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First of all, we would like to thank the six anonymous reviewers for spending their valuable 

time in reviewing our paper and given us constructive comments and helpful suggestions to 

improve the quality and readability of our paper. We would also like to thank the managing editor, 

Prof. Gang Kou, for his help in processing our paper and giving us a chance to do the revisions.  

I wish to show my respect to the management of this journal, because I never have any paper 

being reviewed by six reviewers. Above all, all the comments from all six reviewers are so 

valuable that help us improve the quality of our paper a lot. Although it is really a big job to 

complete the revisions and make us exhausted, we are happy with what we have improved. 

Thanks to all of you. 

Now, we believe that we have addressed all the comments successfully in the revised 

manuscript. In the following, we will state each comment raised by the six reviewers first then 

followed by the revisions responding to that comment, and we will also indicate where the 

revisions are in the revised manuscript. Each comment is labeled such that R1.2 represents the 

second comment of reviewer #1. 

 

Comment R1.1: The algorithm used (ES) is known as 'Evolution Strategy' NOT 'Evolutionary 

Strategy'. 

Revisions: We wish to thank reviewer #1 for this valuable comment. As suggested, we have 

changed “Evolutionary Strategy” to “Evolution Strategy” throughout the paper including 

the title. 

 
Comment R1.2: The authors did not provide any convincing arguments that would justify their 

choice of ANN topology and architecture. In fact for ANN based meta-models overfitting 

and underfitting are often huge problems and coming up with a network of right complexity 

is a challenging task. To circumvent this problem, in recent times, the concept of 

Evolutionary Neural Net has been proposed, which constructs a Pareto tradeoff between the 

training error and network complexity through multi-objective genetic algorithms.  The 

authors need to consult the following papers and enhance their discussion this very important 
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issue: 

(1) Title: Cu-Zn separation by supported liquid membrane analyzed through Multi-objective 

Genetic Algorithms 

Author(s): Mondal Debanga Nandan; Sarangi Kadambini; Pettersson Frank; et al. 

Source: HYDROMETALLURGY  Volume: 107   Issue: 3-4   Pages: 112-123  

DOI:10.1016/j.hydromet.2011.02.008   Published: MAY 2011 

(2) Title: Analyzing Leaching Data for Low-Grade Manganese Ore Using Neural Nets and 

Multiobjective Genetic Algorithms 

Author(s): Pettersson Frank; Biswas Arijit; Sen Prodip Kumar; et al. 

Source: MATERIALS AND MANUFACTURING PROCESSES  Volume: 24   Issue: 3 

Pages: 320-330  Article Number: PII 908801496   DOI:  

10.1080/10426910802679386   Published: 2009 

(3) Title: A genetic algorithms based multi-objective neural net applied to noisy blast furnace 

data 

Author(s): Pettersson F.; Chakraborti N.; Saxen H. 

Source: APPLIED SOFT COMPUTING  Volume: 7   Issue: 1   Pages: 387-397  

DOI:10.1016/j.asoc.2005.09.001   Published: JAN 2007 

Revisions: We wish to thank reviewer #1 for this very important comment. We agree with him/her 
that improperly trained neural networks may suffer from either underfitting or overfitting. 
Therefore, in the revised manuscript, we have added a remark, Remark 2, in Section 2.2.1 
starting from page 7, line 9 to page 8, line 3 to address this issue and cited the suggested 
literatures [29]-[31]. These revisions are restated in the following for easier reference. 

Remark 2: Improperly trained ANN may cause underfitting or overfitting problems, which 
will lead to predictions that are far beyond the range of the training data set and produce 
wild predictions even with noise-free data. To cope with such problems, several techniques 
were developed such as model selection, jittering, early stopping, weight decay, Bayesian 
learning, combining networks, and evolutionary neural networks [29]-[31]. Among these 
techniques, evolutionary neural network, which constructs a Pareto tradeoff between the 
training error and network complexity through multi-objective genetic algorithms, is 
considered to be very effective. For example, Mondal et al. proposed a data driven model, 
which involved using an evolutionary neural network that used multi-objective genetic 
algorithms to configure its weights and topology, to construct for the Cu-Zn separation 
process [29]. Pettersson et al. used a model based upon evolving neural nets and 
multiobjective optimization conducted through genetic algorithms for the acid leaching of 
low-grade manganese ores [30]. Pettersson et al. utilized a genetic algorithms based 
multi-objective optimization technique in the training process of a feed forward neural 
network and applied to noisy data from an industrial iron blast furnace [31]. Fortunately, the 
OO theory claims that the performance “order” of solutions is likely preserved even if they 
are evaluated using a rough model. Therefore, a sophisticated evolutionary neural network 
will definitely help in selecting good solutions. However, the easily implemented 
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feed-forward back propagation ANN can be used as the rough surrogate model required in 
the OO approach also. The details of the employed ANN will be described in the application 
example, which will be presented in Section 3. 

  
[29] D.N. Mondal, K. Sarangi, F. Pettersson, P.K. Sen, H. Saxen and N. Chakraborti, Cu-Zn 

separation by supported liquid membrane analyzed through multi-objective genetic 
algorithms, Hydrometallurgy 107(3-4) (2011) 112-123.  

[30] F. Pettersson, A. Biswas, P.K. Sen, H. Saxen and N. Chakraborti, Analyzing leaching 
data for low-grade manganese ore using neural nets and multiobjective genetic 
algorithms, Mater. Manuf. Process. 24(3) (2009) 320-330.  

[31] F. Pettersson, N. Chakraborti and H. Saxen, A genetic algorithms based multi-objective 
neural net applied to noisy blast furnace data, Appl. Soft. Comput. 7(1) (2007) 
387-397. 

