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Abstract 

Constrained integer stochastic optimization problems (CISOP) are optimization problems 

where the cost function is stochastic and the constraints are deterministic. Solving the CISOP 

using conventional optimization techniques is time-consuming when the design space is huge. 

Ordinal optimization offers an efficient technique suitable for solving the CISOP. In this paper, 

an approach that uses golden jackal optimization assisted by ordinal optimization (GJOO) is 

developed for resolving the CISOP in a relatively short time. The GJOO is composed of three 

phases: metamodel, global search, and ranking and selection. At first, the polynomial chaos 

expansion is used as a metamodel to rapidly assess a solution. Next, advanced golden jackal 

optimization is adopted to determine N excellent solutions from the entire design space. At 

last, the modified optimal computing budget allocation is adopted to determine a 

distinguished solution from the N excellent solutions. The GJOO is utilized to the 

shipping/receiving docks optimization problem of a container freight station in air cargo. The 

performances of the GJOO are compared with those of five meta-heuristic methods. 

Empirical results demonstrate the efficiency and robustness of the GJOO algorithm.  

Keywords: polynomial chaos expansion, golden jackal optimization, ordinal optimization, 

optimal computing budget allocation, container freight station, shipping/receiving docks.
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1. Introduction 

Constrained integer stochastic optimization problems (CISOP) are optimization problems 

where the cost function is stochastic and the constraints are deterministic [1]. CISOP appear 

in almost all fields, such as periodic inspection inventory systems, buffer capacity allocation, 

pull-product systems, stochastic economic lot scheduling, and shipping/receiving docks 

optimization of a container freight station. The CISOP belong to NP-hard classes, which may 

not resolve comprehensive solutions within a reasonable time [2]-[3].  

Three classical methods are commonly used to resolve CISOP: stochastic approximation 

[4], sample-path method, and sample average approximation [5]. Nonetheless, trapping in the 

local optimum and slow convergence rates are two main disadvantages of the above 

approaches. Heuristic algorithms are other methods adopted to resolve CISOP, such as genetic 

algorithm (GA) [6], tabu search (TS) [7], and simulated annealing (SA) [8]. However, 

heuristic methods will probably not yield the optimal decision because of miscalculations. 

Quick decisions without all the information will lead to errors in judgment. Nowadays, 

swarm-based algorithms have been extensively applied to solve CISOP [9]. Swarm-based 

algorithms is a family of nature inspired algorithms that can produce low cost and robust 

solutions to various optimization problems. They are inspired by the social behavior of 

gregarious insects and other animals. Food provision has been the source of inspiration for the 

development of novel algorithms, such as golden jackal optimization (GJO) [10]-[11], Harris 

hawks optimization [12]-[13], white shark optimizer [14], African vultures optimization 

algorithm [15], sine-cosine and spotted hyena-based chimp optimization algorithm [16], orca 

predation algorithm [17], snake optimizer [18], remora optimization algorithm [19], coati 

optimization algorithm [20], artificial hummingbird algorithm [21], red fox optimization [22], 

tunicate swarm algorithm [23], reptile search algorithm [24], serval optimization algorithm 

[25], multi-cohort whale optimization [26], and termite life cycle optimizer [27]. 
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Swarm-based algorithms have been proven to be a comprehensive approach to solve complex 

optimization problems.  

The CISOP are extremely difficult due to three issues: (i) a large design space, (ii) 

constraints must be simultaneously satisfied, and (iii) exactly evaluating a cost function is 

time-consuming. The ordinal optimization (OO) theory [28] is presented to address issues (i) 

to (iii) at the same time. The OO theory is composed of two basic ideas: sorting comparison 

and goal softening. Sorting comparison only uses comparisons between items to gain 

information about the relative order of items. Goal softening only needs to obtain good 

enough solutions, rather than the solution that is the best for sure. The OO theory has been 

adopted quite successfully to some complex optimization problems, such as routing 

optimization in queueing networks [29], optimal shortcuts of sorting conveyor system [30], 

job-shop scheduling [31], and optimal staff in emergency department healthcare [32]. 

Although the OO theory can narrow down the design space and speed up the searching 

procedure, the stochastic cost function still apparently influences computational performance. 

To resolve the CISOP in a short time, an algorithm that uses golden jackal optimization 

assisted by ordinal optimization (GJOO) is developed to look for a distinguished solution. The 

OO theory uses rough evaluation to derive an excellent subset for which simulations are 

necessary and worthwhile to find distinguished solutions with a substantially reduced 

computational burden. The GJOO comprises three parts: the metamodel, global search, and 

ranking and selection. At first, the polynomial chaos expansion (PCE) [33] is used as a 

metamodel to rapidly estimate a solution. Next, advanced golden jackal optimization (AGJO) 

is developed to look for N excellent solutions from the entire design space. At last, the 

modified optimal computing budget allocation (MOCBA) is adopted to seek a distinguished 

solution from the N excellent solutions. The three parts apparently diminish the computing 

time needed to solve the CISOP. 
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Afterward, the GJOO is applied to the shipping/receiving docks optimization problem of a 

container freight station in air cargo, which can be formulated as a CISOP. The goal of this 

CISOP is to look for the optimal shipping/receiving docks of a container freight station for 

minimizing the long-run average waiting time of a truck. The main contributions of the paper 

are summarized as follows: 

(1) The GJOO algorithm is developed to find a distinguished solution to CISOP in a 

reasonable time.  

