

機率函數和機率分配

平均數和變異數

聯合機率函

3

Example 3-4, p.69

This is a chance that a bit transmitted trough a digital transmission channel is received in error. Let X equal the number of bits in error in the next four bits transmitted. The possible values for X are $\{0, 1, 2, 3, 4, \}$. Based on a model for the errors that is presented in the following section, probabilities for these values will be determined. Suppose that the probabilities are

P(X=0)=0.6561 P(X=1)=0.2916 P(X=2)=0.0486P(X=3)=0.0036 P(X=4)=0.0001

機率函數和機率分配

5

6

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Example (Exercise 3-14), p.71

The sample space of a random experiment is $\{a, b, c, d, e, f\}$, and each outcome is equally likely. A random variable is defined as follows:

 outcome
 a b c d e f

 x 0
 0
 1.5
 1.5
 2
 3

Determine the probability mass function of X.

Solution

機率函數和機率分配

Min Wang

貳、機率複習 (Review of Probability)

Min Wang

平均數和變異數

累積機率分配函數 (cumulative distribution function), p.72

The cumulative distribution function of a discrete random variable X, denoted as F(x), is

$$F(x) = P(X \le x) = \sum_{x_i \le x} f(x_i)$$

For a discrete random variable X, F(x) satisfies the following properties.

- (1) $F(x) = P(X \le x) = \sum_{x_i \le x} f(x_i)$
- (2) $0 \le F(x) \le 1$
- (3) If $x \leq y$, then $F(x) \leq F(y)$

貳、機率複習 (Review of Probability)

うつん 川 イエト・エー・ (日)

7

8

Example

機率函數和機率分配

Min Wang

Continued from Exercise 3-14. Determine the cumulative distribution function of X.

Determine the probability mass function of X from

the following cumulative distribution function:

$$F(x) = \begin{cases} 0 & x < -2 \\ 0.2 & -2 \le x < 0 \\ 0.7 & 0 \le x < 2 \\ 1 & 2 \le x \end{cases}$$

10

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Min Wang

Min Wang

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

For a continuous random variable X, a probability density function is a function such that

- (1) $f(x) \ge 0$
- (2) $\int_{-\infty}^{\infty} f(x) dx = 1$
- (3) $P(a \le X \le b) = \int_a^b f(x) dx = \text{area under } f(x)$ from *a* to *b* for any *a* and *b*

機率函數和機率分配

E

匀数和變異數

聯合機率函數

連續隨機變數的機率 (Probability of a continuous random variable)

If X is a continuous random variable, for any x_1 and x_2 ,

$$egin{aligned} & P(x_1 \leq X \leq x_2) = P(x_1 < X \leq x_2) \ & = P(x_1 \leq X < x_2) \ & = P(x_1 < X < x_2) \ & = P(x_1 < X < x_2) \end{aligned}$$

		13	
		- E 996	
n Wang 機率複習 (Review of Probability)			
語數和機率分配	平均數和變異數	聯合機率函數	
xample 4-1, p. 112			

Let the continuous random variable X denote the current measured in a thin copper wire in milliamperes. Assume that the range of X is [0, 20mA], and assume that the probability density function of X is f(x) = 0.05 for $0 \le x \le 20$. What is the probability that a current measurement is less than 10 milliamperes?

・ロン・西マ・山マ・山マ・白マ

14

Min Wang

The probability density function is shown in Fig. 4-4. It is assumed that
$$f(x) = 0$$
 wherever it is not specifically defined. The probability requested is indicated by the shaded area in Fig. 4-4.

$$P(X < 10) = \int_{0}^{10} f(x) dx = \int_{0}^{10} 0.05 dx = 0.5$$

$$\int_{0}^{10} \int_{0}^{10} \int_{$$

平均數和變異數

平均數 (期望值) 和變異數-離散隨機變數, p.77

If X is a discrete random variable with probability mass function f(x),

$$E[h(X)] = \sum_{x} h(x)f(x)$$

Example: 令 X 為一離散隨機變數, 且令 $h(X) = X^2$, 則

$$E[h(X)] = E[X^2] = \sum_{x} x^2 f(x)$$

此即所熟知
$$X^2$$
 之期望值。所以 $\sigma^2 = E[X^2] - \mu^2$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで Min Wang 貳、機率複習 (Review of Probability) 平均數和變異數 Example (Exercise 3-39, p.77)

If the range of X is the set $\{0, 1, 2, 3, 4\}$ and P(X = x) = 0.2 determine the mean and variance of the random variable.

平均數和變異數 Solution (Cont') ◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ のへで Min Wang 貳、機率複習 (Review of Probability) 平均數和變異數

平均數 (期望值) 和變異數-連續隨機變數, p.117

Suppose X is a continuous random variable with probability density function f(x).

The mean or expected value of X, denoted as μ or E(X), is

$$\mu = E(X) = \int_{-\infty}^{\infty} xf(x)dx$$

The variance of X, denoted as V(X) or σ^2 , is

$$\sigma^{2} = V(X) = \int_{-\infty}^{\infty} (x - \mu)^{2} f(x) dx = \int_{-\infty}^{\infty} x^{2} f(x) dx - \mu^{2}$$

The standard deviation of X is $\sigma = \sqrt{\sigma^2}$.

21

20

19

18

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Min Wang 貳、機率複習 (Review of Probability)

貳、機率複習 (Review of Probability)

Min Wang