 
Comment R1.3: Although this paper is intended for the electronics industry, the background 

information provided for such applications is very poor. The authors significantly need to 

improve it. Two very important recent papers are indicated below, which the authors need to 

discuss along with some more similar articles published recently: 

(1) Title: Hybrid Differential Evolution and Particle Swarm Optimization Approach to 

Surface-Potential-Based Model Parameter Extraction for Nanoscale MOSFETs 

Author(s): Li Yiming; Tseng Yu-Hsiang 

Source: MATERIALS AND MANUFACTURING PROCESSES   Volume: 26   Issue: 3  

Pages: 388-397  Article Number: PII 936137099   DOI: 

10.1080/10426914.2010.526977   Published: 2011 

(2) Title: Optimization of Wavelet-Filtered In-Situ Plasma Etch Data Using Neural Network 

and Genetic Algorithm 

Author(s): Kim Byungwhan; Kim Daehyun; Han Dongil; et al. 

Source: MATERIALS AND MANUFACTURING PROCESSES   Volume: 26   Issue: 3 

Pages: 398-402  Article Number: PII 936136671   DOI:  

10.1080/10426914.2010.520791   Published: 2011 

Revisions: We wish to thank reviewer #1 for this constructive comment. To address this comment, 
we have added a paragraph at the beginning of Section 1 starting from page 2, line 2 to page 
3, line 12 and revise the paragraph that follows. We also cited the suggested literatures [2]-[3] 
on pages 37. The added and revised paragraphs and the cited references are restated in the 
following for easier reference. 

Numerous engineering optimization problems in electronics industry are highly nonlinear, 
and global optimum of these problems are usually sought. Therefore, typical solution 
methods for such a type of problems are nature-inspired meta-heuristic methods [1]. For 
example, Li and Tseng developed an extraction technique that combined the differential 
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evolution method and particle swarm optimization algorithm to obtain a set of optimal 
model parameters of the surface-potential-based PSP model for the sub-45-nm MOSFETs 
[2]. Kim et al. applied the back propagation neural network to model the wavelet-filtered 
optical emission spectroscopy data and used the genetic algorithm to optimize the prediction 
performance of neural network model [3]. Sohn and Lee used a correlation analysis to 
investigate the relationship between multiple process control monitoring variables and 
various probe bin variables such that the yield can be maximized [4]. Ozbakir et al. 
proposed a two-level algorithm which combined a multilayer perceptron neural network and 
touring ant colony optimization technique to determine the most effective parameters on the 
quality defects in fabric production [5].  

The decision problem in wafer testing process considered in this paper is a real-time 
combinatorial stochastic simulation optimization problem with huge discrete solution space, 
which is harder than the above mentioned problems due to its nature of expensive 
optimization. Expensive optimization problems that posses a time-consuming-evaluation 
objective function such as stochastic simulation optimization problems [6]-[7], multiple 
objective optimization problems [8]-[9], some combinatorial optimization problems [10]-[11] 
and many others have been a challenge to researchers in this area for decades. Evolutionary 
algorithms (EAs) assisted by surrogate models and memetic algorithms provide a possible 
solution for such problems [12]-[14]. However, most memetic algorithms are designed for 
continuous-variable problems, which are different from the combinatorial nature of the 
considered problem. Additionally, real-time application problems usually allow very limited 
computing budget for solution process. Due to the tight computing budget, optimality in the 
real-time application problem is usually traded off by a “good enough” solution that can be 
obtained in real-time. In fact, using limited computing time to solve for a good enough 
solution of expensive optimization problem is the core concept of ordinal optimization (OO) 
proposed by Y. C. Ho [15]-[16]. The basic idea of OO can be stated as follows. Let S denote 
the set of estimated good enough designs selected from N given designs using surrogate 
model, and let G denote the actual good-enough subset of the N designs, then there is a high 
probability that S contains at least k  elements of G. Therefore, the first step of OO is 
using a computationally efficient surrogate model to evaluate the N given designs and select 
the estimated top |S|, the cardinality of S, designs. The second step is using the 
time-consuming exact model to evaluate each of the selected designs in S, and the best one 
will be the final good enough solution with high probability.   

( 1)≥

 
[2] Y.M. Li and Y.H. Tseng, Hybrid differential evolution and particle swarm optimization 

approach to surface-potential-based model parameter extraction for nanoscale 
MOSFETs, Mater. Manuf. Process. 26(3) (2011) 388-397.  

[3] B. Kim , D. Kim, D. Han and N.I. Lee, Optimization of wavelet-filtered in-situ plasma 
etch data using neural network and genetic algorithm, Mater. Manuf. Process. 26(3) 
(2011) 398-402. 

 
Comment R2.1: The system is properly described. 
Response: We appreciate review #2 for his/her support to our paper. 
 
Comment R2.2: Every time you make a clear affirmation you have to reference it. In page 4, 

authors state: "ANN, because it is not only perfect for approximating the continuous-variable 
function but also competent for approximating ..." I have used ANN for years and I agree 
with you; however state that "ANN are perfect for approximating the function" is too much! 
I recommend changing that statement to:  "ANN, because it is competent for approximating 
both the continuous-variable function and ..." (or something like that). 
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Revisions: We wish to thank reviewer #2 for this professional comment. As suggested, we have 

rewritten the sentence on page 6, lines 15-17, which are restated in the following for easier 

reference. 
Therefore, we will use ANN as the surrogate model in this paper, because it is competent for 
approximating both highly nonlinear continuous-variable function and the input-output 
relationship of stochastic discrete event simulated systems [27]. 

 

Comment R2.3: Figure 3 doesn't show and print correctly. 
Revisions: As suggested, Figure 8 on page 31, which is Figure 3 in the original manuscript, has 

been enlarged for the sake of visibility, which is also presented in the following for easier 
reference. 

 
Fig. 8.  The range of OPCs of (3). 

 
Comment R2.4: Figure 3, 4 and 5 should be bigger for the sake of visibility. 
Revisions: As suggested, Figures 8, 9, and 10 on page 31, 32, and 33, which are Figures 3, 4 and 

5 in the original manuscript, respectively, have been enlarged for the sake of visibility. These 
figures are also presented in the following for easier reference. 
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Fig. 8.  The range of OPCs of (3). 