(2) The GJOO algorithm is applied to seek the optimal shipping/receiving docks for the 

container freight station. 

(3) The OO theory can be adopted to assist novel optimization approaches to resolve more 

complex stochastic optimization problems. 

The structure of this paper is as follow. Section 2 presents the CISOP and illustrates the 

GJOO algorithm to seek a distinguished solution. Section 3 introduces the shipping/receiving 

docks optimization problem of a container freight station in air cargo, that is formulated as a 

CISOP. The GJOO algorithm is applied to solve this CISOP. Section 4 portrays experiential 

results performed to investigate the performance of the proposed approach. Section 5 

concludes the paper with future scope.  

2. Merging Golden Jackal Optimization with Ordinal Optimization 

2.1 Constrained Integer Stochastic Optimization Problems 

There are two challenges to CISOP. (i) The feasibility of a solution cannot be known with 

certainty due to the random nature of the cost function. (ii) The design space has no 

appropriate structural information to identify the optimal solution. The CISOP can be 

formulated mathematically, as shown below. 

 min E ( )f x                                   (1) 

subject to ( )= , 1, ,i ig c i I=x ,                           (2) 
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 ( )> , 1, ,j jh d j J=x .                          (3) 

 V x U .                                   (4) 

where 
1[ , , ]T

Kx x=x  is a solution,  E ( )f x  is the expectation of the cost function, ( )ig x  

is the ith equality constraint, ic  is specified values, I is the number of equality constraints, 

( )jh x  depicts the jth inequality constraint, 
jd  depicts pre-specified requirement values, J 

depicts the number of inequality constraints, and 
1[ , , ]T

KV V=V  and 
1[ , , ]T

KU U=U  

denote the lower and upper bounds, respectively.  

Basically, sufficient replications should be run to achieve a required accuracy in 

evaluating  E ( )f x . Nevertheless, it is unable to execute an infinitely long simulation. There 

is an alternative formula to estimate the sample mean of  E ( )f x . 

1

1
( ) ( )

L

f f
L =

= x x                          (5) 

where L depicts the quantity of replications, and ( )f x  denotes the evaluation of the th 

replication. The sample mean ( )f x  has a better evaluation of  E ( )f x  as the number of 

replications increases, i.e., a large value of L will be more closely approximated  E ( )f x .  

Penalty function methods work by penalizing the infeasible solutions and converting the 

constrained optimization problems into unconstrained counterparts. Since both constraints of 

CISOP are soft ones, they are imposed by adding extra penalty terms to the cost function [34].  

1 1

min ( ) ( )  ( )  ( )
I J

i j

i j

F f x pe pi 
= =

= +  +  x x x                   (6) 

where   and   depict the penalty factors of equality and inequality constraints, 

respectively, ( )F x  denotes a penalized cost function, and ( )ipe x  and ( )jpi x  represent the 

quadratic penalty function. 
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( )
2

0, ( ) ,
( )   1, , .

( ) ,else,

i i

i

i i

if g c
pe i I

g c

 =
= =

−

x
x

x
                  (7) 

( )
2

0, ( ) ,
( )   1, , .

( ) ,else,

j j

j

j j

if h d
pi j J

h d

 
= =

−

x
x

x
                  (8) 

The penalty factor will be a very large positive number logically. As it becomes large, the 

penalty for violating the constraints becomes large. The accurate estimate of (6) is obtained by 

aL L= , where aL  denote the sufficiently large value of L . Let  ( )aF x  represent the 

penalized cost function of x  resulting from an accurate estimate. 

2.2 Polynomial Chaos Expansion 

Surrogate modeling can build a regression model through a set of available samples 

obtained from a design of experiments, including PCE [33], regularized minimal-energy 

tensor-product splines [35], extreme learning machines [36], multivariate adaptive regression 

splines [37], and support vector regression [38]. Among them, PCE is a method for 

uncertainty propagation in model-based computations under uncertainty. After obtaining a 

polynomial chaos expansion of a random variable, we can make a finitely parametrized and 

completely deterministic approximation of it. This approximation can be utilized to carry out 

model evaluations and obtain a mathematical representation of the model output as well. 

There are three distinct advantages to using the PCE: (i) it has an exact analytical expression, 

(ii) it can quantify the uncertainty of input parameters, and (iii) it can accurately predict the 

response for any set of parameters within the domain. PCE has been widely adopted in 

various application areas, including function approximation, prediction, curve fitting, and 

forecasting [33]. Accordingly, the PCE metamodel is utilized to quickly approximate a 

solution. Figure 1 shows the second-order PCE with three layers.  
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Figure. 1 A second-order PCE with three layers. 

We arbitrarily select   x ’s from design space and compute ˆ ( )aF x  using accurate estimate, 

where ˆ=




−x
x  denotes the normal standard of x , and µ and  denote the mean and 

standard deviation, respectively. These   solutions are represented as ( ˆ ˆ,  ( )i a iFx x ). The PCE 

can be approximated ˆ( )F x  by sums of orthonormal polynomials. 

