Chapter 4

Operations
on
Bits
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Decimal to binary conversion :: Review
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Decimal system :: Review
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Binary to decimal conversion :: Review

0 1 0 1 1 0 1 binary number

64 32 16 8 4 2 1 position values

0+32+ 0+8+4+0+1 results
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Figure 3-6

Taxonomy of integers :: Review

Integer
Representation

‘ Unsigned I Signed I

Sign-and- One's Two's
Magnitude Complement Complement
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OBJECTIVES

I Understand two’s complement format of integer representation.

B Apply arithmetic operations on bits when the integer is
represented in two’s complement.

B Apply logical operations on bits.
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Reading

e Ch 3.3 (p 37-39, only two’s complement
format)

» Ch 4.1 (disregard arithmetic operations on
floating-point numbers)

» Next lecture will be based on the rest of
chapter 4
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Two’s complement is the mast common,
the most important, and the most widely
used representation of integers today.
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Table 3.7 Range of two’s complement integers

# of Bits Range
-128 0 +127
—32,768 0 +32,767

—2,147,483,648 0 +2,147,483,647

Brooks/Cole ©Brooks/Cole,
CrGORS U ole

In two’s complement representation,
the leftmost bit defines the sign of the
number. If it is O, the number is positive.
Ifitis 1, the number is negative.
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Example 12

Store +7 in an 8-bit memory location using
two’s complement representation.

Solutien

First change the number to binary 111. Add five
0Os to make a total of N (8) bits, 00000111.The
sign is positive, S0 no more action is needed. The
result is:

00000111
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Store —40 in a 16-bit memory location using two’s
complement representation.

SelULIen

First change the number to binary 101000. Add
ten Os to make a total of N (16) bits,
0000000000101000. The sign is negative, so
leave the rightmost Os up to the first 1 (including
the 1) unchanged and complement the rest. The
result is:

111111111101
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Table 3.8 Example of storing two’s complement integers in
two different computers

Decimal 8-bit allocation 16-bit allocation
00000111 0000000000000111
11111001 1111111111111001
01111100 0000000001111100
10000100 1111111110000100
overflow 0110000010111000
overflow 1001111101001000
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Example 14

Interpret 11110110 in decimal if the number
was stored as a two’s complement integer.

selutien

The leftmost bit is 1. The number is negative.
Leave 10 at the right alone and complement the
rest. The result is 00001010. The two’s
complement number is 10. So the original
number was
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Two’s complement can be achieved by
reversing alllbits except the rightmaest bits upito
the first 1 (inclusive). If you two’s complement

a positive number, you get the corresponding
negative number. If you two’s complement a
negative number, you get the corresponding
positive number. If you two’s complement a
number twice, you get the original number.
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Table 3.9 Summary of integer representation

Contents of Unsigned Sign-and- One’s Two’s
Magnitude  Complement Complement
0 +0 +0 +0
1 +1 +1 +1
2 +2 +2 +2
3 +3 +3 +3
4 +4 +4 +4
5 +5 +5 +5
6 +6 +6 +6
7 +7 +7 +7
8 -0 -7 -8
9 -1 —6 -7
10 -2 -5 —6
11 -3 —4 -5
12 —4 -3 —4
13 -5 =7 =
14 —-6 -1 =
15 =7 -0 -1

©Brooks/Cole,
2003

Figure 4-1

Operations on bits

Bit
Operations

‘ Arithmetic I Logical I
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ARITHMETIC
OPERATIONS
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RujereirAddimeNntegersiin
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to the next column. If there is a final
carry after the leftmost column
addition, discard it.
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EXApIEZ

Add two numbers in two’s complement
representation: (+24) + (-17) = (+7)

Solution
1111 1
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Table 4.1 Adding bits

Number of 1s Result
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Ecmole

Add two numbers in two’s complement
representation: (+17) + (+22) = (+39)

Solution
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EXampless

Add two numbers in two’s complement
representation: (-35) + (+20) = (-15)

Solution
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Ecngle 4

Add two numbers in two’s complement
representation: (+127) + (+3) = (+130)

Solution

111111 1
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Range ofi numbers in two's

representation
- (2N 0

2

Figure 4-2
Two’s complement numbers visualization
10
Positive ,
ot Numbers
128 127
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When you do arithmetic operations on
numbers in a computer, remember that
each number and the result should be
in the range defined by the bit allocation.

EXAIEs

Subtract 62 from 101 in two’s complement:
(+101) - (+62) €=> (+101) + (-62)

Solution
11
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LOGICAL
OPERATIONS
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e 0 —false;
e 1 —true;

Logical Operations

A single bit can be either 0 or 1
« We can interpret 0 and 1 logically

¢ Logical operation — operations applied on bits
interpreted as logical values

Figure 4-3

Unary and binary operations

Input—).—} Output

a. Unary operator

Input
Output
Input

b. Binary operator
M eBrooksICale
e Truth tables
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NOT operator
NOT
1 0
0
Input QOutput
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Eciungle 7

Use the NOT operator on the bit pattern 10011000

Solution

Pelfe)t

(00 N E0)10) INOF
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Figure 4-7

AND operator

Input
1 e n u
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5 ' Output

‘AND} 1
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Example 8

Use the AND operator on bit patterns 10011000
and 00110101.

Figure 4-8

Inherent rule of the AND operator

(0) AND (X) —» (0)

(X) AND (0) —» (0)
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selution
Target 10011000 AND
00110101
©Brooks/Cole,
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» Most computers today use the two’s
complement method of integer representation

» We can perform arithmetic and logic
operations on bits

 To subtract in two’s complement, just negate
the number to be subtracted and add

» Numbers to be added must be within the range
defined by the bit allocation
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Conclusions

 “Overflow” means a condition in which a
number is not within the range defined by the
bit allocation

* Logical operations can be unary and binary

* Truth tables list all possible input

combinations with the corresponding output

Logical operations: NOT, AND
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Next Lecture

We’ll discuss other logical operations and their
applications
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