 
Fig. 9. ( , )iF R x  and  for the )( ixO 'M  ordered decision vectors . ix
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Fig. 10.  Histogram of the modeling errors of ANNBSM. 

 
Comment R2.5: Results discussion should be extended and detailed. 

Revisions: As suggested, we have done some more tests and comparisons to demonstrate the 

superiority of our method. In addition, we have also rewritten the part of tests and 

comparisons in Section 3.4 in a more structural manner. The revisions for indicating the 

structure of the presentation, the additional test results and additional comparisons are 

presented in details from last line, page 21 to line 6, page 22; from line 13, page 25 to line 10, 

page 27 and on page 28, lines 1-14, respectively, which are restated in the following for 

easier reference. 

From last line, page 21 to line 6, page 22: 
In this section, we will proceed with the tests and comparisons in three phases. In the first 

phase, we will test the proposed (μ λ+ )-ES+OO as well as the GA+OO and compare their 
performances. In the second phase, we will investigate the merit of using OO approach by 
comparing the performances of the proposed (μ λ+ )-ES+OO with the (μ λ+ )-ES, GA 
and PSO associated with the exact model. In the third phase, we will use the solution 
obtained by the proposed (μ λ+ )-ES+OO in real application and investigate the quality of 
the obtained solution. 

 
From line 13, page 25 to line 10, page 27: 

In phase two, we will demonstrate the merit of using OO approach by comparing the 
proposed (μ λ+ )-ES+OO with the (μ λ+ )-ES, GA and PSO associated with the exact 

model to solve (3) for the three cases of R =30, 60 and 90. However, for the sake of 
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simplicity, we will present the comparison results only for case R =60.  
The parameters employed in the (μ λ+ )-ES and GA associated with the exact model 

are the same as those used in (μ λ+ )-ES+OO and GA+OO presented previously. In the 

PSO associated with the exact model, the size of population Q  was also set to be 1000. 
Both of the cognitive parameter and social parameter were set to be 2.05 and the inertia 
factor was set to be 1. The maximum allowable velocity was set to be 0.5 and the fitness of 
each particle was evaluated by the exact model. We also execute each of the three methods 
for 30 simulation runs. Due to the time-consuming solution process, we terminate their 
execution when the consumed CPU times exceed 200 minutes, which is around 107 times of 
the CPU time consumed by the proposed ( μ λ+ )-ES+OO. The progression of the 
best-so-far objective value with respect to the consumed CPU time marked by “+”, “ ” and 
“• ” in Fig. 6 are obtained by (μ λ+ )-ES, GA and PSO associated with the exact model in 
the first simulation run, respectively. The point marked by “∗ ” in Fig. 6 represents the pair 
of the objective value of (3) and the consumed CPU time obtained by the proposed 
(μ λ+ )-ES+OO. From Fig. 6, we can observe that when (μ λ+ )-ES associated with the 
exact model consumes 107 times of the CPU times consumed by the proposed 
(μ λ+ )-ES+OO, the best-so-far objective value obtained by the former is still much larger 
than that obtained by the latter. Similar conclusions apply to the GA and PSO associated 
with the exact model. This demonstrates the merit of using OO approach. Notably, the 
performance of the (μ λ+ )-ES associated with the exact model is better than GA and PSO 
associated with the exact model in this case. In fact, the comparisons of the rest 29 
simulation runs reach similar conclusions as stated above. 

 
Fig. 6. Progression of the best-so-far objective value obtained by three comparing methods 

in the first simulation run. 
 

Table 5 shows the statistics of the resulted objective values of the 30 simulation runs of 
the three methods. For the sake of comparison, we also show the corresponding data 
obtained by the proposed (μ λ+ )-ES +OO. These test results reveal that when the three 
comparing methods consume more than 107 times of the CPU times consumed by the 
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proposed (μ λ+ )-ES +OO, the mean objective value obtained by the proposed method is 
still 24.74%, 36.93% and 29.27% smaller than that obtained by the (μ λ+ )-ES, GA, and 
PSO with the exact model, respectively. These results further confirm the computational 
efficiency of and the solution quality obtained by the proposed (μ λ+ )-ES +OO. 
 
Table 5. Statistics of the objective values resulting from 30 simulation runs for the case 

R =60 using four methods. 
Methods Maximum Minimum Mean Standard 

deviation 
(μ λ+ )-ES+OO 3.02 2.73 2.87 0.08 

(μ λ+ )-ES with exact model 4.03 3.06 3.58 0.19 
GA with exact model 4.37 3.19 3.93 0.32 
PSO with exact model 4.22 3.31 3.71 0.23 

Similar conclusions apply to the cases of R =30 and R =90. 

 

On page 28, lines 1-14: 

Finally, in phase three, we use 590 real test wafers, whose bad dies  and overkills jkb

jkv  before retest are known, to test the performance of the vector of threshold values x̂  
obtained by (μ λ+ )-ES+OO in the first simulation run of the three cases shown in Table 2. 
The test results of the pair ( , ) for these 590 test wafers with ˆE[ ( )]V x ˆE[ ( )]R x 90R = , 

60R =  and 30R =  are shown in Fig. 7 by the points “ ”, “∗”, “ ”, respectively. We 
have also used 3000 randomly generated vectors of threshold values to test the same 590 test 
wafers. The resulting pairs of ( , ) for these randomly generated threshold 
values are shown by the points “•” in Fig. 7. Since the two objectives, minimizing overkills 
and retests, have conflicting nature, the considered problem possesses Pareto optimal 
solutions, which are shown as the lower boundary of the region resulted from the randomly 
generated vectors of threshold values. From Fig. 7, we can observe that the pair ( , 

) resulting from the solution obtained by the proposed (

o
ˆE[ ( )]V x ˆE[ ( )]R x

ˆE[ ( )]V x
ˆE[ ( )]R x μ λ+ )-ES+OO for the 

three cases 90R = , 60R =  and 30R = are all on the lower boundary. This implies that 
our algorithm not only controls the level of retests but also obtain a near Pareto optimal 
solution. 

 ix



 
Fig. 7. The pairs of ( , ) resulting from the solution obtained by 

(

ˆE[ ( )]V x ˆE[ ( )]R x
μ λ+ )-ES+OO and the 3000 randomly generated vectors of threshold values. 