1

ˆ ˆ( ) ( )
P

p p

p

F w
=

= x x                           (9) 

where P is the number of PCE terms; 
pw  denotes the expansion coefficients; and ˆ( )p x  

depicts multivariate orthogonal polynomial basis functions, which is expressed as a product of 

univariate polynomials. 

               ( )
1

ˆ ˆ( )
M

p p m

m

x H x
=

 =                           (10) 

where M depicts the dimension of a multivariate orthogonal polynomial, which can be 

obtained from the input data using the Hermite polynomials ( )pH  . These data points are 
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extracted from the input variables using the Hermite polynomials in the modeling process. For 

example, if P=2, 
0

ˆ( ) 1H x = ,
1

ˆ ˆ( )H x x= , and 2

2
ˆ ˆ( ) 1H x x= − . The least-squares-minimization 

scheme is utilized to find the expansion coefficients 
pw , 1,...,p P= . 

1 1
1

T T

ˆ( )

ˆ( )

a

P a

w F

w F

−



   
    =     
      

x

Φ Φ Φ

x

                       (11) 

The value of   is larger than the value of P, i.e.   > P. The matrix Φ  is calculated as 

below. 

1 1 2 1 1

1 2

ˆ ˆ ˆ( ) ( ) ( )

=

ˆ ˆ ˆ( ) ( ) ( )

P

P  

   
 
 
    

x x x

Φ

x x x

                  (12) 

The PCE is trained offline to apparently reduce computational time. Since the 80:20 split 

draws its justification from the well-known Pareto principle, 80% of the data is for training 

and 20% for testing in the PCE metamodel. Once the PCE is trained, the mathematical model 

can be used to predict ˆ ( )aF x  for a testing x .  

2.3 Advanced Golden Jackal Optimization 

In the global search phase, we can use existing optimization approaches with the aid of the 

PCE to determine N  excellent solutions from the entire design space. Since the GJO 

maintains a diverse population of solutions that can explore multiple regions of the design 

space simultaneously, it can meet a specific set of requirements. The GJO has many benefits, 

including stronger search ability, easy implementation, better stability, and few adjustment 

parameters.  

The golden jackals are the most widely distributed in the world. They have a varied diet 

and populate widely diverse habitats across extensive ranges. The basic social unit of the 

golden jackal may be a mated pair or a family including a mated pair and its young. The 

jackals live in pairs and share their activities with their partners. Their behavior is highly 
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synchronized. Golden jackal pairs hunt, forage, and rest together. Cooperative hunting is 

important to jackals because hunting in pairs may be three times more successful than single 

hunting. Golden jackals communicate through their repertoire of calls and use a wide 

inventory of howls to locate one another.  

The search process of GJO relies on three behaviors: search, enclose and pounce, and 

switch from exploration to exploitation. The behavior of searching for prey corresponds to 

exploration. Golden jackals adopt cooperative foraging to search an available region for large 

prey. The prey sometimes cannot be spotted in a specific region, and it is lost. The behavior of 

enclosing and pouncing on the prey corresponds to exploitation. Golden jackals will outflank 

the prey and encircle it until it cannot escape. They assault the prey once escape seems 

hopeless. The foraging hunt is guided by the male jackal, and the female jackal follows the 

male jackal. The escaping energy of the prey inhibits the possibility of updating the position 

of the golden jackal pair. Thus, it is used to determine a switch from exploration to 

exploitation. 

 The developed AGJO has two control parameters, including the escaping energy (E), and 

the jump strength of Levy flight (). The parameters E and  are dynamically adjusted to 

strengthen diversification in the previous process and intensification in the subsequent process. 

The value of E follows an exponentially decreasing harmonic oscillation when the iteration is 

increased. A large E concentrates on searching for promising regions in former iterations, 

while a small E concentrates on looking for already-promising solutions in later iterations. 

The value of  decays exponentially to intensify intensification when the iteration is 

increased. 

The AGJO uses the following notations.   is the number of golden jackals, maxt  is the 

maximum iterative number, 
T

,1 ,[ , , ]t t t

i i i Kx x=x , 
T

1[ , , ]t t t

Ky y=y  and 
T

1[ , , ]t t t

Kz z=z  

depict the positions of the ith golden jackal, male jackal, and female jackal at iteration t, 
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respectively. 
T

,1 ,[ , , ]t t t

i i i Kxy xy=xy  and 
T

,1 ,[ , , ]t t t

i i i Kz xz xz=x  denote the positions of the 

golden jackal pair corresponding to the ith golden jackal at iteration t. 
min max[ , ]tE E E  and 

min max[ , ]t    depict the escaping energy (E), and jump strength of Levy flight () at 

iteration t, respectively, where 
minE , 

min  are lower bounds, and 
maxE , 

max   are upper 

bounds. 

Algorithm I: The AGJO 

Step 1: Setting parameters  

Define parameters to  , 
minE , 

maxE , 
min , 

max , and 
maxt . Initialize the index variable t  

to zero. 

Step 2: Population Initialization 

Initialize a population with   golden jackals. 

0 [0,1] ( )i = +  −x V rand U V , = ,...,1i .                (13)     

where V  and U denote the lower and upper bounds, respectively, and [0,1]rand  is a vector 

of random numbers between zero and one. 

