
Online Appendix for the Paper“Memetic Algorithm for 

Real-Time Combinatorial Stochastic Simulation

Optimization Problems with Performance Analysis”

Shih-Cheng Horng
Chaoyang University of Technology (schong@cyut.edu.tw)

Shin-Yeu Lin
Chang Gung University (shinylin@mail.cgu.edu.tw)

Loo-Hay Lee
National University of Singapore (iseleelh@nus.edu.sg)

Chun-Hung Chen
George Mason University (cchen9@gmu.edu)

Abstract

This document contains supplementary materials for the paper “Memetic Algorithm for

Real-Time Combinatorial Stochastic Simulation Optimization Problems with Performance

Analysis”. It is organized in the following way: Section 1 contains the modeling error

analysis of OFTANN; Section 2 contains the backward local structure model of ATO

problem; Section 3 consists of the modeling error analysis of ONBSM, and Section 4

contains the modeling error analysis of one simulation replication required to compute if

and i for various number of simulation replications in OCBA.
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1 Modeling Error Analysis of OFTANN

To analyze the probability distribution of the modeling errors of the OFTANN for a given
arrival rate vector , say (1) ( [3.6,3.0,2.4,1.8,1.2] )T  , we adopt the ordered [ ]iv , 1, ,| |i V 

and their corresponding (1)
[ ][ ( , )]iE f v , 1, ,| |i V  of the corresponding OPC presented in

Fig. 3 and put the | |V points of (1)
[ ] [ ]( , [ ( , )])i iv E f v in Fig. 4 marked by the solid line. We

let (1)
[ ]( , )iO v denote the approximate objective value of [ ]iv under the given (1) obtained

by the OFTANN presented in Section IV.B.1. We also plot the | |V points of (1)
[ ] [ ]( , ( , ))i iv O v

in Fig. 4 marked by “”. Then, the percentage modeling errors of the OFTANN for each [ ]iv
denoted by [ ]%iw can be calculated by
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Collecting the [ ]iw %’s for all [ ]iv , 1,...,| |i V , we can use a histogram to represent the

percentage modeling errors [ ]iw %’s of OFTANN as presented in Fig. 5. In this figure, the

horizontal axis that represents the percentage modeling error [ ]iw % is partitioned into the

intervals of equal width, 0.83%, and the height of a bar represents the number of [ ]iv whose

corresponding [ ]iw % lie in the same interval. The shape of the histogram presented in Fig. 5
is of normal distribution, which leads us to assert the hypothesis that the percentage modeling
errors %w of the OFTANN is of normal distribution with mean w and variance 2

w
computed by
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Fig. 4. (1)
[ ][ ( , )]iE f v and ),( ][

)1(
ivO  for the | |V ordered solutions ][iv .
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Fig. 5. Histogram of the percentage modeling errors of the OFTANN.

This model has been successfully validated by the Anderson-Darling test [23], though the
details are omitted here, and the 2( , )w w  for (1) is (~0%, 3.21%). Repeating the above
process for each of the rest of (| | 1)d  ’s, we can construct the probability distribution
model of the percentage modeling errors of OFTANN for the corresponding .

2 Backward Local Structure Model of ATO problem

The purpose of the backward local structure model is to help evaluate the normalized
objective value of the temporary solution resulting from the search process of the probabilistic
local search method. The backward local structure model is constructed based on the forward
local tier structure, which is presented in the following.

2.1 Construction of forward local tier structure

The forward local tier structure of the considered problem is formed based on the
probabilistic local search method; its construction procedures can be stated below.
Step F0: Randomly select k (~100) v’s from V . Repeat Steps F1-F5 for each selected v ,

which serves as a starting point of the probabilistic local search method.
Step F1: Let npiv , 1, ,i n  denote all the neighboring points of v , then npiv , 1, ,i n 

constitute the first-tier of v as presented in Fig. 6. Use exact model to evaluate the
objective values of v and npiv , 1, ,i n  , denoted by ( )f v and ( )npif v , 1, ,i n  ,

respectively. Compute the percentage deviation ( )%npiv of ( )npif v with respect to

( )f v for all npi by ( ) ( )
( )% 100%

( )
npi

npi

f v f v
v

f v



  , 1, ,i n  .

Step F2: Obtain approximate objective values of v and npiv , 1, ,i n  using ONBSM, and
these values are used to determine the set of accepted neighboring points in the
probabilistic local searches. Collect all the accepted neighboring points in this step,
which are marked by square blocks in the first tier presented in Fig. 6, as the points
resulting from the first-tier search and denote them by (1)iv , (1)1, ,i n  .

Step F3: Let (1)i
npjv , (1)1, , ij n  denote all the neighboring points of (1)iv for (1)1, ,i n  ,
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then (1)i
npjv , (1)1, , ij n  , (1)1, ,i n  constitutes the second-tier of the starting point v

as presented in Fig. 6. Use exact model to evaluate the objective values of (1)iv and
(1)i
npjv , (1)1, , ij n  , denoted by (1)( )if v and (1)( )i

npjf v , (1)1, , ij n  , respectively, for
(1)1, ,i n  . Compute the percentage deviation (1)( )%i

npjv of (1)( )i
npjf v with respect to

(1)( )if v by
(1) (1)

(1)
(1)

( ) ( )
( )% 100%

( )

i i
npji

npj i

f v f v
v

f v



  , (1)1, , ij n  for (1)1, ,i n  .