 
Comment R2.6: No future works are given: does this work will continue? do you expect to  

improve it and achieve new results? how? 

Revisions: To address this comment, we have added several statements about future works in the 

section of conclusion on page 37 lines 4-12, which are restated in the following for easier 

reference. 

We have successfully applied (μ λ+ )-ES+OO to obtain the good enough threshold values 
of wafer testing problem. However, probing errors still arise from several sources, including 
contaminative probes, filthy tester, setup mistake of probe station, and improper probe card 
position. There are many factors that may cause overkills, such as the testing errors of test 
program on probe station, probes, probe card, tester, material, and operational mistakes of 
operator. Thus, our future work is to perform bin analysis from wafer bin map, and propose 
a machine learning approach for fault extraction and isolation of overkill to improve yield in 
semiconductor manufacturing. 

 
Comment R2.7: The "state of the art" is adequate (most of the references are actual, although 

some of them are a bit old). 

Revisions: To address this comment, we have included five recent references [20], [23]-[24], 

[27]-[28] on pages 39-40, which are restated in the following for easier reference. 
[20] S.B. Andersen and I.F. Santos, A Evolution strategies and multi-objective optimization 

of permanent magnet motor, Appl. Soft. Comput.12(2) (2012) 778-792. 
[23] Y.F. Li, S.H. Ng, M. Xie and T.N. Goh, A systematic comparison of metamodeling 

techniques for simulation optimization in decision support systems, Appl. Soft. Comput. 
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10(4) (2010) 1257-1273. 
[24] J. Zurada, A.S. Levitan and J. Guan, A comparison of regression and artificial 

intelligence methods in a mass appraisal context, J. R. Estate Res. 33(3) (2011) 
349-387. 

[27] B. Can and C. Heavey, A comparison of genetic programming and artificial neural 
networks in metamodeling of discrete-event simulation models, Comput. Oper. Res. 
39(2) (2012) 424-436. 

[28] J.L. Devore, Probability and Statistics for Engineering and Science. 8th ed. (Thomson 
Brooks/Cole, CA, 2011). 

 
Comment R2.8: Authors should leave his source code accessible to other researchers in order to 

facilitate the reproduction of scientific results (as the need for reproducibility is a bedrock 

requirement of modern science). 

Revisions: As suggested, we have added a remark, Remark 8, on page 29, lines 1-2, which is 

restated in the following for easier reference. The technical report [37] listed on page 41, line 

3-5, containing all source codes will be uploaded on-line once the paper is accepted. 
Remark 8: All the above tests are carried out in a Pentium IV PC using Matlab 6.5 (R13). 
Interested readers may refer [37] for source code of the proposed method. 
 
[37] S.C. Horng and S.Y. Lin, Combining evolution strategy with ordinal optimization for 

solving wafer testing problem (2012), Technical Report NSC100-2221-E-324-006, 
http://www.cyut.edu.tw/~schong/eng/paper.htm. 

 
Comment R3.1: The performance analysis of the implementation is quite extensive (I would say 

too extensive and a bit tiring). Since the approach seems quite general and not problem 

specific, I would like to see it also applied on other problems. The performance analysis 

doesn't need to be that thorough in all problems. The writing of the paper is at a very good 

level. 

Revisions: We wish to thank reviewer #3 for his/her support to our paper and the kind 

suggestions regarding the performance analysis. To address this comment, we have added a 

remark, Remark 9, at the end of Section 4 starting from line 20, page 36 to line 1, page 37 to 

illustrate the generality of the proposed performance evaluation procedures. This remark is 

restated in the following for easier reference.  
Remark 9: From the above performance analysis procedures, we see that different 
application problems may have different OPCs and different modeling errors of the 
ANNBSM. However, once both OPC and the probability distribution of the modeling errors 
are obtained, the performance analysis is fairly general. 

 

Comment R4.1: The authors have already employed GA+OO to tackle the wafer testing problem 

and in this paper they combine ES with OO to achieve the same work. As the GA and ES 
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belong to an identical class of the meta-heuristics and their search strategies are the same in 

essence, why the authors do not utilize the PSO or ACO or even HS which are more efficient 

than the ES. The authors should be enough specific to address this critical comment. 

Revisions: We wish to thank reviewer #4 for his/her in-depth comments. To address this 

comment, we have added a paragraph in Section 1 in page 3, line 20 to page 4, line 15 to 

briefly describe the mentioned methods as well as the GA and ES. However, as suggested, 

we have also done more tests, which include the utilization of PSO associated with the exact 

model to solve the considered problem and make comparison. The additional tests and 

comparisons are presented in Section 3.4 starting from line 2 page 18 to line 14 page 28. 

Please also refer to the revisions responding to comment R2.5. However, the revised 

paragraph is restated in the following for easier reference. 
OO is not, itself, a method but it is, rather, a supplement to existing meta-heuristic 

optimization methods such as the particle swarm optimization (PSO), ant colony 
optimization (ACO), harmony search (HS), genetic algorithm (GA), and evolution strategy 
(ES). Among them, PSO and ACO are two popular nature-inspired methods and HS is a 
music-inspired method [18]. PSO finds the optimal solution by moving the particles in the 
search space based on the balance of personal experience and best group experience. ACO 
solves the optimization problems by moving the tracks of ants with the assistance of the 
pheromone. HS searches for global optima using harmony improvisation operators to 
iteratively update the harmony memory that contains promising candidate solutions. 
Although the above three inspired methods seem to be more efficient than the GA, research 
of them is experimental rather than theoretical, and the theoretical analysis is extremely 
difficult due to sequences of probabilistic choices [1]. GA and ES belong to the class of 
evolutionary algorithms that apply mutation, recombination, and selection to a population of 
individuals containing candidate solutions for evolving iteratively better solutions. GA has 
the merit of a simple binary string encoding for discrete solution; however, its convergence 
velocity and convergence reliability may not be as good as ES [19]-[21] when the solution 
space is huge. It has been demonstrated that in some systems, ES appears to outperform GA, 
especially in the field of parameter optimization [21]. Although most ESs are designed for 
continuous variable problem, it can be modified to handle the discrete solution as will be 
manifested in this work. 