Step 3: Determine male and female jackals 

(a) Calculate 
 ( )t

a iF x  of a golden jackal collaborated with PCE, = ,...,1i .  

(b) Rank the   golden jackals according to their fitness from the smallest to the largest, 

then choose the best one as a male jackal 
t

y  and the second best one as a female jackal 

t
z . 

Step 4: Adjust two control factors 

( )
2

min
min max min

max max

exp ln sin(2 [0,1])t E t
E E E E rand

E t


   
  = + −     

     

   (14) 

  t = min + ( max min − )  ( max

min

1 exp(



− 

max

( 1))
t

t
− )         (15) 
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Step 5: Search for prey 

If 1tE  , perform searching for prey. 

(1) Update the positions of the golden jackal pair corresponding to the ith golden jackal. 

( )t t t t t t

i iE Levy= −  −  xy y y x , = ,...,1i .            (16) 

( )t t t t t t

i iE Levy= −  −  xz z z x , = ,...,1i .            (17) 

where 
1

=0.01
u

Levy
v 


 , u and v denote the mean and standard derivation in the Gauss 

distribution, 
( )

1

( 1) 2

(1 ) sin(2 / 2)
=

(1 ) 2 2





 


  −

  + 
   +   

, β=1.5 is a pre-designed value, and  is the 

Gamma function.  

(2) Update the position of the ith golden jackal. 

1

2

t t
t i i
i

+ +
=

xy xz
x , = ,...,1i .                 (18) 

When 
+1

,

t

i j jx V , set 
+1

, =t

i j jx V , and when 
+1

, >t

i j jx U , set 
+1

, =t

i j jx U . 

Step 6. Enclose and pounce on prey 

If <1tE , perform enclosing and pouncing on prey. 

(1) Update the positions of the golden jackal pair corresponding to the ith golden jackal. 

( )t t t t t t

i iE Levy= −    −xy y y x , = ,...,1i .            (19) 

( )t t t t t t

i iE Levy= −    −xz z z x , = ,...,1i .            (20) 

(2) Update the position of the ith golden jackal. 

1

2

t t
t i i
i

+ +
=

xy xz
x , = ,...,1i .                 (21) 

When 
+1

,

t

i j jx V , set 
+1

, =t

i j jx V , and when 
+1

, >t

i j jx U , set 
+1

, =t

i j jx U . 

Step 7: Terminating condition 

If 
maxt t , stop; else, set 1t t= +  and repeat from Step 3. 
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The AGJO terminates after maxt  iterations have been performed. When the AGJO is 

stopped, the   golden jackals are ranked based on their fitness. Although the AGJO is 

developed for continuous variables, a real value can be transformed to the greatest integer less 

than or equal to it by the floor function max max

, ,

t t

i k i ks x =   , where max

,

t

i kx  ℝ and max

,

t

i ks   ℤ. 

Consequently, the former N  golden jackals are picked up to construct the excellent subset. 

2.4 Modified Optimal Computing Budget Allocation 

 The optimal computing budget allocation (OCBA) has been shown to be very efficient, 

controllable, and robust when compared to other ranking and selection methods. To improve 

the effectiveness of the OCBA, the MOCBA is developed to select the optimal solution under 

the restriction of an extremely small computing budget. All replications are executed in the 

allocation procedure to yield the mean and variance for each design in the OCBA. The 

MOCBA just needs to perform incremental replications in the allocation procedure to yield 

the mean and variance for each design. Thus, MOCBA proposes a way of asymptotically 

optimally allocating the extremely small computing budget among competing designs. 

Let 0L  denote the initial replications assigned to each design,
 nL  indicate the replications 

allocated to the n th design, and C  indicate the limited computing budget. An additional 

computing budget, Δ, is added in each allocation procedure. The value of Δ is obtained 

through experimentation. The target of the MOCBA is to maximize the probability of correct 

selection under 1 2 NL L L C+ + + =  to allocate C  wisely to 1L ,…, NL . The limited 

computing budget C  is obtained by aN L
C




= , where aL  denote the replications of an 

accurate estimate, and   denotes a speeding up of parameters [39].  

Algorithm II: The MOCBA  

Step 1. Configure 0L , 0l = , 
0

l

nL L= , 1,...,n N= , and compute the limited computing 



 13 

budget aN L
C




=

.
 

Step 2. Add   to 
1

N
l

n

n

L
=

 , and calculate the required replications. 

1

1 1,

( ) / ( )
N N

l l l l l

j n j b n

n n n b

L L   +

= = 

= +   +                (22) 

1 1
l

l lb
b jl

j

L L




+ +=                           (23) 

1 1
l

l ln
n jl

j

L L




+ +=                           (24) 

where 

2

( )

( )

l l ll
n b jn

l l l l

j j b n

f f

f f



 

  −
=    − 

, 2

1,

( )
lN

l l n
b b l

n n b n


 

= 

=  , 
1

1
( )

l
nL

l

n k nl
kn

f f
L =

=  x , 

( )
2

1

1
( )

l
nL

l l

n k n nl
kn

f f
L


=

= − x  for all n j b  , arg min l

n
n

b f= , 
nx  denotes the n th design, 

and ( )k nf x  represents the objective function of nx  at the k th replication.  