Step F4: For (1)1, ,i n  , obtain approximate objective values of (1)iv and
(1)i
npjv , (1)1, , ij n  using ONBSM, then these values are used to determine the set of

accepted neighboring points in the probabilistic local searches. Collect all the accepted
neighboring points in this step, which are marked by square blocks in the second tier
presented in Fig. 6, as the points resulted from the second-tier search.

Step F5: Continue the above process to find the third tier and the points resulted from the
third-tier search and so on until the set of points resulting from the ( 1n )th tier search
is an empty set. Then, the set of accepted neighboring points resulting from the n th tier
search represents the set of local optima reached from different search paths of the
probabilistic local search method starting from v , and the n th tier is the last tier of the
forward local tier structure.

. . .

. . .
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Fig. 6. Illustration of the forward local tier structure.

We have observed that different starting points will experience a different number of
successful probabilistic local searches before reaching the corresponding approximate local
optimum. We let 1n , 2n , …, kn denote the last tier of the forward local tier structure
originating from the k randomly selected points, respectively. Comparing with the k
randomly selected points, the quality of the N good solutions resulting from the global search
should be superior. Therefore, they will be closer to approximate local optima. Additionally,
the N good solutions experience a different number of successful probabilistic local searches
before reaching the corresponding local optimum. The above observations are confirmed by
the test results presented in Remark 2 of Section IV.C. Since all local optima are lying in the
last tier of the forward local tier structure, it is more reasonable to describe local structure
model backwards. In the following, we will state the formation of backward local structure
model.
Step B1: Collect all the percentage deviations ( )%npiv ’s of all points npiv ’s, which result

from the 1( 1)n  th, the 2( 1)n  th, …, the ( 1)kn  th tier search of the forward local tier
structure corresponding to the k randomly selected points. Find the probability
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distribution model of these ( )%npiv ’s, which forms the probability distribution model
of the last tier, denoted by tier LT , of the backward local structure model.

Step B2: Replace ( 1), 1, ,jn j k   and LT in Step B1 with ( 2), 1, ,jn j k   and
1LT  , respectively, and find the probability distribution model of tier 1LT  of the

backward local structure model.
Step B3: Continue the above process until the probability distribution model of tier

1 2[max( , , , ) 1]kLT n n n  of the backward local structure model is formed.
Similar to the process of analyzing the probability distribution of the percentage modeling

error for OFTANN, we have found that for the ATO problem, the probability distribution
model of the percentage deviation of objective values in all tiers of the backward local
structure model are all of normal distribution. At the arrival rates (1) [3.6,3.0,2.4,1.8,1.2]T  ,
we have 1 2max( , , , ) 7kn n n  , and the pairs of mean and variance of the normal distribution

model of the percentage deviation of objective values in tier , 0,1, ,6LT i i   are
(-0.27%, 1.53%), (-0.26%, 1.91%), (-0.29%, 2.06%), (-0.40%, 2.32%), (-0.65%, 3.36%),
(-0.54%, 2.86%), and (-0.48%, 3.34%), respectively.

3 Modeling Error Analysis of ONBSM

3.1 Modeling error analysis for given ( , )v

To proceed with the modeling error analysis of the ONBSM for a given ( , )v , we will

perform sn simulation replications to calculate
1

1
( , ) ( , )

sn

l
ls

f v f v
n

 


  . We let sne % denote

the percentage modeling error of ONBSM for ( , )v , then
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Repeating the above process for arbitrarily large number of times, say L, then we can obtain
L sne % denoted by [ ] %sn

ie , 1, ,i L  , for the given ( , )v . Similar to the analysis of the
probability distribution model of the percentage modeling errors of OFTANN, the probability
distribution model of the percentage modeling errors %sne for any selected ( , )v is also a

normal distribution with mean ( , )nse
v  and variance 2 ( , )nse

v  computed by
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The 2( ( , ), ( , ))n ns se e
v v    for (1) [3.6,3.0,2.4,1.8,1.2]T   and [5,2,3,7,5,5,4,2]Tv  is

(~0%, 1.08%).

3.2 Approximate modeling error of ONBSM

Since ( , )nse
v  varies with different ( , )v , to avoid evaluating ( , )nse

v  for any ( , )v
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on-line, we will derive an approximate  to apply to any ( , )v encountered in the
probabilistic local search process. Let [ ]( , )ns

j
e

v  be the standard deviation of the modeling

error of ONBSM of the j th ( , )v in d V   . We then set

[ ]| | | |

1 | | | |

d
ns

jV
e

i d V



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


   (14)

For the considered ATO problem, =1.1341%.

3.3 Appropriateness of approximate modeling error of ONBSM

To justify the appropriateness of , which will be applied to any ( , )v , we calculate the
variance of the | | | |d V   [ ]( , )ns

j
e

v  s with respect to , and the resulting variance is
0.0910%, which is small enough, and we can claim that the approximation is appropriate.

4 Modeling Error Analysis of One Simulation Replication Required to Compute if and

i for Various Number of Simulation Replications in OCBA

For a given ( , )v , the probability distribution model of the percentage modeling errors of
one simulation replication denoted by 1%e can be obtained in the same way as that for
ONBSM by simply replacing sn by 1. The result is also a normal distribution with mean 0

and standard deviation 1 ( , )
e

v  for the given ( , )v . The approximate standard deviation

denoted by 1e
 that can be applied to all ( , ) dv V    can also be derived in a similar

way as that used to derive  in Section III.B. The 1e
 is 2.53%, and the appropriateness of

this approximation has also been justified by a way similar to that used in Section III.C.
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