Therefore, in this work, we will propose a combination of ES with OO, which is 
abbreviated as ES+OO, to solve the considered problem.     

 

Comment R4.2: In the ANN model, the authors have employed 15 neurons in the hidden layer. 

As the number of the input and output neurons are determined according to the data structure, 

the number of hidden layer neurons can highly affect the computational performance of the 

ANN. In the sequel the authors should report their sensitivity analyses results and 

demonstrate that the number of selected hidden layer neurons is efficient. 

Revisions: As suggested, we have added a remark, Remark 6, in Section 3.4 and the associated 

experimental results shown in Figure 5 to explain why we use 15 neurons in the hidden layer. 
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The revisions are on page 21, lines 6-14, which are restated in the following for easier 

reference. 
Remark 6: The selection of the best number of neurons in the hidden layer depends on 
many factors. The size of the training set, amount of noise in the targets, complexity of the 
sought function to be modeled, type of activation functions used and the training algorithm 
all have interacting effects on the sizes of the hidden layers. There is no analytical method 
for determining the best number of neurons in the hidden layer. Therefore, we select the 
number of neurons in the hidden layer based on empirical tests. Fig. 5 shows the mean 
square errors (MSE), which is computed by (6), of various number of neurons in the hidden 
layer ranging from 1 to 25. From this figure, we can observe that 15 is the least number of 
neurons in the hidden layer that will achieve the smallest MSE. 

 

Fig. 5. The MSE of various numbers of neurons in hidden layer. 

 
Comment R4.3: One of the problems that occur during ANN training is overfitting. Reading the 

paper I realize that the authors have not considered any computational strategy to avoid this 

problem. 

Response: We wish to thank reviewer #4 for this important comment. Indeed, it is our 

responsibility for not touching the overfitting or underfitting issue in the original manuscript; 

therefore, two reviewers, reviewers #1 and 4, express their concern on this subject. In fact, 

this comment is part of the comment R1.2, which has been addressed. Please refer to the 

revisions responding to comment R1.2.  

 

Comment R5.1: First of all, the authors should compare GA+OO and ES+OO in a slightly 
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different way. When comparing meta-heuristics one should fix the number of evaluations of 

the fitness functions, and compare the results obtained for the same number of evaluations 

(or even for several values). This gives a fairer idea of the difference of performance of the 

two different meta-heuristics, so nobody can argue that maybe the stopping criteria is 

favoring one of the method. Additionally, you can compare also the CPU time, because the 

operators applied for one or the other method could involve different computational 

expenses. 

Response: We wish to thank reviewer #5 for this important comment. Due to the random nature 

of the considered problem and the random nature of ES and GA, we have repeated the 

simulation process for each method and each case for 30 times. As suggested, we compare 

the performance of GA+OO and (μ λ+ )-ES+OO in a fairer manner by directly pointing the 

objective values obtained and the CPU time consumed by them. We also report the mean and 

standard deviation of the objective value obtained and the average CPU times consumed by 

the GA+OO and (μ λ+ )-ES+OO for the 30 simulation runs. These additional simulation 

results and revisions have been described in the revisions responding to comment R2.5. 

 
Comment R5.2: (i) Why some comparisons (Tables 2 and 4) are done only once? You should 

repeat the process a certain number of times (say 30), obtain a mean and standard deviation, 

and compare these values. (ii) You should also apply statistical tests to check if the 

differences obtained are statistically significant, otherwise your conclusions could be based 

only on the stochastic nature of the methods and processes involved in the experimentation. 

Revisions: (i) We wish to thank reviewer #5 for this important comment. As suggested, we have 

repeated the simulation process for 30 times for each algorithm and each case. Therefore, we 

have rewritten the paragraphs that introduce Table 2 and add a new table, Table 3, to present 

the mean and standard deviation of the objective values obtained and the average CPU times 

consumed by the two comparing algorithms in all considered cases. These revisions appear 

from page 23, line 15, to page 25, line 10, which is restated in the following for easier 

reference. 
Due to the random nature of the considered problem and the random nature of ES and GA, 

we have repeated the simulation process for each algorithm and each test case for 30 times. 
However, for the sake of explanation, we present the test results of the first of the 30 
simulation runs in Table 2. The test results consist of the good enough solution x̂ , the 
corresponding average overkills  and retests , the corresponding ˆ[ ( )]E V x ˆ[ ( )]E R x
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objective values ˆ( , )F R x  obtained and the corresponding CPU times consumed by the 

two algorithms (μ λ+ )-ES+OO and GA+OO for the three cases R =30, 60 and 90. The 

consistent features of the test results revealed by Table 2 are described below. When R  
increases, the values of good enough  for the corresponding algorithm increases as 

presented in row 2 of Table 2, and the corresponding values of leading good enough , 

8, 9 and 10, which accounts for most of the retests, decrease as presented in rows 10, 11 
and 12, respectively. This indicates that if we allow more retests by increasing 

minWg

maxkn
=k

R , we can 
set more stringent threshold values by increasing  and decreasing the leading 

 to save more overkills, that is smaller , as indicated in row 13 for the 
corresponding algorithm in Table 2.  

minWg

maxkn ˆ[ ( )]E V x

As indicated in Remark 3 that the penalty function is arbitrarily designed to have a sharp 
jump when [ ( )]E R x R= . Hence, the resulting  in each case is less than or 

equal to 

ˆ[ ( )]E R x
R  such that ( [ ( )] )P E R x R− =0. Consequently, the obtained objective value 

ˆ( , )F R x  is equal to the average overkills per wafer, , in all cases. ˆ[ ( )]E V x
 

Table 2.  Good enough vectors of threshold values, average overkills, objective values and 
consumed CPU times of (μ λ+ )-ES+OO and GA+OO for three cases of R  in 
the first simulation run. 