Step 3. Perform 1max[0, ]l l

n nL L+ −  incremental replications to the n th design, and calculate 

the incremental mean (
1ˆ l

nf
+

) and incremental standard deviation (
1ˆl

n +
). 

1

1

1

1

1ˆ ( )
( )

l
n

l
n

L
l

n k nl l

k Ln n

f f
L L

+

+

+

= +

=
−

 x                    (25) 

( )
1

2
1 1

1

1

1 ˆˆ  ( )
( )

l
n

l
n

L
l l

n k n nl l

k Ln n

f f
L L



+

+ +

+

= +

= −
−

 x                (26) 

Step 4. Calculate the complete mean ( 1l

nf
+  ) and complete standard deviation ( 1

 

l

n + ) of the 

n th design for entire replications. 

 ( )1 1 1

1

1 ˆ( )l l l l l l

n n n n n nl

n

f L f L L f
L

+ + +

+
=  + −                 (27) 
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( ) ( ) ( ) ( ) ( )
2 222 2

1 1 1 1 1 1 1

1

1 ˆ ˆˆ( 1) ( ) ( 1)
( 1)

l l l l l l l l l l l l l

n n n n n n n n n n n n nl

n

L f L L L f L L L f
L

  + + + + + + +

+

 =  + − + − + − − − 
−  

(28) 

Step 5. If 
1

N
l

n

n

L C
=

 , stop and choose the best *
x  such that objective value is minimal; else, 

set 1l l= +  and repeat from Step 2. 

2.5 The GJOO Algorithm 

Figure 2 shows the flowchart of the GJOO algorithm. First of all, the PCE is used to 

assess a solution more readily in the block of a metamodel. Secondly, the AGJO cooperates 

with the PCE metamodel to find N excellent solutions from the entire design space in the 

block of global search. At last, the MOCBA is utilized to select a distinguished solution 

among the N excellent solutions in the block of ranking and selection. The computational 

complexity of GJOO with   jackals depends on the initialization and updating of golden 

jackals. The computational complexity is O( )  in the initialization. In the updating phase, 

the computational complexity is maxO( )t  + maxO( )t K  , which comprises updating the 

location of all jackals and searching for the best location, where 
maxt  denotes the maximum 

iterative number and K is the dimension of CISOP. Thus, the computational complexity of the 

GJOO is  ( )maxO 1+ (1+ )t K  .  

Algorithm III: The GJOO  

Step 1: Define the values of  , 
minE , 

maxE , 
min , 

max , 
maxt , N , 

aL , 0L , and  . 

Step 2: Arbitrarily sample   x ’s from the design space, calculate  ( )aF x  using accurate 

estimate, and construct the PCE through these   samples. 

Step 3: Yield   x ’s to be the initial population, then adopt the AGJO algorithm for those 

golden jackals that collaborated with PCE. After the AGJO algorithm stops, sort the   

x ’s according to fitness from the smallest to the largest, and pick up the former N  x ’s 

to constitute the excellent subset. 
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Step 4: Adopt the MOCBA algorithm for the N  excellent solutions and find the optimum 

*
x , which is the distinguished solution. 

Design space

Adjust two control 
factors

Calculate fitness of a 
golden jackal by PCE

Generate new 
position

Select former N  golden jackals 

to construct the excellent subset

Modified optimal computing 

budget allocation

Perform extra replications 
and update the statistics of 

excellent solutions

A distinguished solution

Randomly select   

training samples

Calculate objective value 
using accurate estimate

Off-line train PCE 

using training samples

Construct the PCE 

metamodel

Configure the limited 

computing budget 

Termination?

Stop?

Arbitrarily generate     golden 

jackals as initial population

Yes

No

Yes

No

Metamodel

Global search

Ranking and selection

C

 

Figure. 2 Flowchart of the GJOO algorithm. 
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3. Shipping/Receiving Docks Optimization of Container Freight Station 

3.1 Container Freight Station in Air Cargo 

 Affected by COVID-19, the global manufacturing supply chain has been disrupted, and 

shipping vessels have blocked ports. The shortage of cargo containers has driven the demand 

for air cargo. The air cargo terminal is a necessary gateway for the import and export of goods. 

When the air cargo terminal is limited by the airport area, the optimization of the 

shipping/receiving docks can improve efficiency and maintain the growth momentum of air 

cargo [40]. Figure 3 shows the shipping/receiving docks of a container freight station. Since 

import and export cargo is picked up and delivered by trucks at the docks, the 

shipping/receiving docks are key resources at a certain air cargo terminal. There are four 

major categories of cargo: pallet bulk, general bulk, perishable cargo, and prepacked cargo. 

Different categories of cargo require different operations and utilize different material 

handling systems. Accordingly, the terminal must determine how to assign the 

shipping/receiving docks to the four categories. It is particularly important during the peak 

season, such as the month before Christmas and New Year's, because the terminal is operating 

at default capacity.  

