0.81 feet, so the surface settlement 
is 9.81 feet.  Of course, there are now two changes.  First, the final surface elevation is 
10.19 feet, not 20 feet.  If we assume that filling will continue to force the final surface 
elevation to be 20 feet, then more fill must be applied.  Second, 9.81 feet of the fill is 
submerged.  A second calculation is performed with 20 feet of fill above the water table and 
9.81 feet below the water table.  The settlement is then 10.93 feet.  This process is repeated 
(the solution is an iterative one) until an acceptable level of accuracy is achieved.  For the 
next two iterations the calculated settlements are 11.05 feet and 11.06 feet.  The thickness of 
the fill is thus 31 feet. 
 
In the above analysis, the assumption was made that the conditions in each layer can be 
represented by conditions at the center of the layer.  To check the accuracy of this approach 
without engaging in an excessive amount of calculations in these notes, consider 20 feet of 
fill (γ = 125 pcf) applied to a layer of normally consolidated clay (L = 20 feet, γ' = 50 pcf, Rc 
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= 0.25) overlain by an incompressible layer that applies 100 psf.  If the whole layer is used 
in the analysis:  
 
 S = (0.25) (20) log (3100/600) = 3.57 feet 

 
To save work here we will not iterate to correct for submergence or addition of more fill.  If 
the layer is broken into two 10-foot layers: 
 
 S = (0.25) (10) log (2850/350) + (0.25) (10) log (3350/850)  
 = 3.77 feet 

 
As the layers are subdivided further the apparent accuracy increases.   
 
A solution obtained by integration (infinite number of layers), but based on the assumption 
that the initial void ratio is independent of depth, is:  
 

 )loglogloglog( bfbftftfbobototo
RS σσσσσσσσ
γ

+−−
′

=  (1.22) 

 
where subscripts t and b denote the top and bottom of the layer, respectively, and o and f 
denote the original and final conditions, respectively.  For the above example problem 0tσ  
= 100 psf, 0bσ  = 1100 psf, tfσ  = 2600 psf, and bfσ  = 3600 psf.  The theoretically exact 
settlement is 3.89 feet.  The "exact" solution is exact only in the sense of analytical accuracy.  
In a real field problem the accuracy is controlled by other than analytical aspects, e.g., by 
uncertainties in applied loads, location of the water table, thicknesses and properties of the 
various layers, secondary effects, and doubtless other sources of error as well.  
Consequently, the function of the exact solution is just to indicate the effects of subdividing a 
layer analytically.   
 
As an aside it may be noted that it is impossible to have a non-zero value of R and 0tσ = 0 
because then application of any positive stress would lead to infinite settlements.  The e-log 
s curve must either start out with R = 0 or, more likely, there must be an original effective 
stress caused by internal attractive forces (Jakobson, 1953, reported field evidence of such 
attractive forces).  Note also that Equation 22 can be used with e-log s curves by replacing R 
with C/(l+e), that it can be applied for bilinear curves by applying the equation separately to 
the reloading and virgin curves, and it can be applied iteratively to account for settlement 
dependent submergence and effects of added fill. 
 
 
1.5 Approximate Stress-Strain Curves 
 
Occasionally an engineer may wish to make approximate analyses of total settlement in cases 
where no consolidation data are available.  It then becomes necessary to estimate values for 
Rr (or Cr), maxσ , and Rc (or Cc). 
A number of papers exist in which the authors attempt to correlate Rc (or Cc) with an index 
property.  For example, Skempton (1944) used samples of remolded clay and found: 
 
 Cc = 0.007 (LL -10) (1.23) 
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where LL is the liquid limit in percent.  Terzaghi and Peck (1948, p. 66) concluded that for 
undisturbed soils: 
 
 Cc = 0.009 (LL -10) (1.24) 

 
For organic deposits, Moran et al. (1958, p. 111) found that: 
 
 Cc = w/100 (1.25) 

 
where w is the water content in percent.  For the Motley clays from Sao Paulo, Cozzolino 
(1961) found that: 
 
 Cc = 0.256 + 0.00106 (LL -65) + 0.32 (e-0.84) (1.26) 

 
with a range of about ±0.063.  Nishidu (Moran et al., 1958) suggested that:  
 
 Cc = 0.54 (eo - 0.35) (1.27) 

 
Kapp et al. (1966) showed that for marsh deposits in the New York City metropolitan area:  
 
 Cc = 0.6 (eo-1)  for eo < 6 (1.28a) 

 
   = 0.85 (eo-2)  for 6 ≤ eo ≤ 14 (1.28b) 

 
An engineer can often develop the ability to estimate compressibilities with acceptable 
accuracy.  For example, San Francisco Bay Mud often has Rc of about 0.25 with values of 
up to 0.4 for peaty bay mud and down to 0.1 for inorganic bay mud. 
 
For highly overconsolidated or cemented clays the compressibility is often considered 
negligible.  When an estimate of reloading settlement is required, the reloading slope may 
be estimated as the estimated virgin slope divided by a factor which may be as low as 1.1 for 
some bentonitic clays to more than 10 for highly sensitive clays and cemented clays with 
values in the range of 2 1/2 to 4 common. 
 
For lightly overconsolidated clays, the main source of error is in estimating a reasonable 
value of si.  Perhaps the best approach is to assume that si is smax and that the undrained 
shearing strength, cu, is unchanged during a small reduction in stress.  Thus: 
 
 maxσ  = cu/(c/p) (1.29) 

 
where cu is measured and the c/p ratio is estimated as (Skempton, 1957): 
 c/p = 0.11 + 0.0037Iw  (1.30) 

 
where Iw is the plasticity index in percent. 
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