R =30 R =60 R =90               
Good            Methods 
enough solution x̂  (μ+λ)-ES+OO GA+OO (μ+λ)-ES+OO GA+OO (μ+λ)-ES+OO GA+OO

minWg  79 88 118 125 135 145 

max1n  2 3 2 2 1 2 
max2n  2 2 2 2 1 2 

max3n  3 3 3 3 3 3 
max4n  3 4 3 3 2 2 
max5n  2 3 3 3 1 1 

max6n  8 10 7 9 7 5 

max7n  7 9 8 8 6 6 
max8n  69 78 66 66 51 51 
max9n  93 92 82 71 57 49 
max10n  34 31 23 22 18 19 

ˆE[ ( )]V x  4.83 5.01 2.81 3.09 1.05 1.22 
ˆE[ ( )]R x  29.89 29.46 59.91 59.52 89.78 89.27

ˆ ˆ ˆ( , ) [ ( )] ( [ ( )] )F R x E V x P E R x R= + −  4.83 5.01 2.81 3.09 1.05 1.22 
CPU time (sec) 109.15 141.26 112.75 145.08 115.23 143.29

 
 

Table 2 also reveals that (μ λ+ )-ES+OO use less computing time and obtain better 
objective value than GA+OO. This fact not only exists in the first simulation run but also 
exists in the rest 29 runs as demonstrated in Table 3. Table 3 presents the mean, standard 
deviation of the objective value ˆ( , )F R x  obtained by and the corresponding average CPU 
time consumed by the two algorithms for the three cases of different values of R  of the 30 
simulation runs. Both mean and standard deviation of ˆ( , )F R x  obtained by the proposed 
(μ+λ)-ES+OO is smaller than that obtained by the GA+OO in all cases. Additionally, the 
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average CPU times consumed by the proposed (μ+λ)-ES+OO is smaller than that consumed 
by GA+OO in each case. This demonstrates that (μ λ+ )-ES+OO can use less computing 
time to obtain better solution than GA+OO. Above all, the CPU times consumed by 
(μ λ+ )-ES+OO in all cases are within two minutes, which demonstrate the proposed 
algorithm is really suitable for real-time application. 

 
Table 3. Comparisons of ( μ λ+ )-ES+OO and GA+OO in three cases of R  for 30 

simulation runs. 
R =30 R =60 R =90                

         Methods 
ˆ( , )F R x  (μ+λ)-ES+OOGA+OO (μ+λ)-ES+OOGA+OO (μ+λ)-ES+OO GA+OO

Mean 4.86 5.05 2.87 3.04 1.06 1.24 
Standard deviation 0.08 0.10 0.08 0.09 0.04 0.05 

Average CPU time (sec.) 110.76 142.85 111.32 144.66 113.41 143.57
 

(ii) To statistically test the performance of the proposed algorithm in real applications, we 

have compared the solution we obtained with 3000 randomly generated vectors of threshold 

values. The test results show the significance of the proposed algorithm. These additional 

simulations and the revisions appear on page 28, lines 1-14, which is restated in the 

following for easier reference.  

Finally, in phase three, we use 590 real test wafers, whose bad dies  and overkills jkb jkv  
before retest are known, to test the performance of the vector of threshold values x̂  
obtained by (μ λ+ )-ES+OO in the first simulation run of the three cases shown in Table 2. 
The test results of the pair ( , ) for these 590 test wafers with ˆE[ ( )]V x ˆE[ ( )]R x 90R = , 

60R =  and 30R =  are shown in Fig. 7 by the points “ ”, “∗”, “ ”, respectively. We 
have also used 3000 randomly generated vectors of threshold values to test the same 590 test 
wafers. The resulting pairs of ( , ) for these randomly generated threshold 
values are shown by the points “•” in Fig. 7. Since the two objectives, minimizing overkills 
and retests, have conflicting nature, the considered problem possesses Pareto optimal 
solutions, which are shown as the lower boundary of the region resulted from the randomly 
generated vectors of threshold values. From Fig. 7, we can observe that the pair ( , 

) resulting from the solution obtained by the proposed (

o
ˆE[ ( )]V x ˆE[ ( )]R x

ˆE[ ( )]V x
ˆE[ ( )]R x μ λ+ )-ES+OO for the 

three cases 90R = , 60R =  and 30R = are all on the lower boundary. This implies that 
our algorithm not only controls the level of retests but also obtain a near Pareto optimal 
solution. 
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Fig. 7. The pairs of ( , ) resulting from the solution obtained by 

(

ˆE[ ( )]V x ˆE[ ( )]R x
μ λ+ )-ES+OO and the 3000 randomly generated vectors of threshold values. 

 
Comment R5.3: Another problematic point is the selection of the parameter values. They could 

be too specific for the given problem, and one could argue that your methodology is difficult 

to apply to other problems (several parameters are defined). Moreover, the differences 

observed between the methods could be a result of this selection. Could you please provide 

some comments about how to select the parameter values? Usually, evolutionary algorithms 

(EAs) are quite robust to these values, and maybe the values you provide are reasonable for 

almost all problems, but, since you only show the results of one given problem, this is 

difficult to check. 

Revisions: We wish to thank reviewer #5 again for raising this important question and helpful 

suggestion. To address this comment, we have completely revised the corresponding 

paragraph appearing in page 22, line 11 to page 23, line 4, which is restated in the following 

for easier reference.  