Import

Export

Uploading

Loading

General 

bulk

Perishable 

cargo

Prepacked 

cargo

Pallet bulk

 

Figure 3. Shipping/receiving docks of a container freight station. 
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The long-run average truck waiting time is usually regarded as a performance measure, 

which is defined as the time waiting to get to a dock plus the time required to complete the 

service. Five common approaches to helping find the optimal number of docks are the 

exhaustive search, greedy method, approximate dynamic programming technique, branch and 

bound method, and heuristic algorithms. An exhaustive search is a brute-force scheme that 

systematically enumerates all possible solutions to the problem. The greedy method solves a 

problem by selecting the most appropriate option based on the current situation [41]. The 

approximate dynamic programming technique integrates function approximation and 

simulation to appease the curse-of-dimensionality involved with the dynamic programming 

method [42]. The branch-and-bound scheme adopts a divide-and-conquer scheme to divide 

the design space into subproblems, and each sub-problem is optimized independently. If the 

worst-case scenario occurs, we need to search all the design spaces. Although heuristic 

algorithms can quickly generate a solution with acceptable quality, one of the main drawbacks 

is the high probability of being trapped in local optima. 

Instead of handling an approximate mathematical model, the considered problem can be 

modeled as a CISOP. Therefore, the shipping/receiving docks optimization problem of a 

container freight station in air cargo is first formulated as a CISOP. Next, the GJOO is utilized 

to determine the number of docks needed to minimize the long-run average truck waiting time 

while ensuring the stability of the queues. 

3.2 Mathematical Formulation 

Consider an air cargo terminal that has M docks. The arrival processes follow Poisson 

processes with a stationary arrival rate j , 1,..., 4j = . Service times for four cargo 

categories follow an exponential distribution with a stationary rate j , 1,..., 4j = . Let ix , 

1,..., 4i = , depict the number of docks allocated to the pallet bulk, general bulk, perishable 
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cargo, and prepacked cargo, respectively, so that 
4

1

i

i

x M
=

= . In addition, we require that 

> , 1, ,4j j jx j  =  to guarantee the stability of the queues. 

Now, the shipping/receiving docks optimization problem of a container freight station in 

air cargo is formulated as a CISOP. 

 min  E ( )f x                               (29) 

subject to 
4

1

=i

i

x M
=

 ,                              (30) 

> , 1, ,4j j jx j  = ,                     (31) 

 V x U .                             (32) 

where 
1 4[ , , ]Tx x=x  indicates a solution, 1 4~x x depict the number of docks, M denotes the 

total number of docks, [ ( )]E f x  represents the long-run average truck waiting time, 
j  is 

the arrival rate of cargo, 
j  is the service rate of cargo, and [1,1,1,1]T=V , 

[ , , , ]TM M M M=U  represent the lower and upper bounds, respectively. 

The purpose of the CISOP is to determine the optimal number of docks *
x  for 

minimizing the long-run average waiting time, subject to the limit of docks, stability 

constraints, and integrality conditions. The sample mean ( )f x  is used to approximate the 

expected value [ ( )]E f x . 

1

1
( ) ( )

L

f f
L =

= x x                       (33) 

where L denotes the quantity of replications, and ( )f x  denote the estimate of the th 

replication. Since two constraints are soft ones, the constrained optimization problems are 

transformed into unconstrained counterparts.  

2
4 4

1 1

min ( ) ( ) ( )i j

i j

F f x M pi 
= =

 
= +  − +  

 
 x x x         (34) 
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where   and   depict the penalty factor, ( )F x  is the penalized cost function, and ( )jpi x  

is defined as follows.  

( )
2

0, > ,
( )

, ,

j j j

j

j j j

if x
pi

x else

 

 




= 
−

x , 1,..., 4j = .            (35) 

Let 
aL  indicate the sufficiently large value of L , and the accurate estimate of (34) is 

defined as 
aL L= . Let ( )aF x  denote the penalized cost function of x  resulted from an 

accurate estimate. 

3.3 Application of the GJOO Method 

3.3.1 Train the PCE metamodel 

Four steps were adopted to constitute the PCE metamodel to assess a solution. (i) 

Randomly generate   x ’s and evaluate ( )aF x  through an accurate estimate, then denote these 

  samples and their estimates as 
ix  and ( )a iF x , respectively. (ii) Define the quantity of 

PCE terms, i.e., P=2. (iii) Calculate the matrix Φ . (iv) Apply the least-squares-minimization 

scheme to find the coefficients 
pw . 

3.3.2 Constitute the excellent subset 

Firstly,   golden jackals were arbitrarily selected to construct the initial population. The 

fitness of a golden jackal was estimated by the PCE metamodel. Once the AGJO was 

terminated, the   golden jackals were ranked based on their fitness. The prior N  golden 

jackals were picked up to constitute the excellent subset. 

3.3.3 Determine the Distinguished Solution 

The MOCBA algorithm was applied to determine a distinguished solution from the N  

excellent solutions. Ref. [39] revealed that an appreciated value of   is greater than 10% of 

N but less than 100, and an appreciated value of 0L  is between 5 and 20. 
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4. Numerical experiment and result analysis 

4.1. Test Example 

A test example of an air cargo terminal adapted from [43] is used to verify the GJOO 

method. The total number of docks M=115. The cargo arrival rates follow a stationary Poisson 

process based on Table 1. Service times for four cargo categories follow an exponential 

distribution with a stationary rate based on Table 1. Every replication started from an empty 

system and had a warm-up simulation time of 100 hours. Then, we simulated for 500 hours 

after the warm-up period. Time was measured according to the quantity of replications that 

were executed. 

Table 1 Arrival Rates and Average Service Times. 

Type of Cargo Arrival Rate 

(1/minute) 

Average Service 

Time (minutes) 

pallet bulk 
1 52.8 60 =  11 67 =  

general bulk 
2 11.7 60 =  21 46 =  

Perishable cargo 
3 13 60 =  31 92 =  

prepacked cargo 
4 22.5 60 =  41 34 =  

 

There are 9604 arbitrarily chosen solutions to train the PCE. The value of  =9604 was 

calculated through the sampling size formula with a confidence level of 95% as well as a 

confidence interval of 1%.  

The penalty factors were =10  and =20 , which were obtained through hand-tuned 

experiments. The lower and upper bounds were [1,1,1,1]T=V  and [115,115,115,115]T=U , 

respectively. Therefore, the size of the design space is 
4115 . The parameters utilized in AGJO 

were 
min =0.1E ,

max =4E , 
min =0.05 , 

max =0.4  max 300t = , and 100 = . Figure 4 displays 

the curves of two control factors, E and , over 300 iterations. The GJOO was simulated with 

four cases of N, which were N=40, 30, 20, and 10, to investigate the effect of N. The 
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parameters used in MOCBA were 
0L =20,  =10 and 410aL = . The speeding up of 

parameters   that correspond to N=40, 30, 20, and 10 are 10.7, 8.4, 6.1, and 3.3 [39], 

respectively. Therefore, the limited computing budgets C  were 37383, 35714, 32787, and 

30303 for N=40, 30, 20, and 10, respectively. 

 

Figure. 4 Variations of E and  over iterations. 

Table 2 demonstrates the distinguished solution *
x , cost *[ ( )]E f x , and CPU times of 

four cases. For case N=40, the optimal assignment spends 10.25 minutes, 64 docks for pallet 

bulk, 12 docks for general bulk, 23 docks for perishable cargo, and 16 docks for prepacked 

cargo. The CPU time consumed was smaller than two minutes of four cases, which illustrates 

that the GJOO can meet the real-time needs. The GJOO algorithm was implemented on 

MATLAB R2019a software on Windows 10, which was performed on a personal computer 

with an Intel Core i7-8550U at 1.80GHz and 32 GB of RAM. Interested readers may refer to 

Ref. [44] for the source code of the GJOO approach. 

 



 22 

Table 2. The distinguished solution, cost, and CPU times of four cases. 

N *
x  

*[ ( )]E f x  

(min.) 

CPU times 

(sec.) 

40 [64,12,23,16]T
 10.25 118.32 

30 [64,11,24,16]T 10.96 110.56 

20 [65,11,23,16]T 11.12 105.73 

10 [66,11,23,15]T 12.65 97.62 

4.2 Result Analysis 

The GJOO approach was compared to five meta-heuristic algorithms for case N=40: 

African vultures optimization algorithm (AVOA) [45], ant colony optimization (ACO) [46], 

clonal selection algorithm (CSA) [47], multi-cohort whale optimization algorithm (MCWOA) 

[48], and sine-cosine spotted hyena-based chimp optimization algorithm (SSC) [49]. We have 

adopted a population size of 100 with a maximum iterative number of 300 to ensure the same 

setting as the GJOO algorithm. Other algorithm-specific parameter settings for all 

meta-heuristic algorithms are summarized in Table 3. 

The five meta-heuristic methods use the accurate estimate compute the objective value. 

Due to randomness, 30 trials were carried out to inspect the validity and reliability. Since the 

five meta-heuristic algorithms consume more computing time to obtain the optimum, the 

optimization processes stopped when they had spent one hour of computing time. Table 4 

demonstrates the statistical analysis and average CPU times over 30 trials for six methods. 

The averages of the elite objective value resulted from AVOA, ACO, CSA, MCWOA, and 

SSC were still 30.81%, 30.07%, 32.65%, 24.68%, and 26.92% larger than those obtained by 

GJOO, respectively. Simulation results reveal that the GJOO outperforms five meta-heuristic 

algorithms.  
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Table 3. Parameter setting values for five meta-heuristic methods. 

Algorithms Parameters Value 

 

 

 

 

African vultures 

optimization 

algorithm 

Probability of selections in exploration phase P1 0.6 

Probability of selections in the first part of exploitation 

phase P2 

0.4 

Probability of selections in the second part of 

exploitation phase P3 

0.6 

Probability toward the best solutions for group L1 0.8 

Probability toward the best solutions for group L2 0.2 

Parameter disrupts the exploration and exploitation 

phases w 

2.5 

 

Ant colony 

optimization 

Initial pheromone 0.1 

Volatile factor for global pheromone 0.3 

Evaporation rate for local pheromone 0.5 

Relative importance of pheromones 1 

Probability for selecting exploitation and exploration 0.9 

Clonal selection 

algorithm 

Strength of mutation 10 

Receptor editing rate 0.5 

Multi-cohort whale 

optimization 

algorithm 

Spiral factor b 1 

Convergence constant a [2,0] 

Sine-cosine and 

Spotted hyena-based 

chimp optimization 

algorithm 

Encircling behavior h [5,0] 

Chimp coefficient l [2.5,0] 

 

Table 4. Statistic analysis and average CPU times of six algorithms. 