The parameters employed in (μ λ+ )-ES+OO and GA+OO are described below. For 

(μ λ+ )-ES+OO, the parameters required in Fig. 3 are: μ =1000, λ =2000, 0
1
11

τ =  

and 05.0min =σ . For GA+OO, the parameters, which were indicated in Section 3.3, are: 

Q =1000, cp =0.7, mp =0.02 and max 100i = . In general, the larger the values of μ , 
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λ  and Q , the better the quality of the obtained solution; however, at the expense of 
computing time. Therefore, the first concern regarding the selection of the values of the 
above parameters is the computing budget. In OO theory, the typical size of the 
representative set, N, is usually taken as 1000. It has been shown in [35] that N=1000 is 
sufficient to represent a huge search space. Thus, we set the size of population μ  and Q  

to be 1000 for ES and GA, respectively. Typical truncation ratios μ λ  in (μ λ+ )-ES for 
huge solution space are in the range from 1/7 to 1/2 [19]. In this work, λ  is set to be two 
times of μ , i.e. λ =2μ . Typical values of cp  and mp  suggested by Chong and Zak in 

[36] are 0.7 and 0.02, respectively. For the sake of saving computing time,  should not 
be too large; however, too small  may miss some good solutions. We set  
for both (

| |S
| |S | | 100S =

μ λ+ )-ES+OO and GA+OO, and the reason for this selection will be stated in a 
remark, Remark 7, to be presented at the end of phase one. Similar reasons apply to the 
selection of 05.0min =σ  for (μ λ+ )-ES+OO and max 100i =  for GA+OO.  

 
Remark 7: To investigate the effect of the size  of the good enough subset  on the 
quality of the obtained good enough solution and the computing time, tests were executed 30 
simulation runs with various  in (

| |S S

| |S μ λ+ )-ES+OO for 60R = . Table 4 shows the 
statistic of objective value and average CPU time by (μ λ+ )-ES+OO for various  of 

30 simulation runs with 

| |S
R =60. We found that when  increases, the corresponding 

objective value decreases and the CPU time increases. Thus, the choice of  should 
depend on the available computing budget of the application problem. Based on the results 
presented in Table 4, =100 is a good choice for the current application problem. 

| |S
| |S

| |S
 

Table 4. Relationship between various  and the performance of (| |S μ λ+ )-ES+OO for 

R =60 in 30 simulation runs. 
| |S  1000 500 100 50 25 

Mean 2.84 2.85 2.87 2.92 2.95 
Standard deviation 0.07 0.07 0.08 0.13 0.15 

(μ+λ)-ES+OO 
with R =60 Average CPU time (sec.) 410.38 247.49 111.32 97.65 89.51 

 
Comment R5.4: Why do you select these R values for the comparisons (R=30, R=60 and R=90)? 

Revisions: To address this comment, we have added two statements on page 19, lines 17-18, and 

page 22, lines 8-10, which are restated in the following for easier reference.  
Since the yield rate of the tested wafer product is 46.5%, the average upper limit of retests is 
206*(1-0.465)=110.  
 
As indicated previously, R  should not exceed 110. Consequently, to uniformly select three different 
values of R  as test cases, we set R = 30, 60 and 90. 

 
Comment R5.5: One surprising fact is that the objective value and the average overkills are 

similar (at least in Table 2). Does this happen with the rest of experiments? Your penalty 
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function is maybe too sharp. 
Revisions: To address this comment, we have added a remark, Remark 3, on page 12, lines 18-21, 

and a paragraph on page 23, lines 20-23. These revisions are restated in the following for 
easier reference.  

Remark 3:  is a critical value in wafer manufacturing. As indicated previously, 
larger  implies that the quality of the fabrication process is skeptical. Therefore, 

[ ( )]E R x
[ ( )]E R x

R  is a critical input parameter provided by the manager, and a sharp jump of the penalty 
function is designed to ensure that  will not exceed [ ( )]E R x R . 
 
 

As indicated in Remark 3 that the penalty function is arbitrarily designed to have a sharp 
jump when [ ( )]E R x R= . Hence, the resulting  in each case is less than or 

equal to 

ˆ[ ( )]E R x
R  such that ( [ ( )] )P E R x R− =0. Consequently, the obtained objective value 

ˆ( , )F R x  is equal to the average overkills per wafer, , in all cases.  ˆ[ ( )]E V x
 
Comment R5.6: In my humble opinion (I am not a native English speaker), the paper should be 

carefully revised with respect to the English quality. Some sentences sound strange to me, 

and some of them are too long. 

Revisions: We wish to thank reviewer #5 for reminding us to improve the written presentation. 

We have asked our colleague who is a native English speaker to edit our revised manuscript. 

Hopefully, the written presentation is improved in the revised manuscript. 
 

Comment R6.1: Using an artificial neural network (ANN) to construct a surrogate model should 

be more justified and the model of ANN used should be better described, justifying (i) why, 

in this case, you consider 15 hidden nodes and (ii) why you apply one model with two 

outputs and not two models with one output each one. 

Revisions: We wish to thank reviewer #6 for pointing out what need to be cleared in our paper. 

To address the issue raised in (i), we have added a remark, Remark 6, on page 21, lines 6-14, 

which are restated in the following for easier reference. 
Remark 6: The selection of the best number of neurons in the hidden layer depends on 
many factors. The size of the training set, amount of noise in the targets, complexity of the 
sought function to be modeled, type of activation functions used and the training algorithm 
all have interacting effects on the sizes of the hidden layers. There is no analytical method 
for determining the best number of neurons in the hidden layer. Therefore, we select the 
number of neurons in the hidden layer based on empirical tests. Fig. 5 shows the mean 
square errors (MSE), which is computed by (6), of various number of neurons in the hidden 
layer ranging from 1 to 25. From this figure, we can observe that 15 is the least number of 
neurons in the hidden layer that will achieve the smallest MSE. 
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Fig. 5. The MSE of various numbers of neurons in hidden layer. 

 
To address the issue raised in (ii), we have also added a remark, Remark 5, in page 19, lines 

12-15. This remark is restated in the following for easier reference. 
Remark 5: One can also use two ANNs of the same structure as that shown in Fig. 4. 
However, one ANN has the output as , and the other has the output as . 

Then a simple calculation is needed to obtain 

[ ( )]E R x [ ( )]E V x
( , )F R x . Such a two-ANN structure is more 

complicated than that shown in Fig. 4. 
 
Comment R6.2: (i) Regarding the training algorithms used then assisted by the ANN, the GA or 

the ES, it is not justified the procedure to obtain the values of the different parameters:  for 

the GA, mu=1000, pc =0.7, pm =0.02 and i_max >=100; and for (mu+lambda)-ES+OO, 

mu=1000, lambda=2000, and sigma_min=0.05. (ii) Do you apply a cross-validation process 

over the training set? If so, how do you divide the set of decision variable vector x's from the 

discrete solution space. 

Revisions: We wish to thank reviewer #6 again for this important comment. (i) As suggested, we 

have completely revised the corresponding paragraph appearing in page 22, line 11 to page 

23, line 4. Please refer to the revisions responding to comment R5.3.  

(ii) No, we did not apply the typical cross-validation process over the training set. Instead, 

we provide the modeling error analysis of the trained ANN. First, we uniformly select 

M(=16641) points from the reduced solution space to train the ANN. (Note: the value of M 
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is justified in Remark 1 in page 7, lines 6-8.) The training process is described in Section 

3.4 starting from line 16 page 19 to line 5 page 21. Second, we also use M ′ (=16641) 

points, which are uniformly selected to construct the OPC of the considered problem 

(Section 4.1) and different from the M points used to train the ANN, to proceed with the 

modeling error analysis of ANNBSM. The modeling error analysis is presented in Section 

4.2 staring from line 2 page 31 to last line page 32. 

 

Comment R6.3: With respect to the results in Table 3 associated to the 30 executions of the 

algorithms, apart from showing statistics of the objective value for 30 simulation runs of case 

R=60, you should apply some test of average comparison to show that significant differences 

are found. In other case, the sentence "significantly outperforms the two comparing methods 

" does not make any sense. 

Revisions: We wish to thank reviewer #6 for pointing out our inadequate conclusion based on 

Table 3. In the revised manuscript, we have eliminated this inadequate statement. 

Additionally, owing to this comment as well as comment R2.5, we have restructured the part 

of test results and comparisons in Section 3.4. We believe the revised test results and 

comparisons staring from line 1 page 22 to line 14 page 28 will make more sense. Please also 

refer to the revisions responding to comments R2.5 and R5.2. 

 

Comment R6.4: (i) On the other hand, when the method is compared against other methodologies, 

it is a bit risky to use only your own algorithms previously published [10], it has two main 

disadvantages: if the new version is slightly better than the previous one (as it seems), one 

could think that we send a little change of a paper every now and then to improve a bit our 

results, and this can be showing a lack of novelty, and also, if we don't compare against other 

proposals we could never now the real potential of our approximation. This is reason why it 

is absolutely necessary that the authors compare their results against other methods that solve 

the same problem, and even (ii) they should apply their methodology with other different 

meta-heuristics, apart from evolutionary algorithms, and (iii) also other regression models 

different from ANNs. 

Revisions: We wish to thank reviewer #6 for this valuable comment. However, reviewer #6 

probably overlooks that one of the contributions of our paper is proposing a systematic 
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performance analysis procedure for ES +OO. This point has been emphasized in the last 

statement of the abstract and in the section of introduction appearing in page 4, lines 3-11 

counted from the bottom. Above all, Section 4, performance analysis, should not be ignored. 

(i) Inspired by this comment, we have restructured the part of test results and comparisons, 

which is also indicated in the revisions responding to comments R2.5, R5.2 and R6.3. In the 

revised manuscript, we have divided the tests and comparisons into three phases. The 

additional simulations in phase three demonstrate that the resulting pair ( , ) 

obtained by the proposed (

ˆE[ ( )]V x ˆE[ ( )]R x

μ λ+ )-ES+OO is approximately a Pareto optimal solution. (ii) 

Additionally, in phase two, we have also use PSO associated with the exact model to solve 

the same problem, and we found that (μ λ+ )-ES outperforms PSO in the considered case. 

The facts stated in (i) and (ii) are presented in the revised test results and comparisons 

starting from line 7 page 22 to line 10 page 27. (iii) To justify the utilization of ANN as the 

surrogate model, we have added a paragraph in Section 2.2.1 appearing in page 6 lines 6-17, 

which is restated in the following for easier reference. 
There are various techniques to approximate the relationships between the inputs and 

outputs of a system. Polynomial regression, support vector regression (SVR), artificial 
neural network (ANN), radial basis function (RBF) and Kriging model are commonly used 
[23]-[24]. Bhattacharya pointed out in [25] that ANN is particularly suitable in modeling 
high-dimensional and highly nonlinear problems, because of its ability to learn and 
generalize from data, its nonlinear processing nature, and its massively parallel structure. In 
[26], Fonseca et al. utilized ANN as the metamodel for stochastic simulation. The 
combinatorial stochastic simulation optimization problem to be tackled in this paper is 
high-dimensional and highly nonlinear. The studies in both [25] and [26] reveal that the 
ANN is a suitable surrogate model for the considered problem. Therefore, we will use ANN 
as the surrogate model in this paper, because it is competent for approximating both highly 
nonlinear continuous-variable function and the input-output relationship of stochastic 
discrete event simulated systems [27]. 

   
 

Finally, we wish to thank the Managing Editor, Prof. Gang Kou, and the six reviewers again for 

their valuable comments and suggestions. 
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