Algorithms Min. Max. AEOV† 

 
§†AEOV

100%
*

−
  S.D. S.E.M. 

Average 

rank 

percentage 

Average 

CPU 

time(min.) 

GJOO 10.24 10.34 10.29 0 0.02 0.0037 0.02% 1.96 

AVOA with 

accurate 

estimate 

13.07 13.85 13.46 30.81% 0.12 0.0219 4.83% 59.97 

ACO with 

accurate 

estimate 

12.99 13.77 13.38 30.07% 0.13 0.0237 4.54% 60.02 

CSA with 

accurate 

estimate 

13.22 14.11 13.65 32.65% 0.14 0.0256 6.68% 59.93 

MCWOA with 

accurate 

estimate 

12.62 13.15 12.83 24.68% 0.09 0.0164 2.91% 59.99 

SSC with 

accurate 

estimate 

12.71 13.46 13.06 26.92% 0.11 0.0201 3.32% 59.95 

†AEOV: average of the elite objective value  
§ *: AEOV resulting from GJOO 
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At last, a percentage analysis concerning rank was performed to demonstrate the order of 

a distinguished solution in the design space. Since it is difficult to determine the order of all 

solutions, a sampling subset,  , is used to reflect the characteristics of the entire design 

space. The percentage concerning rank of a distinguished solution is defined as 100%
O




, 

where O  denotes the order of a distinguished solution in  . In general, 13572 samples 

were arbitrarily chosen from the entire design space to constitute the sampling subset. The 

objective values of all samples were obtained by accurate estimation. The value of 

 =13572 was obtained using a confidence level of 98% and a confidence interval of 1%. 

Table 4 also demonstrates the average percentages concerning rank obtained by six 

algorithms. The standard error of the mean (S.E.M.) obtained by GJOO was 0.0037. This tiny 

S.E.M. reveals that most of the distinguished solutions obtained by the GJOO are relatively 

near the optimum for 30 trials. 

The convergence status of each method can be seen in detail from the convergence curve. 

Therefore, we analyze the convergence status of the six methods that collaborated with the 

PCE metamodel by drawing the convergence curve in the global search. Figure 5 describes 

the convergence results of six methods for the first trial. The horizontal axis indicates the 

maximum iteration times, and the vertical axis represents the objective value in the global 

search phase. Results demonstrate that AGJO has improved significantly in the global search 

phase. For the other five methods, MCWOA has the better convergence, followed by SSC, 

AVOA, CSA, and ACO. 
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Figure 5. Convergence curve of the six methods in the global search phase. 

 

To analyze the significance of results, the Wilcoxon rank sum test is performed at the 5% 

significance level [50]. Through statistical analysis of the data of two groups, the p-value and 

h-value are adopted as indicators to assess whether each method has statistical significance. 

The p-value represents the level of marginal significance within a statistical hypothesis test. 

The value h = 1 represents a rejection of the null hypothesis, and h = 0 indicates a failure to 

reject the null hypothesis. The data of two groups are significantly different if p-value<0.05 

and h =1 are obtained. The comparison results of the Wilcoxon rank sum test for AGJO versus 

five meta-heuristic methods are shown in Table 5. The AGJO is significantly different from 

five meta-heuristic algorithms. 

 

 

 



 26 

Table 5. Comparison results of the Wilcoxon rank sum test. 

Value 
AGJO vs. 

AVOA   

AGJO vs. 

ACO 

AGJO vs. 

CSA 

AGJO vs. 

MCWOA 

AGJO vs. 

SSC 

p-value 0.0013 
42.8321 10−  

51.2493 10−  0.0162 0.0049 

h-value 1 1 1 1 1 
 

5. Conclusions and Further research 

To solve the CISOP in a reasonable time, an algorithm that uses GJO, assisted by OO, was 

presented. The GJOO consists of three phases: the metamodel, global search, and ranking and 

selection. The PCE metamodel was used to quickly evaluate a solution. The GJOO used the 

AGJO for global search and the MOCBA for ranking and selection. The GJOO was applied to 

the shipping/receiving docks optimization problem of a container freight station in air cargo, 

which was modeled as a CISOP. A practical example of an air cargo terminal was adopted to 

inspect the GJOO approach. The CPU time consumed was smaller than two minutes, which 

reveals that the GJOO can meet the real-time needs. The GJOO was compared to five 

meta-heuristic algorithms: AVOA, ACO, CSA, MCWOA, and SSC. Simulation results 

showed that most of the distinguished solutions obtained by the GJOO were relatively near 

the optimum for 30 trials. A Wilcoxon rank sum test is carried out to inspect the significance 

of AGJO from a statistical point of view. Test results show that AGJO is significantly different 

from five meta-heuristic algorithms. 

The application of OO is not restricted to the shipping/receiving docks optimization 

problem of a container freight station in air cargo. OO can be adopted to assist novel 

meta-heuristic methods, such as the sine cosine algorithm, the memory-based hybrid 

dragonfly algorithm, the arithmetic optimization algorithm, the artificial ecosystem-based 

optimization algorithm, and the Aquila optimizer. Further research will extend OO to resolve 

more complex optimization problems involving stochastic constraints, including conditional 

value-at-risk optimization problems, and risk-averse stochastic optimization problems. 
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